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ABSTRACT

Approximate Bayesian computation (ABC) is a class of simulation-based statistical inference procedures that
are increasingly being applied in scenarios where the likelihood function is either analytically unavailable
or computationally prohibitive. These methods use, in a principled manner, simulations of the output of a
parametrized system in lieu of computing the likelihood to perform parametric Bayesian inference. Such
methods have wide applicability when the data generating mechanism can be simulated. While approximate,
they can usually be made arbitrarily accurate at the cost of computational resources. In fact, computational
issues are central to the successful use of ABC in practice. We focus here on the use of sequential Monte
Carlo samplers for ABC and in particular on the choice of Markov chain Monte Carlo kernels used to
drive their performance, investigating the use of kernels whose mixing properties are less sensitive to the
quality of the approximation than standard kernels.

1 INTRODUCTION

In parametric Bayesian inference, one associates with some data y ∈Rd a likelihood function f that is the
probability density function of the data y conditional upon the value of an unknown parameter θ ∈ Θ. In
order to make probabilistic assertions about the possible values of θ , it is modeled as a random variable
with a prior distribution defined by a density p such that the joint density of θ and y can be written
p(θ ,y) = p(θ) f (y|θ). The conditional or posterior density of θ given the observed data y is then given
by Bayes’ rule

p(θ |y) = p(θ) f (y|θ)´
p(θ ′) f (y|θ ′)dθ ′

. (1)

Many items of interest in Bayesian inference are posterior expectations of functions of θ , i.e.
ˆ

φ(θ)p(θ |y)dθ , (2)

for some function φ . One approach to estimating such expectations when they are analytically unavailable
is by using Monte Carlo methods, which approximate (2) using random variables. In general, such methods
require the ability to compute p(θ |y) point-wise up to a normalizing constant, i.e. one can compute the
numerator in (1) but not necessarily the denominator.

1.1 Approximate Bayesian Computation

Approximate Bayesian computation (ABC) is largely concerned with the scenario where f cannot be
computed or is too expensive to compute but where one is able to simulate, for any θ ∈ Θ, from the
distribution with density f (·|θ) (Tavaré et al. 1997; Pritchard et al. 1999). In such cases, not being
able to evaluate p(θ |y) up to a normalizing constant renders many general-purpose Monte Carlo schemes
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inapplicable but one can perform Bayesian inference using an artificial likelihood f ε in lieu of the original
likelihood f where ε > 0 determines the quality of the approximation. This likelihood is of the form

f ε(y|θ) =
ˆ

f (x|θ)ξ ε(y|x)dx,

where ξ ε(·|x) is a probability density function with a large concentration of mass near x. For the entirety
of this paper we consider the choice

ξ
ε(y|x) = Vol(ε)−11Bε (x)(y),

where Bε(x) denotes a metric ball of radius ε and Vol(ε) is the volume of a metric ball of radius ε . This
choice can be interpreted as f ε(y|θ) = Vol(ε)−1 ´

Bε (y)
f (x|θ)dx, which closely approximates f (y|θ) for

small ε , under appropriate assumptions on the smoothness of f (x|θ) when x is close to y. The quantity´
Bε (y)

f (x|θ)dx can be thought of as the probability of “hitting” the ball Bε(y) when sampling from the
likelihood function with parameter θ , and we refer to this loosely as “hitting the data” y with the dependence
on ε implicit. Because we are using an approximation to the likelihood, f ε , the approximate posterior is
given by

pε(θ |y) = p(θ) f ε(y|θ)´
p(θ ′) f ε(y|θ ′)dθ ′

.

While f ε(y|θ) also cannot be computed point-wise, there exist many simulation-based methods for estimating
expectations of the form ˆ

φ(θ)pε(θ |y)dθ , (3)

some of which are presented in Sections 1.2 -1.4. A more comprehensive, recent survey of developments
in ABC can be found in Marin et al. (2012).

