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ABSTRACT

We propose to use a global metamodeling technique known as stochastic kriging to improve the efficiency of
Discrete Optimization-via-Simulation (DOvS) algorithms. Stochastic kriging metamodel allows the DOvS
algorithm to utilize all information collected during the optimization process and identify solutions that are
most likely to lead to significant improvement in solution quality. We call the approach Stochastic Kriging
for OPtimization Efficiency (SKOPE). In this paper, we integrate SKOPE with a locally convergent DOvS
algorithm known as Adaptive Hyperbox Algorithm (AHA). Numerical experiments show that SKOPE
significantly improves the performance of AHA in the early stage of optimization, which is very helpful
for DOvS applications where the number of simulations for an optimization task is severely limited due
to a short decision time window and time-consuming simulation.

1 INTRODUCTION

In the past decade, there has been a fast growing body of literature on how to optimize the design of a
system using a simulation model. We refer to such problems as Optimization via Simulation (OvS). See
Fu (2002) and Fu, Glover, and April (2005) for a review of OvS. When the decision variables are discrete
valued, such as the stocking levels of products in a multi-product inventory management problem, we refer
to it as Discrete Optimization via Simulation (DOvS).

When there are only a few hundreds feasible solutions, ranking-and-selection algorithms can be applied
to choose the best solution. Examples include the indifference-zone procedure of Nelson et al. (2001) and
Kim and Nelson (2001), the Bayesian procedure of Chick and Inoue (2001), and the Optimal Computing
Budget Allocation (OCBA) procedure of Chen et al. (2000). Most recently, Frazier (2012) proposed an
indifference-zone procedure for more than 15,000 alternatives. However, in a typical DOvS problem, the
feasible solution space often includes millions and even billions of feasible solutions and thus ranking-
and-selection procedures are not directly applicable.

Adaptive random search has been the dominant paradigm for designing DOvS algorithms when
the solution space is large. Most existing DOvS algorithms focus on asymptotic global convergence,
including the stochastic ruler algorithm of Yan and Mukai (1992), the simulated annealing algorithm
of Alrefaei and Andradóttir (1999), and the nested partitions algorithm of Shi and Ólafsson (2000) and
Pichitlamken and Nelson (2003). These algorithms essentially have to visit every solution to guarantee
global convergence and lack the efficiency necessary to solve real world problems.

Another class of adaptive random search DOvS algorithms guarantees convergence to a local optimal solu-
tion. Andradóttir (1995) proposed a locally convergent algorithm for one-dimensional DOvS problems. The
COMPASS algorithm of Hong and Nelson (2006) and the AHA algorithm of Xu, Hong, and Nelson (2011)
also belong to this class of DOvS algorithms, but they are not restricted to one dimension. By focusing
on finding a local optimum, these algorithms can efficiently search the solution space and achieve good
finite-time performance. Xu, Hong, and Nelson (2010) proposed a framework for locally convergent DOvS
algorithms with a global search phase as a “multi-start” mechanism for COMPASS/AHA and developed
a software package known as Industrial Strength COMPASS (ISC) (www.iscompass.net). Numerical ex-
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periments showed that ISC has finite time performance comparable to a popular commercial DOvS solver
while providing theoretical guarantees that commercial products lack.

Despite the initial success of ISC, DOvS applications are still limited to small-scale problems where
a large number of simulations can be expended for one optimization. However, in many important real
world problems, the limited decision time window and the large-scale simulation model mean that only
a small number of simulations (e.g., within 1000) are possible for each optimization, which is far from
enough for any existing DOvS algorithm to achieve any real progress, let alone converge to an optimal
solution. In such context, a decision maker is more interested in the efficiency of a DOvS algorithm, i.e.,
the algorithm is able to very quickly find solutions with good quality using a small number of simulation
replications, than the algorithm’s eventual convergence to an optimal solution.

