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ABSTRACT

Quantiles, which are known as values-at-risk in finance, are often used to measure risk. Confidence
intervals provide a way of assessing the error of quantile estimators. When estimating extreme quantiles
using crude Monte Carlo, the confidence intervals may have large half-widths, thus motivating the use of
variance-reduction techniques (VRTs). This paper develops methods for constructing confidence intervals for
quantiles when applying the VRT importance sampling. The confidence intervals, which are asymptotically
valid as the number of samples grows large, are based on a technique known as sectioning. Empirical
results seem to indicate that sectioning can lead to confidence intervals having better coverage than other
existing methods.

1 INTRODUCTION

Consider a random variable X representing the (random) performance of a stochastic model over a finite
time period. Let F be the cumulative distribution function (CDF) of X . For a fixed 0 < p < 1, the p-quantile
of F (or equivalently, of X) is a constant ξp such that F(ξp) = p; i.e., ξp = F−1(p). A well-known example
is the median, which is the 0.5-quantile. We assume that F is too complicated to compute in closed form,
but we have a simulation model that outputs samples from F .

Quantiles frequently arise in practice as risk measures. For example, the 0.99-quantile, which is also
called the 99% (or 1%) value-at-risk in finance, is widely used to measure portfolio risk; e.g., see Duffie
and Pan (1997). The Nuclear Regulatory Commission (NRC; U.S. Nuclear Regulatory Commission 1989)
requires that nuclear-power-plant licensees estimate the 0.95-quantile of various output variables (e.g., peak
cladding temperature) in simulations of loss-of-coolant accidents (LOCAs).

The estimation of quantiles via simulation is typically carried out in the following manner. Since the
p-quantile is the inverse of the true CDF F , a natural way to estimate ξp is to first estimate the CDF from
n independent and identically distributed (i.i.d.) samples from F , and then invert the estimated CDF to
obtain a quantile estimator.

In addition to computing a point estimator for ξp, it is also important to provide a measure of the
estimator’s statistical error. This is typically done by constructing a confidence interval (CI) for ξp, and
a CI provides error bounds in which one is highly confident that the true quantile lies. Indeed, the NRC
requires that plant licensees compute an upper-one-sided 95% CI for a 0.95-quantile in LOCA simulations
and show that the CI lies entirely below a mandated threshold. This is known as the 95/95 criterion; e.g.,
see Section 24.9 of Lurie, Abramson, and Vail (2011) and U.S. Nuclear Regulatory Commission (2010).
At present, nuclear engineers perform the simulation analysis only using crude Monte Carlo (CMC; i.e.,
sampling without the use of any variance reduction).

A commonly used approach for developing a CI for a quantile is to first establish that the quantile
estimator satisfies a central limit theorem (CLT), and then unfold the CLT to obtain a CI. One difficulty
with this approach is that the asymptotic variance in the CLT is nontrivial to estimate. For the case of
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CMC, there have been techniques developed in the statistics literature (e.g., Bloch and Gastwirth 1968;
Falk 1986) to consistently estimate the asymptotic variance. Unfortunately, these methods require the user
to specify some parameters, for which determining appropriate values can be difficult in practice.

One problem with CMC is that the half-width of the resulting CI may be quite large, especially when
estimating extreme quantiles (i.e., when p≈ 0 or p≈ 1). To obtain more efficient quantile estimators, we can
apply a variance-reduction technique (VRT); see Chapter V of Asmussen and Glynn (2007) for an overview
of VRTs to estimate a mean. VRTs developed for estimating a quantile include importance sampling (IS;
Glynn 1996), combined IS and stratified sampling (IS+SS; Glasserman, Heidelberger, and Shahabuddin
2000), control variates (CV; Hsu and Nelson 1990; Hesterberg and Nelson 1998), and correlation-induction
methods, such as Latin hypercube sampling (LHS) and antithetic variates (AV) (Avramidis and Wilson
1998; Jin, Fu, and Xiong 2003). IS, which is the focus of the current paper, is especially well suited to
study rare events; see Glynn and Iglehart (1989). When applying a VRT to estimate a quantile, the VRT
is typically applied to obtain an estimate of the CDF, which is inverted to arrive at a quantile estimate.