In cases where the data obtained, ỹ, is high-dimensional, it is often computationally advantageous
to summarize the data using a summary statistic S(ỹ) that is of lower dimension than ỹ. We omit the
explicit use of summary statistics here, noting that this is equivalent to performing inference when only
the summary y = S(ỹ) is the observed data and we utilize auxiliary variables x = S(x̃) in approximating
the posterior. While summarization in this manner makes inference more computationally tractable, it is
inevitably associated with an additional loss of information except when the summary statistic is sufficient
for the data. As an example, consider the situation where one has m i.i.d. observations ỹ1:mwith likelihood
f̃ . In an ABC approximation we can use y = S(ỹ1:m) as observed data, discarding all other information
contained in ỹ1:m. Then f (y|θ) =

´
δS(x̃1:m)(y)∏

m
i=1 f̃ (x̃i|θ)dx̃1:m is the associated likelihood of the summary

statistic y with parameter θ , and we can always simulate according to f if we can simulate according to
f̃ and we can compute S(·). It is worth noting that some choices of S may render some components of θ

unidentifiable even if those components are identifiable under the true posterior involving f̃ .

1.2 Simple Monte Carlo Methods for ABC

The ability to simulate according to f allows one to use a variety of Monte Carlo methods to approximate
(3). The key behind such approximations is noting that the utilization of f (·|θ) as a proposal density in
a Monte Carlo scheme allows one to bypass the computation of both f (y|θ) and f ε(y|θ). This involves
defining as a target density πε(θ ,x) = pε(θ ,x|y) ∝ p(θ) f (x|θ)ξ ε(y|x), the posterior density of θ and the
auxiliary variable x where it should be clear that

´
pε(θ ,x|y)dx = pε(θ |y).

One can obtain an estimate of (3) by using self-normalized importance sampling. Here, one defines
a proposal density qε with πε(θ ,x)> 0 =⇒ qε(θ ,x)> 0 and proceeds to sample (θ (i),x(i))∼ qε(·) i.i.d.
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for i ∈ {1, . . . ,n} and compute the weighted average of evaluations of φ :

ÎIS =

[
n

∑
j=1

w(θ ( j),x( j))

]−1 n

∑
i=1

φ(θ (i))w(θ (i),x(i)),

where w(θ ,x) = p(θ) f (x|θ)ξ ε(y|x)/qε(θ ,x) is the importance weight associated with (θ ,x). For the special
case where qε(θ ,x) = g(θ) f ε(x|θ), the weights are of the form w(θ ,x) = p(θ)ξ ε(y|x)/g(θ), which does
not require the computation of f (x|θ). Rejection sampling according to πε is also possible using the same
type of proposal density qε and can be used to compute a classical Monte Carlo estimate

ÎMC =
1
n

n

∑
i=1

φ(θ (i)),

where θ (i)∼ πε(·) for i∈ {1, . . . ,n}. In this case, one samples (θ ,x)∼ qε(·) and “accepts” it with probability
p(θ)ξ ε (y|x)

Cg(θ) , with C ≥ sup(θ ,x)
{

p(θ)ξ ε (y|x)
g(θ)

}
. Each accepted sample is distributed exactly according to πε . In

the special case where g = p, one can accept (θ ,x) if 1Bε (x)(y) = 1, i.e. we have “hit” the data.
While such estimates are theoretically justified, they can in practice require too much computational

effort to obtain estimates that are sufficiently close to (3) for use in inference. In particular, since Vol(ε)
decreases as O(εd), the probability of hitting the data can be very low so that most of the importance
weights are 0. While this cannot be circumvented in general, more advanced approaches that utilize Markov
chain Monte Carlo (MCMC) and/or sequential Monte Carlo (SMC) try to ensure that the algorithm used
to estimate (3) spends more time in regions of Θ where the probability of hitting the data is high.

1.3 Markov Chain Monte Carlo

An MCMC approach involves simulating a Markov chain (θ (1),x(1)),(θ (2),x(2)), . . .,(θ (m),x(m)) for m steps
with equilibrium distribution πε from some initial point (θ (0),x(0)) and estimating (3) using the time average

1
m−b

m−b

∑
i=1

φ(θ (i)), (4)

for some fixed “burn-in” b < m. Such a Markov chain can be simulated using a Metropolis-Hastings
(Metropolis et al. (1953); Hastings (1970)) kernel Kε that uses a proposal density qε((θ ′,z)|(θ ,x)) =
g(θ ′|θ) f (z|θ ′). Algorithm 1 describes how to sample from the kernel Kε((θ ,x), ·). This kernel was
proposed in Marjoram et al. (2003).

Algorithm 1 Metropolis-Hastings ABC kernel
At (θ ,x):

1. Sample θ ′ ∼ g(·|θ).
2. Sample z∼ f (·|θ ′).
3. With probability

min
{

1,
p(θ ′)g(θ |θ ′)
p(θ)g(θ ′|θ)

1Bε (z)(y)
}
,

output (θ ′,z). Otherwise, output (θ ,x).

