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ABSTRACT

Gibbs random fields play an important role in statistics, for example the autologistic model is commonly
used to model the spatial distribution of binary variables defined on a lattice. However they are complicated
to work with due to an intractability of the likelihood function. It is therefore natural to consider tractable
approximations to the likelihood function. Composite likelihoods offer a principled approach to constructing
such approximation. The contribution of this paper is to examine the performance of a collection of composite
likelihood approximations in the context of Bayesian inference.

1 INTRODUCTION

Gibbs random fields play an important and varied role in statistics. The autologistic model is used to model
the spatial distribution of binary random variables defined on a lattice or grid (Besag 1974). The exponential
random graph model or p∗ model is arguably the most popular statistical model in social network analysis
(Robins et al. 2007). Other application areas include biology, ecology and physics.

Despite their popularity, Gibbs random fields present considerable difficulties from the point of view
of parameter estimation, because the likelihood function is typically intractable for all but trivially small
graphs. One of the earliest approaches to overcome this difficulty is the pseudolikelihood method (Besag
1972), which approximates the joint likelihood function by the product of full-conditional distributions of
all nodes. Indeed the pseudolikelihood approximation is an example of a composite likelihood, that is, a
likelihood approximation consisting of a product of a joint distribution of a lower dimensional variables,
each of which can be normalized. It is natural to consider approximations which refine pseudolikelihood
by considering products of larger collections of variables. The purpose of this paper is to consider such
composite likelihood approximations. A similar study has been conducted by Okabayshi et al. (2011),
although from a likelihood inference perspective. As in this paper, they consider likelihood approximations
consisting of a product of a joint distribution of collections of neighboring variables. Using the recursion
method of (Reeves and Pettitt 2004) we show that larger collections of variables can be used.

This paper is organized as follows. Section 2 outlines a description of Gibbs random fields, and in
particular the autologistic distribution. Composite likelihoods are introduced in Section 3. Here we focus
especially on how to formulate conditional composite likelihoods for application to the autologistic model.
We also focus on the issue of calibrating the composite likelihood function for use in a Bayesian context.
Section 4 illustrates the performance of the various estimators for simulated data. The paper concludes
with some remarks in Section 5.

2 DISCRETE-VALUED MARKOV RANDOM FIELDS

Discrete Markov random fields play an important role in several areas of statistics including spatial statistics
and social network analysis. The autologistic model, popularized by Besag (1972) which has the Ising
model as a special case, is widely used in analysis of binary spatial data defined on a lattice. The exponential
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random graph (or p∗) model is frequently used to model relational network data. See (Robins et al. 2007)
for an excellent introduction to this body of work.

Let y = {y1, . . . ,yn} denote realized data defined on a set of nodes {1, . . . ,n} of a graph, where each
observation yi takes values from some finite state space. The likelihood of y given a vector of parameters
θ = (θ1, . . . ,θm) is defined as

f (y|θ) ∝ exp(θ T s(y)) := q(y|θ), (1)

where s(y) = (s1(y), . . . ,sm(y)) is a vector of sufficient statistics. The constant of proportionality in (1),

z(θ) = ∑
y∈Y

exp(θ T s(y)),

depends on the parameters θ , and is a summation over all possible realization of the Gibbs random field.
Clearly, z(θ) is intractable for all but trivially small situations. This poses serious difficulties in terms of
estimating the parameter vector θ .

One of the earliest approaches to overcome the intractability of the (1) is the pseudolikelihood method
(Besag 1975) which approximates the joint distribution of y as the product of full-conditional distributions
for each yi,

fpseudo(y) =
n

∏
i=1

f (yi|y−i,θ),

where y−i denotes y\{yi}. This approximation has been shown to lead to unreliable estimates of θ , for
example, (Rydén and Titterington 1998), (Friel et al. 2009). This is in fact one of the earliest composite
likelihood approximations, and we will outline work in this area further in Section 3. Note also that Monte
Carlo approaches have also been exploited to estimate the intractable likelihood, for example the Monte
Carlo maximum likelihood estimator of Geyer and Thompson (1992). More recently, auxiliary variable
approaches have been presented to tackle this problem through the single auxiliary variable method (Møller
et al. 2006) and the exchange algorithm (Murray et al. 2006).

