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ABSTRACT

Tumor recurrence due to acquired resistance to anti-cancer treatments poses a major clinical problem in
treating cancer. One major cause of drug-resistance is the acquisition of random point mutations in the
genomic sequence of cancer cells which confer resistant phenotypes. Despite an initial response to treatment,
emergent drug-resistant subpopulations often eventually drive the recurrence and regrowth of the tumor.
The timing of such cancer recurrence is highly variable in patient populations, and is governed by a balance
between several factors such as initial tumor size, mutation rates, and growth kinetics of drug-sensitive and
resistant cells. To better understand patterns of cancer progression in patient populations, we are interested
in the mechanisms driving early or late cancer recurrences. In previous work, we modeled the dynamics
of recurrence by considering escape from a subcritical branching process, where the establishment of a
clone of escape mutants can lead to total population growth after the initial decline. Here, we study and
characterize the rare events leading to early or late crossover time, defined as the time at which the total
cancer population first becomes dominated by the emerging resistant cell population. In particular, using
this model we investigate algorithms for estimating the probability of early crossover events, which are
correlated with early tumor recurrence.

1 INTRODUCTION

The past decade has seen a revolution in the discovery of targeted anti-cancer therapies (e.g. Iressa -
non-small cell lung cancer; Gleevec - chronic myeloid leukemia; Herceptin - HER2+ breast cancer). Many
of these drugs lead to dramatic reductions in tumor burden with little toxicity. However, a major limitation
to their efficacy is the eventual emergence of drug resistance, leading to a rebound in tumor size and
progression of disease. Drug resistance is commonly caused by random point mutations in the genomic
sequence of cells, which can confer drug-resistant phenotypes to cells by interfering with the binding
site of the drug, up-regulating drug efflux pumps, or activating alternate signaling pathways, for example.
Once a viable resistant subpopulation is established, its growth drives the recurrence of the tumor in the
presence of therapy. Although tumor recurrence due to acquired resistance is inevitable for many therapies
(e.g. Iressa), the timing of recurrence can vary significantly between patients (Demicheli and et al 2008;
Demicheli and et al 2012). The source of this variability - e.g. why some patients experience shorter
or longer disease-free periods than others, is largely unknown. Gaining a better understanding of the
evolutionary paths leading to early or late recurrence will provide insight into the relationship between
recurrence timing and the composition of the recurrent tumor, which may eventually aid in clinical treatment
strategies post-recurrence.

Markov process population models provide a useful tool to understand the complex evolutionary
dynamics of cancer and the emergence of drug-resistant subpopulations (see, e.g. references (Coldman and
Goldie 1986; Durrett, Schmidt, and Schweinsberg 2009; Frank 2003; Haeno, Iwasa, and Michor 2007;
Komarova 2006)). In this work we analyze an evolutionary branching process model of tumor recurrence
due to the emergence of drug resistance mediated by a random point mutation. In particular, we develop
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computational tools for effective estimation of the probability of tumor recurrence occurring much earlier
than expected. These tools will be used in later work to study the most likely evolutionary paths leading
to early tumor recurrence.

2 MODEL DESCRIPTION

In the classic Galton-Watson process each individual lives for one unit of time and then is replaced by a random
number of offspring that is characterized by its probability generating function (pgf) f (s) = ∑

∞
n=0 pnsn,

where pn ≥ 0 and ∑n pn = 1. A natural generalization of this model is to assume that each individual lives
for a random amount of time. If we assume that these lifetimes are independent and identically distributed
exponential random variables then the total population process is a continuous time Markov process, such
a process is called a continuous time Markovian branching process (for further results on these processes
see Chapter 3 of Athreya and Ney 2004). These processes are characterized by the pgf of the offspring
distribution and the rate at which individuals are replaced by their offspring. If we insist that the offspring
distribution has all of its mass at that points 0 and 2 then we have a binary Markovian branching process.
We can characterize these processes by their growth and death rates, since this will tell us both the offspring
distribution and the total rate at which replacement events occur. Since the somatic cells of the body can
either divide in two or die a binary branching process is a natural tool to model the population dynamics
of these cells.