This simple MCMC kernel does have the property that more computational effort is spent in regions
of Θ with high mass under πε . However, its use is somewhat hindered by the fact that ε needs to be small
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to control the closeness of the artificial likelihood f ε to the true likelihood f and small ε implies that the
probability of hitting the data is also small. In practice, this manifests itself in the chain getting “stuck”
for many iterations, i.e. for large values of k and some i, θ (i) = θ (i+1) = · · ·= θ (i+k) and the estimate (4)
can be unacceptably far from (3) for reasonable values of m.

1.4 Sequential Monte Carlo

One approach to alleviating the issue with a direct MCMC approach is to utilize a sequential Monte Carlo
(SMC) approach, which gradually decreases ε from some large value ε1 to some εT that has been deemed
small enough for the approximate posterior πεT to be sufficiently close to the exact posterior. This can be
done using a sequential Monte Carlo sampler (Del Moral, Doucet, and Jasra 2006) as in Sisson, Fan, and
Tanaka (2007), Beaumont et al. (2009), Del Moral, Doucet, and Jasra (2012). The first two can also be
seen as population Monte Carlo (PMC) approaches (Cappé et al. 2004). In both cases, one defines the
decreasing sequence {εt}T

t=1 where ε1 is large and εT is the final value of ε . This in turn defines a sequence
of posterior densities πt = πεt for t ∈ {1, . . . ,T}, which are approximated in turn by the sampler using
weighted particles. The distinct SMC methods that are commonly used differ in how the particles at each
time are propagated. One special case of the SMC sampler methodology allows one to use a πt-invariant
MCMC kernel to “move” each particle whilst in the PMC approach, the particles are often sampled using
a rejection sampler. The former is described in Algorithm 2, which is in the spirit of Del Moral, Doucet,
and Jasra (2012) and the latter in Algorithm 3, which was proposed in Beaumont et al. (2009) (see also
Toni et al. (2009) for a nearly identical method without the adaptive parameters τ2:T ).

Algorithm 2 SMC Sampler with MCMC kernels

1. At t = 0:

(a) For i ∈ {1, . . . ,n}, sample (θ
(i)
0 ,x(i)0 )∼ π1(·) i.i.d. (using rejection).

2. At t ∈ {1, . . . ,T}:
(a) For i ∈ {1, . . . ,n}, set w(i)

t−1 = 1
Bεt (x

(i)
t−1)

(y).

(b) Select n indices A(1:n)
t−1 according to the weights w(1:n)

t−1 such that for each i ∈ {1, . . . ,n},

E

[
n

∑
j=1

I[A( j)
t−1 = i]

]
=

nw(i)
t−1

∑
n
j=1 w( j)

t−1

.

(c) For i ∈ {1, . . . ,n}, sample (θ
(i)
t ,x(i)t )∼ Kεt ((θ

(A(i)
t−1)

t−1 ,x
(A(i)

t−1)

t−1 ), ·).

3. Compute ÎSMC1 =
1
n ∑

n
i=1 φ(θ

(i)
T ).

The resampling step, 2(b), in Algorithm 2 can be interpreted as requiring that the expected number of

time t offspring of particle i at time t− 1, (θ (i)
t−1,x

(i)
t−1), is nw(i)

t−1

∑
n
j=1 w( j)

t−1

for every i ∈ {1, . . . ,n}. A variety of

schemes satisfy this requirement (see, e.g., Douc, Cappé, and Moulines (2005)), and residual resampling
is used for the examples in Section 3. Note that in Algorithm 3 one can sample according to the density

q(θ ′|θ (1:n),w(1:n),ε,τ) ∝ f ε(y|θ ′)
n

∑
i=1

w(i)gτ(θ
′|θ (i))

via rejection: one first samples θ ′ ∼∑
n
i=1 w(i)gτ(·|θ (i)) and an auxiliary x∼ f (·|θ ′) and accepts if y∈ Bε(x).

One can think of p̃(θ ′;θ (1:n),w(1:n),τ) = ∑
n
i=1 w(i)gτ(θ

′|θ (i)) as an artificial prior and so the importance
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weights correct for the discrepancy between the true prior p and the artificial prior p̃. The choice of τt in
this scheme is used to try to tailor the proposal density q using information contained in the samples up
to time t−1. In the remainder of this paper, SMC sampler will generally refer to Algorithm 2 and PMC
sampler will be used to refer to Algorithm 3.