The autologistic model, first proposed by Besag (1972), is defined on a regular lattice of size m×m′,
where n = mm′. It is used to model the spatial distribution of binary variables, taking values −1,1. The
autologistic model is defined in terms of two sufficient statistics,

s0(y) =
n

∑
i=1

yi, s1(y) =
n

∑
j=1

∑
i∼ j

yiy j,

where the notation i∼ j means that lattice point i is a neighbour of lattice point j. Henceforth we assume
that the lattice points have been indexed from top to bottom in each column and where columns are
ordered from left to right. For example, for a first order neighborhood model where an interior point yi
has neighbors {yi−m,yi−1,yi+1,yi+m}. Along the edges of the lattice each point has either 2 or 3 neighbors.
The full-conditional of yi can be written as

p(yi|y−i,θ) ∝ exp(θ0yi +θ1yi(yi−m + yi−1 + yi+1 + yi+m)) , (2)

where y−i denotes y excluding yi. As before, the conditional distribution is modified along the edges of
the lattice. The Hammersley-Clifford theorem (Besag 1974) shows the equivalence between the model
defined in (2) and in (1). Note that parameter θ0 controls the relative abundance of −1 and +1 values.
The parameter θ1 controls the level of spatial aggregation. When θ > 0, neighboring values tend to take
similar values, thereby yielding homogeneous regions in the lattice. Note that the Ising model is a special
case, resulting from θ0 = 0.
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3 COMPOSITE LIKELIHOODS

There has been considerable recent interest in composite likelihood methods in the statistics literature under
such headings as pairwise likelihood methods (Nott and Rydén 1999), composite likelihoods (Heagerty
and Lele 1998), (Cox and Reid 2004) and split-data likelihoods (Rydén 1994). These concepts have
long-standing antecedents such as Besag’s pseudolikelihood (Besag 1975). The basic idea is to work with
a likelihood made up of factors, each of which corresponds to the joint probability function of a small
number of variables, two in the case of pairwise likelihoods.

Let us know return to the case where y is a realization from an autologistic distribution. Following the
previous section we denote A = {1, . . . ,mm′} as an index set for the lattice points. Following (Asuncion
et al. 2010) we consider a general form of composite likelihood written as

f (y|θ)≈
C

∏
i=1

p(yAi |yBi ,θ) :=CL(y|θ). (3)

Some special cases arise:

1. Ai = A, Bi = /0, C = 1 corresponds to the full likelihood.
2. Bi = /0 is often termed marginal composite likelihood.
3. Bi = A\Ai is often termed conditional composite likelihood.

The focus of this paper is on conditional composite likelihoods. Note that the pseudolikelihood approximation
is a special of 3. where each Ai is a singleton. We restrict each Ai to be of the same dimension and in
particular to correspond to contiguous square ’blocks’ of lattice points of size k×k. In terms of the value
of C in case 3., an exhaustive set of blocks would result in C = (m− k+ 1)× (n− k+ 1). In particular,
we allow the collection of blocks {Ai} to overlap with one another. Finally, it is worth noting that in our
context marginal distributions, p(yAi |θ), for index sets Ai, are rarely, if ever, available. Hence we don’t
consider marginal composite likelihoods in this context.

Our interest here is to compare the performance of estimation of θ using the conditional composite
likelihood and especially to understand the statistical efficiency as the block size k increases. It should
also be evident that the computational complexity of this approximation will increase dramatically with k,
the size of the blocks. Consequently our interest here is to explore the trade-off between using a larger
block size, with a smaller number of blocks C in (3).

3.1 Computing Full-conditional Distributions of Ai

The conditional composite likelihood which we described above relies on evaluating

p(yAi |y−Ai ,θ) =
exp(θ0s0(yAi)+ s1(yAi |y−Ai))

z(θ ,yAi)
, (4)

where
s0(yAi) = ∑

j∈Ai

y j, s1(yAi |y−Ai) = ∑
j∈Ai

∑
l∼ j

yly j.

Also the normalizing constant now includes the argument yAi emphasizing that it involves a summation over
all possible realizations of sub-lattices defined on the set Ai and conditioned on the realized y−Ai . First we
describe an approach to compute the overall normalizing constant for a lattice, without any conditioning
on a boundary.