We assume a large initial population of n drug-sensitive cancer cells. The evolution of this population
is modeled as a binary Markovian branching process, Z0(t), with birth rate d0, death rate r0, net growth rate
λ0 < 0 and decay rate r = |λ0|. The sensitive cell population produces resistance mutants at rate µnZ0(t)
where µn = µn−α for µ > 0 and α ∈ [0,1). Each resistance mutation initiates the creation of a Markovian
binary branching process with birth rate r1, death rate d1 and net growth rate λ1 > 0, we denote total
number of resistant cells at time t by Z1(t). Thus, Z1 is a binary branching process with immigration from
mutations arising in the Z0 process.

2.1 Previous Results

Approximations of the cross-over time, or first time at which the resistant cells dominate the total population

ξn = inf{t ≥ 0 : Z1(t)≥ Z0(t)} (1)

were studied in Foo and Leder 2012a. There it was shown that we can approximate the large n behavior
of ξn by

un =
log(1+nα(λ1 + r)/µ)

(λ1 + r)
. (2)

In particular, we have the result that for any ε > 0

lim
n→∞

P(|ξn−un|> ε) = 0.

In addition, the following weak limit is shown in Foo and Leder 2012b,

n(1−α)/2(ξn−un)⇒ Z, (3)

where Z∼N(0,σ2) and σ2 = 2r1r2/(r0λ1(2λ1+r)). Based on these result we see that the events |ξn−un|> y
for a fixed y become increasingly unlikely as n↗ ∞.

3 RARE EVENTS IN CROSSOVER TIME

We are interested in rare events in the crossover time ξn, which can be driven by deviations by either Z0
or Z1. In order to get a sense of which process is more important in terms of deviations, we first consider
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their variances. The variance of Z0 is well known (see e.g. Athreya and Ney 2004) as

Var(Z0(t)) = n
(

r0 +d0

r

)(
e−rt − e−2rt)=C0ne−rt(1− e−rt).

The variance of Z1 can be shown (see Foo and Leder 2012a) to be

Var(Z1(t)) =
(

µ

nα

)2 ∫ t

0

∫ t

0
Cov(Z0(s),Z0(y))eλ1(t−s)eλ1(t−y)dsdy

+
µ

λ1nα

∫ t

0
EZ0(s)E[Z̃1(t− s)2|Z̃1(0) = 1]ds,

where Z̃1 is a binary branching process with birth rate r1 and death rate d1. Z̃1 possesses same growth
behavior as Z1 except that no further immigration is allowed. It is easily seen that both integrands in the
formula for the variance of Z1 are O(n), and therefore Var Z1(t) = Θ(e2λ1tn1−α). Note that if α = 0 then
VarZ1(t)> VarZ0(t) for all t, and if α ∈ (0,1) the variance of Z0 is larger for small t. However, equation
(2) shows that if α ∈ (0,1) then our event of interest occurs at large times, i.e., t ≈ tn = 1

λ1+r lognα . If we
consider the variances at these time scales we see that

Var(Z0(tn)) = k0n1−rα/(λ1+r)(1+o(1))

Var(Z1(tn)) = k1n1−α+2λ1α/(λ1+r)(1+o(1))

where k0 and k1 are constants that depend only on system parameters. Comparing the power of n in the
two expressions we see that

1−α +
2λ1α

λ1 + r
−1+

rα

λ1 + r
> 0,

and thus the variance of Z1 asymptotically dominates the variance of Z0 at the crossover time ξn if α ∈ (0,1).
Therefore for a > 1 we consider

pn(a) = P(Z1(ξn)> aEZ1(un)). (4)

Alternatively we could consider the probability P(Z1(ξn)> aEZ1(ξn)), however since it is possible to get
an explicit expression for EZ1(un) we prefer the current formulation of pn(a). In order to analyze pn(a),
we must first analyze the behavior of the processes Z0 and Z̃1. Let us first consider the moment generating
function of Z̃1

φt(θ) = E exp(θ Z̃1(t)) =

{
d1(eθ−1)−e−λ1t(r1eθ−d1)

r1(eθ−1)−e−λ1t(r1eθ−d1)
, θ < θ̄t

∞, θ ≥ θ̄t

(5)

where

θ̄t
.
= log

(
r1eλ1t −d1

r1eλ1t − r1

)
, (6)

see Athreya and Ney 2004 page 109.
To study the subcritical process Z0 we consider the generating function of the offspring distribution

f (s) =
∞

∑
j=0

p js j,

the infinitesimal generating function φ(s) = a( f (s)− s) (a is the total rate of cell deaths) and the moment
generating function

F(s, t) =
∞

∑
n=0

snP(Z0(t) = n|Z0(t) = 1). (7)
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The function F(s, t) satisfies the initial condition F(s,0) = s and the forward and backward equations (see
Athreya and Ney 2004)

∂

∂ t
F(s, t) = φ(s)

∂

∂ s
F(s, t) (8)

∂

∂ t
F(s, t) = φ (F(s, t)) .