While most of the above papers prove that the resulting VRT quantile estimator satisfies a CLT, none
provides a method for constructing a CI for the quantile based on the CLT. To address this issue, Chu
and Nakayama (2012) develop a general framework to construct CIs for quantiles when applying a wide
spectrum of VRTs, including IS, IS+SS, CV and AV. This approach uses a finite-difference estimator to
estimate the asymptotic variance constant in the CLT. Nakayama (2011b) extends the applicability of the
method to a type of LHS. Nakayama (2011a) develops an alternative estimator for the asymptotic variance
constant using kernel methods (Wand and Jones 1995) for the case of IS. One drawback of these methods
is that while the resulting CIs are asymptotically valid, their performance can be poor for finite sample
sizes when p≈ 1. Liu and Yang (2012) also develop a bootstrap estimator of the asymptotic variance of
the IS quantile estimator, but it converges more slowly than the kernel estimator in Nakayama (2011a).

An alternative approach to produce a CI for a quantile is to use batching (Schmeiser 1982). In batching,
the n i.i.d. samples are divided into b ≥ 2 nonoverlapping batches of equal size m = n/b. We compute
from each batch an estimate of the CDF, which is inverted to obtain a quantile estimate. The resulting b
quantile estimates from the b batches are averaged to obtain a point estimate, at which the batching CI is
centered. The half-width of the batching CI is determined by the sample standard deviation of the b batch
quantile estimates.

One drawback of the batching CI is that it can have poor coverage when the sample size n is small,
especially for extreme quantiles. The problem arises because quantile estimators are biased, where the bias
decreases to 0 as the sample size increases; e.g., see Avramidis and Wilson (1998). With batching, the
amount of bias is determined by m = n/b, the size of each batch, which is smaller than the total sample
size n. Thus, the point estimate in batching can suffer from large bias, especially for small n, and this
potentially leads to poor coverage; e.g., see Nakayama (2011b).

To address this issue, we now consider alternative approaches to construct CIs for ξp based on the
idea of sectioning. Section III.5a of Asmussen and Glynn 2007 develops sectioning for the case of CMC,
and we now extend it to IS. Similar to batching, sectioning instead centers the CI at the overall quantile
estimate obtained from inverting the CDF estimate based on all n samples. Also, for the half-width of the
CI, we replace the average of the batch quantile estimates by the overall quantile estimate in the formula
for the sample standard deviation of the batch quantile estimates.

An advantage of sectioning over batching is that the sectioning point estimate is computed by inverting
the estimated CDF from all n samples. This results in the sectioning point estimator of the quantile having
smaller bias than that for batching, and the reduced bias can improve coverage for small sample size n, as
our experiments in this paper show.

The rest of the paper has the following organization. Sections 2 and 3 review quantile estimation
when applying CMC and IS, respectively. Section 4 describes how to construct CIs using sectioning and
batching with IS. We present in Section 5 numerical results from running experiments on a small model.
Concluding remarks are provided in Section 6.
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2 REVIEW OF QUANTILE ESTIMATION USING CMC

Let X be a random variable having CDF F ; i.e., F(y) = P(X ≤ y). For a fixed 0 < q < 1 and real-valued
function G, let G−1(q) = inf{x : G(x)≥ q}. Now fix 0 < p < 1. The goal is to estimate and construct a CI
for the p-quantile ξp ≡ F−1(p) via simulation.

When applying crude Monte Carlo, we accomplish this by generating independent and identically
distributed (i.i.d.) samples X1,X2, . . . ,Xn from F . Estimate F using the empirical CDF Fn, defined by

Fn(y) =
1
n

n

∑
i=1

I(Xi ≤ y), (1)

with I( ·) denoting the indicator function, which takes on the value 1 (resp., 0) when the argument is true
(resp., false). A point estimator for ξp is then

ξp,n = F−1
n (p). (2)

To build a CI for ξp, we first note that if F is differentiable at ξp with f (ξp) > 0, where f denotes the
derivative of F when it exists, the p-quantile estimator ξp,n satisfies the CLT (Section 2.3.3 of Serfling
1980) √

n(ξp,n−ξp)⇒ N(0,τ2
p)

as n→∞, where N(a,c2) is a normal random variable with mean a and variance c2, τ2
p = p(1− p)/ f 2(ξp), and