Algorithm 3 SMC using a rejection proposal

1. At t = 1

(a) For i ∈ {1, . . . ,n}, sample θ
(i)
0 ∼ π1(·) i.i.d. (using rejection).

(b) For i ∈ {1, . . . ,n}, set w(i)
0 = 1

n .

2. At t ∈ {2, . . . ,T}:
(a) Let τt be some function of (θ (1:n)

t−1 ,w(1:n)
t−1 ).

(b) For i ∈ {1, . . . ,n}, sample θ
(i)
t ∼ q(·|θ (1:n)

t−1 ,w(1:n)
t−1 ,εt ,τt) where

q(θ ′|θ (1:n),w(1:n),ε,τ) =
f ε(y|θ ′)∑

n
i=1 w(i)gτ(θ

′|θ (i))´
f ε(y|θ̄)∑

n
i=1 w(i)gτ(θ̄ |θ (i))dθ̄

.

(c) For i ∈ {1, . . . ,n}, set w̃(i)
t = p(θ (i)

t )

∑
n
j=1 w( j)

t−1gτt (θ
(i)
t |θ

( j)
t−1)

.

(d) For i ∈ {1, . . . ,n}, set w(i)
t = w̃(i)

t

∑
n
j=1 w̃( j)

t
.

3. Compute ÎSMC2 = ∑
n
i=1 φ(θ

(i)
T )w(i)

T .

The two approaches are quite different, despite both having a sequential structure targeting the same
sequence of auxiliary distributions. The main advantage of Algorithm 2 is that it has O(nT ) cost, while its
main disadvantage is that typically the MCMC kernels Kεt mix more and more slowly as t increases, due to
the difficulty of hitting the data as ε decreases. On the other hand, the main advantage of Algorithm 3 is that
by utilizing rejection, one can be confident that the particles θ

(1:n)
t are adequately approximating πt as long

as the proposal density q(θ ′|θ (1:n)
t−1 ,w(1:n)

t−1 ,εt ,τt) has good enough coverage while its main disadvantages

are that the cost of obtaining a sample from q(·|θ (1:n)
t−1 ,w(1:n)

t−1 ,εt ,τt) increases as ε decreases, that step 2(b)
is an O(n2) operation and that the weights at time T can have a large variance.

The focus of this paper is to highlight the possibility of using different types of MCMC kernel Kε

to drive Algorithm 2, with the particular aim of making the mixing properties of the kernel be nearly
independent of ε as ε → 0.

2 ROBUST MCMC KERNELS FOR ABC

We investigate the use of “adaptive” MCMC kernels that have more robust properties as ε→ 0. A particular
motivation is that the analysis of SMC samplers to date often assumes the use of geometrically ergodic
MCMC kernels with similar ergodic behavior (see, e.g., Jasra and Doucet (2008); Whiteley (2012)), i.e.
they mix well at every t ∈ {1, . . . ,T}, although this assumption is not typically satisfied in practice and is
not met in most cases for ABC SMC samplers as ε → 0 with a simple MCMC kernel. Schweizer (2012)
has sought to weaken this assumption by considering kernels that only mix well “locally” but this property
again is unlikely to hold in most interesting ABC applications. This encourages the construction of MCMC
kernels that do have similar behavior as ε → 0, although it does not imply that this is necessary for the
SMC methods to provide good estimates.
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2.1 A 1-hit Kernel

We first propose to use an MCMC kernel presented in Lee, Andrieu, and Doucet (2012b) and based on Lee,
Andrieu, and Doucet (2012a), the 1-hit ABC-MCMC kernel, which can be sampled from using Algorithm 4.
The robustness of this kernel comes from the fact that one simulates according to the likelihood for both
the current value of θ and the proposed value θ ′ until a hit is observed, which allows the Markov chain to
have a reasonable chance of moving if the proposed value θ ′ has high posterior density. This is in contrast
to the kernel in Algorithm 1, where as ε → 0, the probability of obtaining a hit, and hence accepting θ ′,
decreases rapidly. In fact, it can be shown for any ε > 0 the probability of, at θ , accepting the proposal
θ ′ using Algorithm 4 can be expressed analytically as

min
{

1,
p(θ ′)g(θ |θ ′)
p(θ)g(θ ′|θ)

}
× f ε(y|θ ′)

f ε(y|θ)+ f ε(y|θ ′)−Vol(ε) f ε(y|θ) f ε(y|θ ′)
.