Note that for our binary branching process f (s) = d0+r0s2

d0+r0
, and φ(s) = r0s2− (r0 +d0)s+d0. Notice that

since Z0 is subcritical f ′(1) < 1 and thus by continuity there exists a δ > 0 such that for s ∈ (1,1+ δ ),
we have φ(s)< 0 and φ ′(s)< 0. We must address the question of the existence of F(s, t) for s > 1. In the
case of offspring distribution with finite support (such as our binary branching process), we see that φ(s) is
Lipschitz for s in a compact set. By considering the backward equation in (8), observe that if F(s0,0) = s0
is sufficiently close to 1 then the negativity of φ near 1 will constrain F to a compact set. Then the local
Lipschitz continuity of φ gives the existence of F for all time. This is in contrast to the supercritical case
where for any fixed s the solution will blow up in finite time.

We now consider upper bounds on the probability of Z1 exceeding its mean at the crossover time. In
order to do this we need the following assumption for k > 0

P(|zn|> kn(1−α)/2)≤ exp
[
−k2n1−α/2

]
, (9)

where zn = (ξn−un)n(1−α)/2. This result will be established in future work.
Theorem 1 For α ∈ (0,1) and a > 1 there exists a γ(a)> 0 such that

pn(a)≤ exp
(
−n1−α(γ(a)+o(1))

)
,

where o(1) is a term that goes to 0 as n→ ∞.

Proof. First consider the following decomposition

P(Z1(ξn)> aEZ1(un))≤ P(Z1(un + znn(α−1)/2)> aEZ1(un),zn ∈ [−Mn,Mn])+P(|zn|> Mn),

where Mn = kn(1−α)/2 for a positive constant k. Due to the assumption (9) it suffices to study the first
probability in the previous display. Next notice that

P(Z1(un + znn(α−1)/2)> aEZ1(un),zn ∈ [−Mn,Mn])≤ P( sup
t∈[−Mn,Mn]

Z1(un + tn(α−1)/2)> aEZ1(un)). (10)

Then notice that Z1 is a submartingale; thus if we choose θn > 0 appropriately and define tn = un + k we
have from Doob’s inequality that the RHS of display (10) can be bounded by

E exp(θnZ1(tn)−aθnEZ1(un)) =
1

exp(aθnEZ1(un))
E exp

(
µ

nα

∫ tn

0
Z0(s)(φt−s(θn)−1)ds

)
. (11)

The equality in the previous display is a basic result for the moment generating function of birth-death
processes with immigration, see e.g. Grimmett and Stirzaker 2001, Theorem 11, section 6.12. For θ ∈ (0,1),
define θn = θλ1e−λ1tn/r1, from (6) we can observe that

λ1

reλ1t ≤ θ̄t +
λ1

r1eλ1t(eλ1t −1)
.

Thus for any θ < 1, θn < θ̄tn for n sufficiently large n.
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A useful decomposition of the expected value on the RHS of (11) is

E exp
(

µ

nα

∫ tn

0
Z0(s)(φtn−s(θn)−1)ds

)
(12)

= exp
(

µ

nα−1

∫ tn

0
e−rs(φtn−s(θn)−1)ds

)
E exp

(
µ

nα

∫ tn

0
(φtn−s(θn)−1)(Z0(s)−ne−rs)ds

)
.

Roughly, this decomposes the moment generating function into two terms: one dealing solely with the
growth of Z1, and a term that considers deviations of Z0 away from its mean behavior. A cursory analysis
of these two expressions shows that the first term should be of higher order. More specifically, we compare
en1−α

versus en1/2−α

since Z0(s)−ne−rs is of order n1/2. We now develop upper bounds on this latter term.
First from Jensen’s inequality we have

E exp
(

µ

nα

∫ tn

0
(φtn−s(θn)−1)(Z0(s)−ne−rs)ds

)
≤ 1

tn

∫ tn

0
E exp

(
µtn
nα

(φtn−s(θ)−1)(Z0(s)−ne−rs)
)

ds.