⇒ denotes convergence in distribution (Section 3 of Billingsley 1999). If one has a consistent estimator τp,n
of τp, then an asymptotically valid 100(1−α)% CI for ξp is (ξp,n±zατp,n/

√
n), where zα = Φ−1(1−α/2)

and Φ is the CDF of a N(0,1) random variable. However, constructing a consistent estimator for τp is a
delicate matter because estimating f (ξp) is nontrivial. There have been different methods developed in
the statistics literature to estimate f (ξp), including finite-difference estimators (Bloch and Gastwirth 1968,
Bofinger 1975) and kernel estimators (Falk 1986, Jones 1992).

Batching is an alternative approach to construct a CI for ξp that avoids consistently estimating τp
and f (ξp). To apply the method, partition the n samples into a fixed number b ≥ 2 of (nonoverlapping)
batches, each of size m = n/b. Thus, for j = 1,2, . . . ,b, the jth batch consists of samples Xi, i =
( j−1)m+1,( j−1)m+2, . . . , jm. Let Fm, j be the CDF estimator from the jth batch (of size m), so

Fm, j(y) =
1
m

jm

∑
i=( j−1)m+1

I(Xi ≤ y).

From the jth batch, we compute a quantile estimator ξp,m, j = F−1
m, j (p). Then let

S2
m,b,batch =

1
b−1

b

∑
j=1

(ξp,m, j− ξ̄p,m,b)
2, (3)

where

ξ̄p,m,b =
1
b

b

∑
j=1

ξp,m, j. (4)

The batching 100(1−α)% CI for ξp when applying CMC is then(
ξ̄p,m,b± tb−1,α

Sm,b,batch√
b

)
, (5)

where tb−1,α is the upper α/2 critical point of a Student-t distribution with b−1 degrees of freedom (df);
i.e., if Gb−1 is the CDF of a Student-t random variable with b−1 df, then tb−1,α = G−1

b−1(1−α/2).
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Sectioning (Section III.5a of Asmussen and Glynn 2007) is a method similar to batching for constructing
a CI for ξp. The n samples are again divided into b≥ 2 batches, each of size m = n/b, but now the batches
are instead called sections. (Asmussen and Glynn 2007 suggest that b should be chosen no greater than
30.) Then compute

S2
m,b,sect =

1
b−1

b

∑
j=1

(ξp,m, j−ξp,n)
2, (6)

which differs from the batching variance estimator (3) because S2
m,b,sect subtracts the overall point estimator

ξp,n in (2) from each summand rather than the average (4) of the b batch quantile estimates. The sectioning
100(1−α)% CI for ξp is then (

ξp,n± tb−1,α
Sm,b,sect√

b

)
. (7)

Both (5) and (7) are asymptotically valid CIs as n→ ∞ with b≥ 2 fixed.
The sectioning CI in (7) and the batching CI in (5) differ in the following ways. The half-widths of

the batching and sectioning CI are determined by (3) and (6), respectively. Moreover, the sectioning CI is
centered at ξp,n from (2), whereas the batching CI is centered at ξ̄p,m,b in (4), which is the average of the
b batch estimates ξp,m, j, j = 1,2, . . . ,b. Note that ξp,n is obtained by inverting the CDF estimator based
on all n samples, whereas each ξp,m, j is computed by inverting the CDF estimator from the m samples
from the jth section (or batch). Since m = n/b < n, each batch’s quantile estimator is based on a smaller
number of samples than is used to compute ξp,n. But quantile estimators are known to be biased, with the
bias decreasing in the sample size; e.g., see Avramidis and Wilson (1998). This leads to ξ̄p,m,b typically
being more biased than ξp,n. Thus, since the batching CI is centered at ξ̄p,m,b, the batching CI can have
poorer coverage than the sectioning CI in (7), especially when n is small.