Both the analytic probability of accepting a proposed move and that the 1-hit kernel satisfies detailed
balance can be verified directly by noting that N is a geometric random variable.

Algorithm 4 1-hit MCMC kernel
At (θ ,x):

1. Sample θ ′ ∼ g(·|θ).
2. With probability 1−min

{
1, p(θ ′)g(θ |θ ′)

p(θ)g(θ ′|θ)

}
, output (θ ,x). Otherwise,

(a) For i = 1,2, . . . sample z(i) ∼ f (·|θ ′) and x(i) ∼ f (·|θ) until y ∈ Bε(z(i)) and/or y ∈ Bε(x(i)). Let
N = i.

(b) If y ∈ Bε(z(N)) output (θ ′,z(N)). Otherwise, output (θ ,x).

Proposition 1. The 1-hit kernel satisfies detailed balance.

Proof. The kernel can be viewed as, at (θ ,x), proposing θ ′ ∼ g(·|θ) and z∼ pε(·|y,θ ′) with pε(z|y,θ ′) =
f (z|θ ′)1Bε (z)(y)Vol(ε)−1

f ε (y|θ ′) , and accepting with probability min
{

1, p(θ ′)g(θ |θ ′)
p(θ)g(θ ′|θ)

}
P[Nθ ′ ≤ Nθ ] where Nθ ′ and Nθ

are independent geometric random variables with success probability Vol(ε) f ε(y|θ) and Vol(ε) f ε(y|θ ′)
respectively. Their minimum is also a geometric random variable and we have

P[Nθ ′ ≤ Nθ ] =
f ε(y|θ ′)

f ε(y|θ)+ f ε(y|θ ′)−Vol(ε) f ε(y|θ) f ε(y|θ ′)
.

It can then be verified that detailed balance holds, i.e.

π
ε(θ ,x)g(θ ′|θ)pε(z|y,θ ′)min

{
1,

p(θ ′)g(θ |θ ′)
p(θ)g(θ ′|θ)

}
P[Nθ ′ ≤ Nθ ]

= π
ε(θ ′,z)g(θ |θ ′)pε(x|y,θ)min

{
1,

p(θ)g(θ ′|θ)
p(θ ′)g(θ |θ ′)

}
P[Nθ ≤ Nθ ′ ].

2.2 Two r-hit Kernels

An alternative to the 1-hit kernel is to sample auxiliary data associated with θ and θ ′ until r−1 and r hits
have been obtained respectively for some r ∈Z with r≥ 2. Algorithm 5 describes such a kernel, which may
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be beneficial in circumstances when the term p(θ ′)g(θ |θ ′)
p(θ)g(θ ′|θ) varies considerably. In this case the discrepancy

between N and N′ can, e.g., allow one to accept with higher probability a proposed θ ′ that has a much higher
likelihood than θ but a lower value of p(θ ′)g(θ |θ ′). However, it can be shown that if p(θ ′)g(θ |θ ′)

p(θ)g(θ ′|θ) is always
equal to 1, then the 2-hit kernel and the 1-hit kernel are identical, the algorithms presenting only different
ways of sampling from the same kernel. Since the 2-hit algorithm is more expensive computationally, the
1-hit algorithm is to be preferred in such situations. The r-hit kernel can be justified by noting that both
N and N′ are negative binomial random variables.

Algorithm 5 r-hit MCMC kernel (r ≥ 2)
At (θ ,x):

1. Sample θ ′ ∼ g(·|θ).
2. For i = 1,2, . . . sample z(i) ∼ f (·|θ ′) until ∑

i
j=1 1Bε (z(i))(y) = r. Let N′ = i.

3. Sample L uniformly from the set { j ∈ {1, . . . ,N′−1} : 1Bε (z( j))(y) = 1}.
4. For i = 1,2, . . . sample and x(i) ∼ f (·|θ) until ∑

i
j=1 1Bε (x(i))(y) = r−1. Let N = i.

5. With probability

min
{

1,
p(θ ′)g(θ |θ ′)
p(θ)g(θ ′|θ)

× N
N′−1

}
,

output (θ ′,z(L)). Otherwise output (θ ,x).

Proposition 2. The r-hit kernel satisfies detailed balance.