Generalized recursions for computing the normalizing constant of general factorisable models such as
the autologistic models have been proposed by Reeves and Pettitt (2004), generalizing a result known for
hidden Markov Models (e.g. Zucchini and Guttorp 1991; Scott 2002). This method applies to autologistic

318



Friel

lattices with a small number of rows, up to about 20, and is based on an algebraic simplification due to
the reduction in dependence arising from the Markov property. It applies to un-normalized likelihoods that
can be expressed as a product of factors, each of which is dependent on only a subset of the lattice sites.
We can write q(y|θ) in factorisable form as

q(y|θ) =
n

∏
i=1

qi(yi|β ),

where each factor qi depends on a subset yi = yi,yi+1, . . . ,yi+m of y, where m is defined to be the lag of
the model. We may define each factor as

qi(yi,β ) = exp{θ0yi +θ1yi(yi+1 + yi+m)} (5)

for all i, except when i corresponds to a lattice point on the last row or last column, in which case yi+1 or
yi+m, respectively, drops out of (5).

As a result of this factorization, the summation for the normalizing constant,

z(θ) = ∑
y

n

∏
i=1

qi(yi|θ)

can be represented as
z(θ) = ∑

yn

qn(yn|θ) ∑
yn−1

qn−1(yn−1|θ) . . .∑
y1

q1(y1|θ) (6)

which can be computed much more efficiently than the straightforward summation over the 2n possible
lattice realizations. Full details of a recursive algorithm to compute the above can be found in Reeves and
Pettitt (2004). Note that this algorithm was extended in (Friel and Rue 2007) to also allow exact draws
from p(y|θ)

The minimum lag representation for an autologistic lattice with a first order neighborhood occurs for r
given by the smaller of the number of rows or columns in the lattice. Identifying the number of rows with
the smaller dimension of the lattice, the computation time increases by a factor of two for each additional
row, but linearly for additional columns. It is straightforward to extend this algorithm to allow one to
compute the normalizing constant in (4), so that the summation is over the variables yAi and each factor
involves conditioning on the set y−Ai .

3.2 Bayesian Composite Likelihoods

The focus of interest in Bayesian inference is the posterior distribution

p(θ |y) ∝ f (y|θ)p(θ).

Our proposal here is to replace the true likelihood f (y|θ) with a conditional composite likelihood approx-
imation, leading us to focus on the approximated posterior distribution

p∗(θ |y) ∝ CL(y|θ)p(θ).

Surprisingly, there is very little literature on the use of composite likelihoods in the Bayesian setting,
although Pauli et al. (2011) present a discussion on the use of conditional composite likelihoods. Indeed
this paper suggests, following (Lindsay 1988), that a composite likelihood should take the general form

f (y|θ)≈
C

∏
i=1

p(yAi |yBi ,θ)
wi , (7)

where wi are positive weights. In all experiments carried out here, we assume that wi = 1, and empirically
we observe that non-calibrated composite likelihood leads to an approximated posterior distribution with
substantially lower variability than the true posterior distribution, leading to overly precise precision about
posterior parameters.
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Figure 1: 16×16 lattices: Boxplot displaying the bias of the estimate of θ for 20 datasets corresponding to
each of 4 conditional composite likelihood approximations, CCL3, CCL4, CCL5 and CCL6 (corresponding
to block size 3× 3, 4× 4, 5× 5, 6× 6, respectively) and also pseudolikelihood estimator. Note that the
computational time for each of the composite likelihood approximations was held constant.

4 EXAMPLES

Here we simulated 20 realizations from a first-order Ising model all defined on a 16× 16 lattice, with
a single interaction parameter θ = 0.4, which is close to the critical phase transition beyond which all
realized lattices takes either value +1 or −1. This parameter setting is the most challenging for the Ising
model, since realized lattices exhibit strong spatial correlation around this parameter value. For a lattice of
this dimension it is possible to exactly calculate the normalizing constant z(θ). Using a fine grid of {θi}
values, the right hand side of:

p(θi|y) ∝
q(y|θi)

z(θi)
p(θi), i = 1, . . . ,n.

can be evaluated exactly. Summing up the right hand side yields an estimate of the evidence, p(y), which is
the constant of normalization for the expression above and which in turn can be used to give a very precise
estimate of p(θ |y). This serves as a ground truth against which to compare with the posterior estimates of
θ using the various composite likelihood estimators. Exact calculation of z(θ) and the approach described
above to get a precise estimate of the evidence relies on algorithms developed in (Friel and Rue 2007).
For this experiment, we choose a uniform [−10,10] prior for θ .