3 REVIEW OF QUANTILE ESTIMATION USING IMPORTANCE SAMPLING

Glynn (1996) shows how to apply IS to estimate quantiles, as we now explain. First suppose that the
CDF F is absolutely continuous with density function f , and let g be another density function satisfying
g(x) > 0 whenever f (x) > 0. Let L(x) = f (x)/g(x), which is known as the likelihood ratio, and let E∗
denote expectation when X has density g. Then we can write

F(y) = 1−E[I(X > y)] = 1−
∫

I(x > y) f (x)dx = 1−
∫

I(x > y)L(x)g(x)dx

= 1−E∗[I(X > y)L(X)].

This expression suggests the following approach to estimate F(y) and ξp. First use density g to generate
n i.i.d. samples (X1,L1),(X2,L2), . . . ,(Xn,Ln) of (X ,L), where L≡ L(X). Then estimate F(y) by

F̂n(y) = 1− 1
n

n

∑
i=1

I(Xi > y)Li. (8)

(We use a hat to denote IS estimators.) The IS estimator of the p-quantile of F is finally

ξ̂p,n = F̂−1
n (p). (9)

Our development of this IS quantile estimator is for the simple case when the random variable X has a
CDF F with a density f , but IS can be generalized to much broader settings; e.g., see Glynn and Iglehart
(1989).

Glynn (1996) also develops an alternative IS quantile estimator by computing a different CDF estimator

F̂ ′n(y) =
1
n

n

∑
i=1

I(Xi ≤ y)Li, (10)
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which is based on the representation F(y) = E[I(X ≤ y)] = E∗[I(X ≤ y)L(X)]. Inverting this CDF estimator
leads to another IS quantile estimator

ξ̂
′
p,n = F̂ ′−1

n (p). (11)

As Glynn (1996) notes, the IS quantile estimator in (9) is more appropriate when p≈ 1, whereas the one
in (11) should be applied for p≈ 0. To simplify the discussion from here on, we only focus on the quantile
estimator (9), but the following results also apply to the estimator in (11) with minor modifications.

Assuming that f (ξp)> 0 and E∗[L3]< ∞, Glynn (1996) proves the CLT

√
n(ξ̂p,n−ξp)⇒ N(0,κ2

p)

as n→ ∞, where

κ
2
p =

E∗[I(X > ξp)L2]− (1− p)2

f 2(ξp)
≡

ψ2
p

f 2(ξp)
. (12)

Chu and Nakayama (2012) relax Glynn’s moment condition for the CLT to

E∗[I(X > ξp−δ )L2+ε ]< ∞ for some ε > 0 and δ > 0. (13)

(For the quantile estimator ξ̂ ′p,n in (11), the required moment condition is instead E∗[I(X < ξp+δ )L2+ε ]< ∞

for some ε > 0 and δ > 0.) If we have a consistent estimator κ̂p,n of κp from (12), then we can use it to
construct an asymptotically valid 100(1−α)% CI for ξp as(

ξ̂p,n± zα

κ̂p,n√
n

)
. (14)

The numerator ψ2
p in the expression for κ2

p in (12) can be estimated by

ψ̂
2
p,n =

1
n

n

∑
i=1

I(Xi > ξ̂p,n)L2
i − (1− p)2, (15)

which Chu and Nakayama (2012) prove is consistent. (The consistency proof is complicated by the fact that
the summands I(Xi > ξ̂p,n)L2

i , i = 1,2, . . . ,n, are not independent since they all depend on ξ̂p,n, which is a
function of all n samples.) Chu and Nakayama (2012) also develop a consistent estimator for λp ≡ 1/ f (ξp)
using a finite difference (Section 7.1 of Glasserman 2004). Nakayama (2011a) uses kernel methods to
consistently estimate f (ξp).

We now describe the finite-difference estimator for λp from Chu and Nakayama (2012). By the chain
rule of calculus, we have that d

d p F−1(p) = 1/ f (F−1(p)) = λp. Since d
d p F−1(p) = limh→0[F−1(p+ h)−

F−1(p−h)]/(2h), a natural estimator of λp is

λ̂p,n =
F̂−1

n (p+hn)− F̂−1
n (p−hn)

2hn
, (16)

where hn > 0 is a user-specified (small) bandwidth. Assuming (13) holds and f is continuous in a
neighborhood in ξp, Chu and Nakayama (2012) show that λ̂p,n⇒ λp as n→∞ when hn→ 0 and

√
nhn→

a ∈ (0,∞] as n→ ∞. For example, we can choose the bandwidth hn = cn−d for constants c > 0 and
0 < d ≤ 1/2.