Proof. The kernel can be viewed as, at (θ ,x), proposing θ ′ ∼ g(·|θ) and z∼ pε(·|y,θ ′) and accepting
with probability E

[
min

{
1, p(θ ′)g(θ |θ ′)

p(θ)g(θ ′|θ) ×
Nr−1,θ

Nr,θ ′−1

}]
where Nr−1,θ and Nr,θ ′ are negative binomial random

variables associated with the number of trials required to obtain r−1 and r successes, respectively, with
success parameters Vol(ε) f ε(y|θ) and Vol(ε) f ε(y|θ ′). One can verify that detailed balance holds, i.e.

π
ε(θ ,x)g(θ ′|θ)pε(z|y,θ ′)E

[
min

{
1,

p(θ ′)g(θ |θ ′)
p(θ)g(θ ′|θ)

×
Nr−1,θ

Nr,θ ′−1

}]
= π

ε(θ ′,z)g(θ |θ ′)pε(x|y,θ)E
[

min
{

1,
p(θ)g(θ ′|θ)
p(θ ′)g(θ |θ ′)

×
Nr−1,θ ′

Nr,θ −1

}]
.

A possible issue with both the 1-hit and the r-hit kernels is that they rely on the proposal density
g being reasonably good. An alternative kernel is proposed in Algorithm 6, which may be better suited
to problems in which it is difficult to construct a good proposal density g, since one is not restricted to
considering only one possible value of θ ′. This kernel also requires r ≥ 2.

Proposition 3. The r-hit kernel with multiple θ proposals satisfies detailed balance.

Proof. The kernel can be viewed as, at (θ ,x), proposing (θ ′,z)∼ q̃ε(·|y,θ) where

q̃ε(θ ′,z|y,θ) = g(θ ′|θ)pε(z|y,θ ′)´
g(θ̄ |θ) f ε(y|θ̄)dθ̄

,

and accepting with probability E
[
min

{
1, p(θ ′)g(θ |θ ′)

p(θ)g(θ ′|θ) ×
Mr−1,θ ′
Mr,θ−1

}]
where Mr−1,θ ′ and Mr,θ are negative bi-

nomial random variables associated with the number of trials required to obtain r− 1 and r successes,
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Algorithm 6 r-hit MCMC kernel with multiple θ proposals (r ≥ 2)
At (θ ,x):

1. For i = 1,2, . . . sample θ ′(i) ∼ g(·|θ) and z(i) ∼ f (·|θ ′(i)) until ∑
i
j=1 1Bε (z(i))(y) = r. Let N′ = i.

2. Sample L uniformly from the set { j ∈ {1, . . . ,N′−1} : 1Bε (z( j))(y) = 1}.
3. For i = 1,2, . . . sample θ (i) ∼ g(·|θ ′(L)) and x(i) ∼ f (·|θ (i)) until ∑

i
j=1 1Bε (x(i))(y) = r−1. Let N = i.

4. With probability

min

{
1,

p(θ ′(L))g(θ |θ ′(L))
p(θ)g(θ ′(L)|θ)

× N
N′−1

}
,

output (θ ′(L),z(L)). Otherwise output (θ ,x).

respectively, with success parameters Vol(ε)
´

g(θ̄ |θ ′) f ε(y|θ̄)dθ̄ and Vol(ε)
´

g(θ̄ |θ) f ε(y|θ̄)dθ̄ . One can
verify that detailed balance holds, i.e.

π
ε(θ ,x)

g(θ ′|θ)pε(z|y,θ ′)´
g(θ̄ |θ) f ε(y|θ̄)dθ̄

E
[

min
{

1,
p(θ ′)g(θ |θ ′)
p(θ)g(θ ′|θ)

×
Mr−1,θ ′

Mr,θ −1

}]
= π

ε(θ ′,z)
g(θ |θ ′)pε(x|y,θ)´
g(θ̄ |θ ′) f ε(y|θ̄)dθ̄

E
[

min
{

1,
p(θ)g(θ ′|θ)
p(θ ′)g(θ |θ ′)

×
Mr−1,θ

Mr,θ ′−1

}]
.

2.3 Computational Complexity

The robust, or adaptive, kernels proposed are different to the simple kernel in Algorithm 1 in that the
number of simulations required depends on the values of θ and the proposed value θ ′. As a result, an SMC
sampler utilizing such kernels is similar to the PMC approach in that the cost of obtaining each step can be
determined largely by the difficulty one has in hitting the data for various values of θ . In the examples that
follow, we restrict our attention to the 1-hit kernel and the r-hit kernel with multiple θ proposals for r = 2
and compare their use within an SMC sampler with the use of the simple kernel and a PMC approach.