(13)

To analyze the previous expression define ψt(θ) = E[exp(θ(Z0(s)− e−rs)|Z0(s) = 1], and ωn(s, tn) =
( µtn

nα (φtn−s(θn)−1). Then from the independence of the n initial cells we have

E exp
(
ωn(s, tn)(Z0(s)−ne−rs)

)
= (ψs (ωn(s, tn)))

n .

From the definition of θn and φt(θ) it is possible to show that φtn−s(θn) is bounded for all n and s ∈ (0, tn),
i.e., there exists k0 > 0 such that ωn(s, tn) ≤ k0n−α logn. Therefore we conclude ωn is small for n large
and perform a Taylor expansion of ψ around 0. Then for z ∈ (0,ωn(s, tn))

ψs (ωn(s, tn)) = 1+
ωn(s, tn)2

2
ψ
′′
s (z)≤ 1+

ωn(s, tn)2

2
ψ
′′
s (ωn(s, tn)) ,

and the inequality follows from the monotonicity of ψ
′′
s (θ) in θ . It thus remains to study ψ

′′
t . In particular

we want to show that this function is bounded in t for θ sufficiently small. In order to do this first recall
F(s, t) from (7) and observe that

hθ (t)
.
= ψ

′′
t (θ) = e2θ ∂ 2

∂ s2 F(eθ , t)+ eθ ∂

∂ s
F(eθ , t).

Our goal will be to show that for θ sufficiently close to 0, d
dt hθ (t) < 0. From the backward equation in

(8) we get that

∂ 2

∂ s∂ t
F(s, t) =

1
φ(s)

∂ 2

∂ t2 F(s, t) and
∂ 2

∂ t2 F(s, t) = φ
′(F(s, t))

∂

∂ t
F(s, t).

Recall that there exists a δ > 0 such that for s ∈ (1,1+δ ), φ(s)< 0 and φ ′(s)< 0. From the continuity
of F and the backward equation we see that ∂ 2

∂ t2 F(s, t)> 0 and therefore ∂ 2

∂ s∂ t F(s, t)< 0. From this it also
follows that

∂ 3

∂ s2∂ t
F(s, t) =

−1
φ(s)2

∂ 2

∂ t2 F(s, t)< 0.

Therefore we conclude that for θ sufficiently small hθ (t)≤ Kθ , and therefore there exists k1 > 0 such that

ψs (ωn(s, t))≤ 1+
k1 logn

n2α
.
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We can then conclude that

exp [n logψn (ωn(s, t))]≤ exp
[

n log
(

1+
k1 logn
2n2α

)]
≤ exp

(
k1n1−2α logn

)
.

Since this bound is independent of s, we can apply this the bound to (13) to see that

E exp
(

µ

nα

∫ tn

0
(φtn−s(θn)−1)(Z0(s)−ne−rs)ds

)
≤ exp(k1n1−2α logn). (14)

We now consider the deviations of Z1. First define

Ψn =
µ

nα−1

∫ tn

0
e−rs(φtn−s(θn)−1)ds−aθnEZ1(tn)+aθn(EZ1(tn)−EZ1(un)).

Recalling that θn is small we look at a Taylor expansion of φt around 0 and use the fact that φ
′′
t (·) is

non-decreasing to see that

φtn−s(θn)≤ 1+θnφ
′
tn−s(0)+

θ 2
n

2
φ
′′
tn−s(θn)

= 1+θnEZ̃t(tn− s)+
θ 2

n

2
φ
′′
tn−s(θn).

The previous inequality and the fact that

EZ1(tn) =
µ

nα−1

∫ tn

0
e−rsEZ̃1(tn− s)ds,

gives the bound

Ψn ≤
µ

2nα−1

∫ tn

0
e−rs

θ
2
n φ

′′
tn−s(θn)ds+(1−a)θnEZ1(tn)+aθn(EZ1(tn)−EZ1(un)). (15)

Since un = tn− k we see that

(1−a)θnEZ1(tn)+aθn(EZ1(tn)−EZ1(un)) =
θλ1µ

r1(λ1 + r)
(1−ae−λ1k). (16)

Using the fact that φt is the moment generating function of a binary branching process we can explicitly
evaluate its second derivative as

φ
′′
tn−s(θn) =

eθ λ 2
1 e−λ1(tn−s)(r1−d1e−λ1(tn−s))(

r1(1− eθn)+ e−λ1(tn−s)(r1eθn−d1)
)3 ≤

r1e2λ1(tn−s)

λ1(1−θ −θn)3

≤ r1e2λ1(tn−s)
(

1
λ1(1−θ)3 +

θn

λ1(1−θ)3

)
.