The kernel estimator of f (ξp) from Nakayama (2011a) is the plug-in estimator

f̂n(ξ̂p,n), (17)
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where

f̂n(y) =
1
n

n

∑
i=1

kh(y−Xi)Li

is the IS kernel density estimator, kh(x) = 1
h k
( x

h

)
, k( ·) is a kernel function (often taken to be a symmetric

density function; see Chapter 2 of Wand and Jones 1995), and h = hn > 0 is a user-specified bandwidth.
Under certain conditions, Nakayama (2011a) shows that f̂n(ξ̂p,n)⇒ f (ξp) as n→ ∞ when hn → 0 and
nhn→∞ as n→∞. Also, it is shown that f̂n(ξ̂p,n) satisfies a CLT, which establishes its rate of convergence
as (nhn)

−1/2 rather than the canonical n−1/2.

4 BATCHING AND SECTIONING WITH IMPORTANCE SAMPLING

To apply batching with IS to construct a CI for ξp, we partition the n samples into b≥ 2 (nonoverlapping)
batches, each of size m, where we assume that n = bm. Thus, for each j = 1,2, . . . ,b, the samples (Xi,Li),
i = ( j− 1)m+ 1,( j− 1)m+ 2, . . . , jm, form the jth batch. We assume that as n→ ∞, the number b of
batches remains fixed and the batch size m→ ∞. Let F̂m, j denote the IS estimate of the CDF from the jth
batch:

F̂m, j(x) = 1− 1
m

jm

∑
i=( j−1)m+1

I(Xi > x)Li,

from which we obtain the jth IS batch quantile estimate ξ̂p,m, j = F̂−1
m, j (p). Then compute the IS batching

variance estimator

Ŝ2
m,b,batch =

1
b−1

b

∑
j=1

(ξ̂p,m, j− ξ̃p,m,b)
2, (18)

where

ξ̃p,m,b =
1
b

b

∑
j=1

ξ̂p,m, j. (19)

The IS batching 100(1−α)% CI for ξp is then given by

Cm,b,batch ≡

(
ξ̃p,m,b± tb−1,α

Ŝm,b,batch√
b

)
. (20)

Now consider applying sectioning to construct a confidence interval for ξp when using IS. When
sectioning is used, the b batches are instead called sections. We compute the IS sectioning variance
estimator

Ŝ2
m,b,sect =

1
b−1

b

∑
j=1

(ξ̂p,m, j− ξ̂p,n)
2, (21)

which we note is similar to the IS batching variance estimator (18) except that in each summand we subtract
ξ̂p,n given in (9) rather than the sample average ξ̃p,m,b from (19). Finally we define the IS sectioning
100(1−α)% confidence interval for ξp as

Cm,b,sect ≡

(
ξ̂p,n± tb−1,α

Ŝm,b,sect√
b

)
. (22)

We can also define a combined sectioning-batching CI as

Cm,b,sb ≡

(
ξ̂p,n± tb−1,α

Ŝm,b,batch√
b

)
, (23)
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which is centered at the overall quantile estimate ξ̂p,n but whose half-width is the same as that for batching.
Let P∗ denote the probability measure under IS, and the following theorem, whose proof appears in

Nakayama (2012), establishes the asymptotic validity of the CIs. Choosing the IS change of measure P∗
to be the same as the original measure P results in the likelihood ratio L≡ 1, so the theorem also covers
CMC as a special case.
Theorem 1 Suppose that F is differentiable at ξp, with f (ξp)> 0. Also, suppose that (13) holds. Then
for CI C =Cm,b,sect, Cm,b,batch or Cm,b,sb,