3 EXAMPLES

3.1 Univariate Normal Distribution

We consider a simple but relevant example in which we can compute f (y|θ) to show the differences between
the kernels. This example may seem simplistic, but in fact the distribution of many summary statistics will
be approximately normal, e.g. when dealing with a large number m of i.i.d. data and the summary statistic
is the average of a summary statistic computed on each datum.

We look at the very simple case where the variance of the likelihood is known but the mean is not. In this
case, θ is the mean and so f (y|θ) =N (y;θ ,σ2). The ABC likelihood is f ε(y|θ) = Φ( y+ε−θ

σ
)−Φ( y−ε−θ

σ
)

for ε > 0. For our simulations, we let y = 3, σ2 = 1 and use the prior p(θ) =N (θ ;0,5), so that the exact
posterior is N (θ ; 5

2 ,
5
6). Figure 1 shows autocorrelation plots associated with each MCMC kernel, which

all use a Gaussian random walk proposal with variance 0.25, for ε = 0.1. The exact kernel evaluates the
likelihood f (i.e. ε = 0) explicitly for comparison. As one would expect, the simple kernel gives samples
with a much larger autocorrelation than the adaptive kernels.

We ran an SMC sampler using the simple Metropolis-Hastings kernel, the 1-hit kernel and the 2-hit
kernel with multiple θ proposals, as well as Algorithm 3 using adaptive proposal settings suggested in
Beaumont, Cornuet, Marin, and Robert (2009). On this simple example, all the methods are able to recover
the posterior reasonably accurately using n = 500 particles and T = 100 with εt = 3× 0.97t . Figure 2
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(a) Simple kernel (b) 1-hit kernel (c) 2-hit, multiple θ kernel (d) Exact kernel

Figure 1: Autocorrelation plots for the MCMC kernels.

Figure 2: Sequence of ABC posterior densities (left to right) as ε decreases from 3 to 0.1 (blue). The prior
(ε = ∞) and the exact posterior (ε = 0) are shown in green and red respectively.

shows densities corresponding to ABC posteriors for different values of ε in addition to the prior and
exact posterior. In addition, the posterior for θ is nearly indistinguishable from the exact posterior. The
corresponding mean squared error of the mean, obtained over 100 runs of each filter was 0.0345, 0.0049,
and 0.0048 for the simple, 1-hit and 2-hit kernels, and 0.0062 for Algorithm 3. In all cases the estimated
bias was negligible except for the SMC sampler using the simple kernel.

3.2 Multivariate Normal Distribution

We now consider a more difficult example where the data consists of m = 100 i.i.d. 2-dimensional
observations ỹ1:m and where the summary statistics y = S(ỹ1:m) chosen to represent the data are the sample
mean of each component and Pearson’s sample correlation coefficient. The model for the data is a
multivariate normal, for which the likelihood is analytically available, but we proceed to infer unknown
parameters using ABC as a test of the methodology. In particular, the unknown parameters θ = (µ1:2,σ12)
are the mean µ and σ12 = σ21 where the covariance is Σ = {σi j} and the values σ11 = σ22 = 1 are fixed.
The prior for σ12 is uniform on [−1,1] and the prior for each mean is a standard normal.

With simulated data obtained with parameters (µ1,µ2,σ12) = (−0.308,2.26,0.5), Figure 3 shows
autocorrelation plots associated with each MCMC kernel for ε = 0.1. The kernels all use Gaussian random
walk proposals with variance 0.01 for each mean component and 0.0625 for σ12. The kernel actually
used is a cycle of a mixture of kernels where only one component is updated at a time. As before, the
autocorrelation of samples from the simple kernel is much higher than that of the adaptive kernels.

Figure 4 shows kernel density estimates obtained for one run of an SMC algorithm with 500 and 5000
particles using the kernels as well as Algorithm 3 (PMC). All of the samplers give reasonable estimates
with respect to the ABC posterior using 5000 particles, but it is worth noting that the use of εT = 0.1
means that the exact posterior has slightly more mass concentrated near the true values, particularly of
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(a) Simple kernel (b) 1-hit kernel (c) 2-hit, multiple θ kernel (d) Exact kernel

Figure 3: Autocorrelation plots for the MCMC kernels.