Plugging the previous bound for φtn−s(θn) into (15) and using (16), we see

Ψn ≤ n1−α

(
µθ 2λ1

2r1(r+2λ1)(1−θ)3 +
µθλ1(1−ae−λ1k)

r1(r+λ1)
+O(n−λ1c)

)
.
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Looking back at (11), we see that to get an upper bound on tail probabilities of Z1 we need to bound
an exponential integral. In (12) we decomposed this exponential integral into two terms. Combining the
previous display with (14) we see that

logP(Z1(ξn)> aEZ1(un))≤ k1n1−2α logn+n1−α

(
µθ 2λ1

2r1(r+2λ1)(1−θ)3 +
µθλ1(1−ae−λ1k)

r1(r+λ1)
+O(n−λ1c)

)

= n1−α

(
µθ 2λ1

2r1(r+2λ1)(1−θ)3 +
µθλ1(1−ae−λ1k)

r1(r+λ1)
+o(1)

)
. (17)

The exponential decay at rate n1−α follows by observing that the expression

µθλ1

2r1(r+2λ1)(1−θ)3 +
µλ1(1−ae−λ1k)

r1(r+λ1)

is strictly negative for k < 1
λ1

loga and θ sufficiently close to 0.

4 IMPORTANCE SAMPLING

The previous result establishes that pn(a) decays exponentially in n1−α ; thus, estimating these probabilities
via Monte Carlo simulation requires the use of variance reduction techniques. We will focus on the method
of Monte Carlo with importance sampling. Recall that importance sampling works by sampling from an
alternative distribution that reduces the variance of the Monte Carlo estimator. For example, suppose we
wish estimate z = E[ f (Z)] where Z has cdf F , then we construct a sampling measure F̃ and generate N
i.i.d. samples Z1, . . . ,ZN according to F̃ . The estimate for z is

ẑ =
1
N

N

∑
i=1

f (Zi)L(Zi),

where L is a likelihood ratio between dF and dF̃ that insures ẑ is an unbiased estimator for z. The challenge
of importance sampling is choosing F̃ so that the variance of ẑ is sufficiently reduced.

An approach that has been successful in constructing sampling measures is to consider a scaled version
of the system and look at solutions for a relevant differential inequality. In the following we outline this
approach for the construction of estimators of pn(a). This will be addressed in greater detail in future
work.

Define scaled versions of our processes as

Zn
0(t) =

1
n

Z0(t) , Zn
1(t) = nα−1Z1(t) and Zn(t) = (Zn

0(t),Z
n
1(t)).

Then for a > 1 define the function

pn(x;a) = P(Zn
1(ξn)> aEZn

1(un)|Zn(0) = x).

From the previous theorem we know that this probability decays exponentially, so we consider a logarithmic
transform

Wn(x;a) = log
(
−n1−α pn(x;a)

)
,

where x ∈ R2
+. Since pn(x;a) is a time-homogeneous probability we will focus on the embedded discrete

time process for the remainder, which can be written as

Zk+1 = Zk +Yk+1(Zk+1), k ≥ 0
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where Yk represents the result of the kth event, i.e. a birth, death, or mutation, and Zk is the number of
resistant and sensitive cells immediately after the kth event. If we define e0 = (1,0) and e1 = (0,1) the
possible values of Yk are v1 = e0,v2 =−e0,v3 = e1, and v4 =−e1.

We can renormalize the sensitive and resistant populations and arrive at a scaled version of the embedded
process

Zn
k+1 = Zn

k +Y n
k+1(Z

n
k+1), k ≥ 0.

The possible values of Y n
k are

vi(n) =

{
vi
n , 1≤ i≤ 2

vi
n1−α , 3≤ i≤ 4

Given the state of the scaled process is x = (x0,x1), the rate at which jumps occur is given by

Rn(x) = n1−α(x1(r1 +d1)+ x0µ)+nx0(r0 +d0).

and the jump probabilities are given by

qx(v1) =
nx0r0

Rn(x)
, qx(v2) =

nx0d0

Rn(x)
, qx(v3) =

n1−α(x1r1 + x0µ)

Rn(x)
, and qx(v4) =

n1−αx1d1

Rn(x)
,

i.e. for j = 1, . . . ,4, P(Y n
1 (x) = v j) = qx(v j).