P∗{ξp ∈C}→ 1−α

as m→ ∞ with b fixed.
The assumptions in Theorem 1 on the original CDF F and its derivative f are standard conditions

used to establish a CLT for a quantile estimator; e.g., see Section 2.3 of Serfling (1980). The proof of
the asymptotic validity of the CIs relies on showing that the IS quantile estimator satisfies a so-called
Bahadur representation (Bahadur 1966), which Chu and Nakayama (2012) prove when (13) further holds.
Specifically, Chu and Nakayama (2012) show that

ξ̂p,n = ξp +
p− F̂n(ξp)

f (ξp)
+Rn with

√
nRn⇒ 0 (24)

as n→∞. Under a stronger set of assumptions, Sun and Hong (2010) prove a stronger Bahadur representation
for the IS quantile estimator by establishing an almost-sure rate at which Rn in (24) vanishes. In either case,
a Bahadur representation establishes a type of first-order Taylor approximation, showing that a quantile
estimator can be approximated by a linear transformation of a CDF estimator. CDF estimators, as in (1)
for CMC and (8) and (10) for IS, are often sample averages of i.i.d. quantities, and as such, they satisfy
CLTs (under appropriate moment conditions). Hence, a Bahadur representation provides insight into why
a quantile estimator, which is not a sample average, satisfies a CLT.

We now describe the main ideas underlying the proof of Theorem 1; the full details are in Nakayama
(2012). Note that (24) implies that for each batch (section) j = 1,2, . . . ,b, the corresponding quantile
estimator satisfies a Bahadur representation:

ξ̂p,m, j = ξp +
p− F̂m, j(ξp)

f (ξp)
+Rm, j with

√
mRm, j⇒ 0 (25)

as m→ ∞. As a consequence,
√

m(ξ̂p,m, j− ξp) =
√

m[p− F̂m, j(ξp)]/ f (ξp)+
√

mRm, j converges weakly
to a normal as m→ ∞ since (13) implies F̂m, j(ξp) satisfies a CLT and

√
mRm, j ⇒ 0. Because the ξ̂p,m, j,

j = 1,2, . . . ,b, are i.i.d., it follows that the batching CI in (20) is asymptotically valid. For sectioning, (25)
ensures that the average in (19) of the b batch quantile estimators can be expressed as

ξ̃p,m,b =
1
b

b

∑
j=1

[
ξp +

p− F̂m, j(ξp)

f (ξp)
+Rm, j

]

= ξp +
p− 1

b ∑
b
j=1 F̂m, j(ξp)

f (ξp)
+

1
b

b

∑
j=1

Rm, j

= ξp +
p− F̂n(ξp)

f (ξp)
+

1
b

b

∑
j=1

Rm, j.

Combining this and (24) leads to

√
n(ξ̂p,n− ξ̃p,m,b) =

√
n

(
Rn−

1
b

b

∑
j=1

Rm, j

)
⇒ 0

114



Nakayama

as n = mb→ ∞ with b fixed. This fact can then be used to justify replacing the estimator ξ̃p,m,b in the
batching CI by ξ̂p,n to obtain the sectioning CI in (22) and the combined sectioning-batching CI in (23).

5 NUMERICAL RESULTS

We ran experiments on a simple stochastic activity network (SAN), which was previously studied in Hsu and
Nelson (1990) and Chu and Nakayama (2012). Also known as stochastic PERT networks, SANs are often
used in practice to model the time to complete a project consisting of activities having precedence relations
and random durations (Adlakha and Kulkarni 1989). We consider a SAN with d = 5 activities, which
correspond to edges, labeled 1,2, . . . ,5, in the SAN. The length A` of edge ` denotes the time to complete
activity `, and A1,A2, . . . ,A5 are i.i.d. exponential with mean 1. The SAN has q = 3 paths, with B1 = {1,2},
B2 = {1,3,5}, and B3 = {4,5} as the sets of edges on the paths. Let X =max j=1,2,3 ∑`∈B j A` denote the length
of the longest path, and its CDF F is given by F(x) = 1+(3−3x−x2/2)e−x+(−3−3x+x2/2)e−2x−e−3x

for x≥ 0, and F(x) = 0 for x < 0. The goal is to estimate and construct CIs for the p-quantile ξp of F for
different values of p. Differentiating F(x) leads to its density f (x), which is continuous and positive for
all x≥ 0. In particular f (ξp)> 0 for any 0 < p < 1, as required by Theorem 1.