In terms of MCMC implementation, 5000 iterations were used with a burn in period of 1,000 iterations
for each dataset. Computation was carried out on a desktop PC with a 3.33Ghz processor and with 4Gb
of memory. Computation time for each of the different composite likelihoods was approximately constant
and took 0.004 second of CPU time per iteration. This was achieved by exhaustively using all 3×3 blocks
in the CCL3 approximation, 40% of all 4×4 blocks, 20% of all 5×5 blocks and 10% of all 6×6 blocks in
the CCL4, CCL5 and CCL6 approximations, respectively. The results for simulations involving the 16×16
lattices are displayed in Figure 1. Here each of the conditional composite likelihood methods perform
better than pseudolikelihood. Each of the composite likelihood approximations performed equally well,
although the CC4, CCL5 and CCL6 display larger spread than CCL3.

It is apparent from Table 1 that the estimated posterior variance of θ for each of the approximations are
generally lower than the true posterior variances. In fact the conditional composite likelihood approximations
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Figure 2: 50×50 lattices: Boxplot displaying the bias of the estimate of θ for 20 datasets corresponding to
each of 4 conditional composite likelihood approximations, CCL3, CCL4, CCL5 and CCL6 (corresponding
to block size 3× 3, 4× 4, 5× 5, 6× 6, respectively) and also pseudolikelihood estimator. Note that the
computational time for each of the composite likelihood estimator was held constant.

lead to posterior variance estimates than are smaller by a factor of 10. This strongly suggests that the
conditional composite likelihoods need to be calibrated in some form.

Table 1: 16×16: Average posterior variance for θ for each of 20 datasets.

CCL3 CCL4 CCL5 CCL6 Pseudo True
2.1×10−4 3.0×10−4 3.3×10−4 4.3×10−4 2.1×10−3 1.6×10−3

In a similar vein to the previous experiment, here we examined the performance of the various
approximations on simulated data defined on larger 50×50 lattice. In this instance we can’t analytically
compute the true likelihood, however here we used the exchange algorithm (Murray, Ghahramani, and
MacKay 2006) to generate draws from the target posterior, from a very long MCMC run. The simulation
study was otherwise similar in every other respect. Computation time was approximately 0.1 second
per iteration of the MCMC algorithm using the various composite likelihood approximations. Here the
performance of the conditional composite likelihood was again similar to each other, and better generally,
in terms of lower bias, than posterior mean estimation using the pseudolikelihood approximation. Here,
similar to the previous experiment, we see in Table 2 that the posterior variance based on the various the
conditional composite likelihood are considerably small, than that estimated by the exchange algorithm.

Table 2: 50×50: Average posterior variance for θ for each of 20 datasets.

CCL3 CCL4 CCL5 CCL6 Pseudo True
1.5×10−3 3.3×10−5 2.2×10−5 2.6×10−5 2.1×10−4 1.3×10−2

4.1 Why is the Posterior Variance of Estimators Based on Composite Likelihoods Overly Precise?

The results of this section suggest that using conditional composite likelihoods leads to considerably
underestimated posterior variances. A possible explanation for this behavior may be due to a type of
’annealing’ effect where the true likelihood is replaced by a powered version of it, leading to an overly
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concentrated likelihood function. Here the true likelihood f (y|θ) is replaced by ∏
C
i=1 p(yAi |yA\Ai ,θ)

wi .
Suppose that wi = 1 for all i (as is the case in all of the experiments carried out here) and suppose further
that C is large, whereby potentially many blocks overlap. In this scenario the set of interactions in the
true likelihood will be a subset of all the interactions in the conditional composite likelihood, due to the
overlapping blocks, and this will in turn lead to an annealing of the true likelihood function.

5 CONCLUSION

This paper has illustrated the important role that composite likelihood approximations can play in the
statistical analysis of Gibbs random fields, and in particular in the Ising and autologistic models in spatial
statistics. This paper has focused on the use of conditional composite likelihoods, based on tractable
full-conditional distributions over blocks of lattices points and shows much promise. However it is evident
that the posterior distribution of the interaction parameter θ is too concentrated and therefore underestimates
the posterior variance. An important research question is to ask how to correctly calibrate the conditional
composite likelihood so that it achieves the correct variance.

The computational complexity of this approximation increases dramatically as the size of blocks
increases and our study here shows that efficient parameter estimation can result by considering conditional
composite likelihoods based on a subset of possible blocks, thereby reducing computation time. For future
work it would be interesting to understand how composite likelihoods can be usefully employed for more
challenging Markov random fields models.
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