The following function is useful for the construction and analysis of importance sampling changes of
measure

ψ(y,x) = log∑
j

qx(v j)ey·v j .

We will use the sampling measure defined by

q̃x(v) = qx(v)exp(−∂xg(x) · v−ψ(−∂xg(x),x))

for a smooth function g that satisfies g(x)≤ 0 for x such that x1 ≥ nαx0 and x1 ≥ aEZn
1(un). Based on this

sampling measure we form the estimator

ẑn(a) = 1{Z1(Nn)>aEZ1(un)}

Nn

∏
j=1

exp
[
∂xg(Zn

j−1) ·Y n
j +ψ(∂x(g(Zn

j−1),Z
n
j−1))

]
, (18)

where Nn is the discrete time analog of ξn.
We will now discuss how to choose g so that we can estimate the second moment of the associated

importance sampling estimator. Define the function v(x) = exp(−n1−αg(x)). Then a condition on g that
enables control over the second moment of the importance sampling estimator (in terms of g(z0) where
z0 = (1,0)) is

E
[

v(x+Y n(x))
v(x)

exp(∂xg(x) ·Y +ψ(−∂xg(x),x))
]

=
4

∑
j=1

qx(v j)exp
[
n1−α (g(x)−g(x+ v j(n)))+∂xg(x) · v j +ψ(−∂xg(x),x)

]
≤ 1. (19)

This inequality basically implies a supermartingale property for the likelihood ratio and thus allows one
to use the optional sampling theorem to control the variance of the estimator, see Blanchet and Glynn
2008; Blanchet, Glynn, and Leder 2012. Satisfying this inequality is in general difficult, so one looks at
satisfying a limiting version of this inequality. This leads to a search for sub solutions to the so-called
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’Isaac’s Equation’ (Dupuis and Wang 2009). The structure of the large n limit of (19) breaks down into
two cases:
Case 1: x0 > 0

E
[

v(x+Y n(x))
v(x)

exp(∂xg(x) ·Y +ψ(−∂xg(x),x))
]

≈
2

∑
j=1

exp
[
∂xg(x) · v j(1−n−α)+ψ(−∂xg(x),x)

]
qx(v j).

Case 2: x0 = 0

E
[

v(x+Y n(x))
v(x)

exp(∂xg(x) ·Y +ψ(−∂xg(x),x))
]

=
4

∑
j=3

exp
[
n1−α (g(x)−g(x+ v j(n)))+∂xg(x) · v j +ψ(−∂xg(x),x)

]
qx(v j).

Looking at the limit as n→ ∞, if x0 > 0, we need g to satisfy the following differential inequality

ψ(−∂xg(x),x)+ψ(∂xg(x),x)≤ 0, (20)

and if x0 = 0 we require
ψ(−∂xg(x),x)≤ 0, (21)

with the boundary condition limx1→∞ g(x)≤ 0 for x0 = 0. Based on the results of Dupuis and Wang 2007
we expect that if g satisfies the equations outlined above then

liminf
n→∞

−nα−1 logEẑn(a)≥ g(z0).

Therefore, our goal is to create a function g that satisfies (20) and (21) with the maximum possible value
at the origin. Note that due to the convexity of ψ and the fact that ψ(0) = 0, (20) in fact imposes that one
use no importance sampling in the region x0 > 0.

Interestingly, the limiting differential equation has distinct behavior along the axis x0 = 0 versus the
interior x0 > 0. This is similar to what is seen in rare event simulation problems involving queueing systems
(Dupuis, Sezer, and Wang. 2007). In queueing problems the separate behavior along the axis is due to
discontinuous behavior in the pre-limit. In contrast in this problem the separate behavior along the axis
arises because of separation of scales between Z0 and Z1 in the limit. In future work we plan to investigate
solutions to the differential inequality from (20) and (21). Following work by Dupuis and Wang, we will
look at state dependent mixtures between solutions to the two differential equations. Specifically, as x0→ 0
we will sample more frequently according to a solution of (21) and for x0 far away from 0 we will sample
from the original dynamics.
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