We simulated the SAN by generating samples of A1,A2, . . . ,Ad using IS. We applied an IS scheme from
Chu and Nakayama (2012), which is based on ideas from Juneja, Karandikar, and Shahabuddin (2007) and
Glynn (1996). The method samples from a mixture of distributions, where each distribution in the mixture
exponentially tilts the durations of the activities on one path, leaving the activities not on that path with
their original (exponential) distributions; see Chu and Nakayama (2012) for details. In our experiments,
we chose different values of p ≈ 1, so we use the quantile estimator from (9) rather than (11). Table 1
presents the results from constructing nominal 90% CIs for ξp for different sample sizes n. We estimated
the coverage (and average half-widths) from running 104 independent replications.

We constructed CIs for ξp using six different methods. These include the batching CI in (20), the
sectioning CI in (22), and the combined sectioning-batching CI in (23). The results for these three methods
are in the columns in Table 1 labeled “Batch,” “Section” and “SB,” respectively. For all these CIs, we used
b = 10 sections or batches.

The other three sets of CIs have the form in (14). One CI estimates 1/ f (ξp) in (12) via the finite
difference in (16) (column “FD”). Another employs the kernel estimator in (17) to estimate f (ξp) (column
“Kernel”). The last (column “Exact”) uses the exact value of f (ξp), which was computed numerically. All
three of these CIs apply (15) to estimate the numerator in (12).

For the finite-difference estimator, we used bandwidth hn = 0.5n−1/2. In our experiments, when
p+hn ≥ 1, which would result in F̂−1

n being evaluated at a point outside of its domain (0,1), we instead
compute the finite-difference estimator by replacing p+hn and p−hn in (16) with q1,n = 1− (1− p)/10
and q2,n = 2p−1+(1− p)/10, respectively (q1,n and q2,n are chosen to be symmetric around p); see Chu
and Nakayama (2012) for more details. For the kernel estimator, we chose k to be the Gaussian kernel
(i.e., k is the density of a N(0,1)) and the bandwidth hn = 0.5n−1/5.

The results for the finite-difference estimator show that for p = 0.95, the coverage converges to the
nominal level 0.9 as n increases. But for the more extreme values of p, the coverage does not seem to
converge as n grows. The theory in Chu and Nakayama (2012) proves that the coverage will eventually
converge to 0.9, but this requires huge sample sizes when p ≈ 1. The finite-difference CIs consistently
have over-coverage. This is due to the finite-difference estimator overestimating 1/ f (ξp), as can be seen
by the average half-width being larger than those for CIs using the exact value of f (ξp).

The CIs based on the kernel estimator show that for each p, coverage converges to 0.9 as n grows.
But the coverage is consistently below the nominal level. This can lead to the user being overconfident,
which may be especially problematic when evaluating risk.

For each p, the coverage of the batching CIs converge to 0.9 from below as n grows. But for extreme
p, the coverage for n = 100 is quite poor. The reason for the poor coverage for small n appears to be the
bias of quantile estimators. The size m = n/b of each batch is much smaller than n, leading to the batched
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quantile estimator (19) being significantly biased. The CI in (20) is thus centered at a quite biased point
estimator, negatively affecting coverage.

Sectioning leads to coverage converging to 0.9 as n increases. For all sample sizes except n = 100,
the absolute difference from the nominal coverage for sectioning is about the same as that for batching,
but batching approaches 0.9 from below, while sectioning converges from above. As we noted earlier, it is
(arguably) more desirable to have overcoverage than undercoverage. The results for combined sectioning-
batching (SB) are similar to plain sectioning, but SB has slightly smaller average half-widths when n is
small. This seems to arise from the fact that for the batching variance estimate Ŝ2

m,b,batch in (18), ξ̃p,m,b has

the same bias as each ξ̂p,m, j, whereas for the sectioning variance estimate Ŝ2
m,b,sect in (21), ξ̂p,n has smaller

bias than each ξ̂p,m, j. This leads to Ŝ2
m,b,batch typically being smaller than Ŝ2

m,b,sect.
Finally, when the coverages are close to the nominal level, the CIs for batching, sectioning, and

combined sectioning-batching are slightly wider on average than those for the finite-difference and kernel
estimators and for the exact f (ξp). The reason for this is that the former CIs use the Student-t critical
point instead of the smaller normal critical point of the latter.