σ12, than the ABC posterior. Of some interest here is the effective number of samples provided by the

sampler, which is defined for weighted samples (θ
(1:n)
T ,w(1:n)

T ) as ESS =
(

∑
n
j=1 w( j)

T

)2
/

(
∑

n
j=1

(
w( j)

T

)2
)

.

For the output of the PMC sampler this can be calculated from the final time weights alone, whilst for
the SMC samplers with MCMC kernels one can first group the particles with identical θ values to give
a more accurate measure of particle diversity. For 500 particles the simple, 1-hit, 2-hit with multiple θ

and PMC samplers provide effective sample sizes of 306, 409, 428 and 282 respectively whilst for 5000
particles they provide 3078, 4283, 4382 and 3698 respectively. While the results may not be indicative
of general behavior the lower effective sample size values here for PMC are due to the variability of the
weights from the difference between the proposal distribution at time T and the prior. In addition, the cost
of the weighting step became more significant with 5000 particles for PMC, although we avoid discussing
timing comparisons of the approaches here due to the reliance of run times on implementation, computer
architecture and, most importantly, model-specific considerations.

4 DISCUSSION

The adaptive kernels provide reasonable performance within an SMC sampler for the examples considered
here. Naturally, it is difficult to ascertain how indicative these will be of their performance in general,
and we do not attempt to interpret them as such. Nevertheless, the results suggest that future work could
attempt to identify which SMC algorithms should be selected in particular situations. In practice, it is not
expected that any one method will dominate any other in all situations. For a particular model, it would
also be interesting to analyze how the methods scale with the dimension of θ .

The posterior for θ in the examples are not multi-modal, for which SMC approaches are known to
be effective in comparison to other approaches. One might also expect the SMC sampler with the simple
MCMC kernel to be less competitive when the desired ε of interest is smaller. Indeed, in the examples
considered it is not clear that the additional computational effort required by the adaptive kernels is justified
by the modest gains in accuracy. A possible criticism of the adaptive kernel is that one could instead
specify deterministically to run longer cycles of standard kernels as ε decreases. However, the adaptive
kernels both sidestep the need to tune this parameter, and also spend more computational effort only for
pairs (θ ,θ ′) that are in “difficult” regions of the space rather than for every possible pair equally. Another
interesting question is if and how one can overcome the variation of the weights due to the discrepancy
between the proposal and the prior in the PMC approach, which is responsible for lower effective sample
sizes.

Direct comparisons of computation time have been avoided here, although for the algorithms implemented
the run times of almost all the methods were comparable. The only exception was the SMC sampler using
the simple MCMC kernel, which was faster. The reason for avoiding such comparisons is that different
models will have different computational complexities associated with the simulation of data and so it is
difficult to quantify the impact of the O(n2) cost of the weighting step in the PMC approach, which could
be negligible for many reasonable values of n in practice. The adaptive kernels differ from the simple kernel
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(a) µ1 (b) µ2 (c) σ12

(d) µ1 (e) µ2 (f) σ12

Figure 4: Kernel density estimates from the samplers using (a)-(c) 500 particles and (d)-(f) 5000 particles.
The overlaid plots correspond to SMC samplers with simple MCMC kernels (green), 1-hit kernels (blue),
2-hit multiple θ kernels (black) and the PMC algorithm (red).

in that the computational complexity of the SMC sampler at each time is variable, and further work could
seek to determine how PMC and SMC samplers compare in terms of computation time in this respect on
a variety of realistic models. Another computational consideration is the potential ability to perform many
simulations in parallel and whether or not this is affected by the use of a common value of θ , as might
be the case when executing algorithms on a single instruction, multiple data architecture like a graphics
processing unit (see, e.g., Lee et al. (2010)). Such considerations could lead one to prefer, e.g., the 1-hit
kernel over the 2-hit kernel with multiple θ proposals or PMC. Given the large number of simulations
required by ABC methods in general, any opportunity to parallelize computation is likely to be beneficial.

While not pursued here in order to simplify the presentation, the SMC samplers approach does not
preclude the use of additional adaptation, such as adaptive schedule selection and the use of adaptive
proposals within the MCMC kernels, as in Del Moral, Doucet, and Jasra (2012). One could also use
the same adaptation in both the PMC and SMC samplers approaches. Combined with compelling recent
advances also in the automatic selection of the summary statistics and the adjustment of the data to be
consistent with the data-generating process (Fearnhead and Prangle 2012), such adaptive Monte Carlo
methods could be used to provide nearly fully automated procedures for inference in a variety of ABC
problems.
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