6 CONCLUDING REMARKS

We used sectioning to develop confidence intervals for a quantile when applying importance sampling.
The CIs, which are asymptotically valid, are similar to those obtained with batching. The sectioning CI is
centered at the quantile estimate based on inverting the CDF estimate from all n samples. In contrast, the
batching CI is centered at the sample average of the b quantile estimates from the b batches, each of size
m = n/b. Because quantile estimators are biased, the larger effective sample size of the sectioning point
estimate leads to its CI being centered at a less biased estimator than the batching CI. This seems to lead to
sectioning and combined sectioning-batching having better coverage than batching when n is small. The
CIs for the combined sectioning-batching are slightly smaller than for sectioning when n is small.
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Table 1: CIs were constructed using different methods, and the coverage levels (and average half-widths)
were estimated from 104 independent replications.

p n FD Kernel Batch Section SB Exact
0.95 100 0.984 0.797 0.841 0.945 0.936 0.879

(0.633) (0.362) (0.532) (0.565) (0.532) (0.401)
400 0.922 0.865 0.888 0.917 0.908 0.895

(0.226) (0.200) (0.236) (0.243) (0.236) (0.207)
1600 0.904 0.891 0.897 0.910 0.904 0.901

(0.106) (0.103) (0.114) (0.116) (0.114) (0.104)
6400 0.898 0.894 0.900 0.903 0.901 0.898

(0.052) (0.052) (0.057) (0.057) (0.057) (0.052)
1−10−2 100 0.981 0.777 0.803 0.959 0.952 0.873

(0.712) (0.390) (0.661) (0.714) (0.661) (0.445)
400 0.989 0.864 0.879 0.924 0.916 0.897

(0.372) (0.223) (0.271) (0.281) (0.271) (0.232)
1600 0.991 0.883 0.892 0.908 0.903 0.901

(0.188) (0.115) (0.129) (0.131) (0.129) (0.117)
6400 0.941 0.890 0.895 0.904 0.901 0.897

(0.068) (0.058) (0.064) (0.064) (0.064) (0.059)
1−10−3 100 0.975 0.743 0.748 0.969 0.960 0.861

(0.793) (0.405) (0.838) (0.924) (0.838) (0.492)
400 0.990 0.844 0.874 0.932 0.922 0.895

(0.420) (0.246) (0.316) (0.331) (0.316) (0.260)
1600 0.991 0.880 0.892 0.910 0.902 0.897

(0.213) (0.130) (0.147) (0.150) (0.147) (0.132)
6400 0.994 0.894 0.899 0.902 0.900 0.897

(0.107) (0.066) (0.072) (0.073) (0.072) (0.066)
1−10−4 100 0.971 0.712 0.693 0.977 0.971 0.851

(0.853) (0.413) (1.011) (1.134) (1.011) (0.528)
400 0.990 0.840 0.863 0.933 0.925 0.898

(0.460) (0.266) (0.357) (0.375) (0.357) (0.283)
1600 0.993 0.874 0.889 0.913 0.906 0.893

(0.233) (0.141) (0.162) (0.166) (0.162) (0.144)
6400 0.991 0.893 0.899 0.906 0.902 0.898

(0.117) (0.072) (0.079) (0.080) (0.079) (0.072)
1−10−5 100 0.960 0.683 0.626 0.981 0.974 0.836

(0.899) (0.415) (1.172) (1.338) (1.172) (0.557)
400 0.990 0.831 0.855 0.940 0.932 0.893

(0.494) (0.280) (0.397) (0.420) (0.397) (0.304)
1600 0.991 0.874 0.889 0.916 0.911 0.897

(0.251) (0.151) (0.175) (0.180) (0.175) (0.155)
6400 0.992 0.893 0.900 0.906 0.902 0.903

(0.126) (0.077) (0.085) (0.086) (0.085) (0.078)
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