In this paper we propose to use a global metamodeling technique known as stochastic kriging
(Ankenman, Nelson, and Staum 2010) to improve the efficiency of adaptive random search DOvS al-
gorithms. At a high level, we construct a stochastic kriging global metamodel using previously visited
solutions and design points spread across the search space. Compared to polynomial type response sur-
face models, a stochastic kriging metamodel can quantify prediction uncertainty globally and leverage all
information collected during the optimization process. Using the metamodel, we choose solutions that are
more likely to lead to improvement to be simulated and thus improve optimization efficiency. We call
this approach Stochastic Kriging for OPtimization Efficiency (SKOPE). SKOPE can be easily integrated
with existing DOvS algorithms such as COMPASS and AHA to improve their efficiency and at the same
time maintain their local convergence property. We report an implementation using AHA because of its
simplicity and excellent empirical performance. Stochastic kriging has been successfully used in estimating
expected shortfall in a nested simulation paradigm (Liu and Staum 2010). As to the best of our knowledge,
this is the first time stochastic kriging is used for DOvS.

Kriging has been used previously to optimize stochastic black-box systems (Huang et al. 2006). Our
work is fundamentally different from Huang et al. (2006) in several significant ways. First, their kriging
model does not consider the intrinsic noise in simulation and they assumed that the stochastic noise is IID
across all solutions, which is not true in most simulation models. Second, their algorithm dose not offer
any convergence guarantee. Finally, the way we use the kriging metamodel is simpler and better captures
prediction uncertainty than their method, which involves a nonlinear search for the maximum expected
improvement value over all solutions.

The Gaussian Process-based Search (GPS) (Sun, Hong, and Hu 2011) is in a similar spirit as ours.
GPS constructs a Gaussian process model and uses it as a sampling distribution to search the solution space.
The sampling distribution takes into account both model uncertainty and simulation noise and balance
exploring less visited solution space and improving the simulation estimates of already visited solutions.
GPS does not require correlation matrix inversions as stochastic kriging does, which may be numerically
unstable. However, GPS lacks the MSE-optimal predictive power of stochastic kriging. Therefore, it may
not be able to identify good solutions as efficiently as stochastic kriging. GPS also has to work with a
complex sampling distribution. In comparison, SKOPE is designed to facilitate rapid progress in the early
stage of DOvS for applications where simulation is very time-consuming and thus the computation cost of
matrix inversion is negligible.

The rest of the paper is organized as follows. In Section 2, we provide a brief introduction to AHA
and stochastic kriging. In Section 3, we discuss the design issues of SKOPE and how it can be integrated
with AHA, and prove the local convergence property. In Section 4, we report numerical experiments
comparing the performance of AHA with and without SKOPE. We give conclusions and discuss future
research directions in Section 5.
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2 BACKGROUND

2.1 AHA for DOvS

In a DOvS problem, we want to find a D-dimensional integer decision variable x to optimize the performance
of a system modeled via stochastic simulation. We will work on minimization problems in this paper.
The performance of the system G(x) is a random variable and can be independently sampled by running
stochastic simulations. We assume that the sample mean of the simulation observations is a strongly
consistent estimator of g(x) = E[G(x)], as stated in Assumption 1.

Assumption 1 For all x ∈ Q,

lim
N→¥

1
N

N

å
j=1

G j(x) = g(x) w.p. 1.

Formally, we want to solve the problem

Minimize g(x) = E [G(x)] subject to x ∈ Q = F∩Z
D, (1)

where F is convex and compact and Z D denotes the D-dimensional integer lattice.
Following Hong and Nelson (2006), we define a local minimum of Problem 1 as follows:

Definition 1 Let N (x) = {y : y ∈ Q and ‖x−y‖= 1} be the local neighborhood of x ∈ Q, where ‖x−y‖
denotes the Euclidean distance between x and y. Then x is a local minimum if x ∈ Q and either N (x) = /0
or g(x)≤ g(y) for all y ∈ N (x). Let M denote the set of local minimizers of the function g in Q.

AHA is an iterative adaptive random search algorithm and has two essential components: a sampling
scheme and an estimation scheme. At iteration k, AHA randomly samples Mk feasible solutions (duplicates
possible) from a hyperbox-shaped Most Promising Area (MPA) Hk ⊆Q according to a sampling distribution
Fk defined on Hk. Xu, Hong, and Nelson (2011) used the uniform distribution defined on Hk as Fk. Denote
the set of unique sampled solutions as Sk and the set of all sampled solutions through iteration k as S (k).
The estimation scheme chooses a subset of solutions Ek ⊆ S (k), and allocates ak(x) additional simulation
observations to all x ∈ Ek. Let ak(x) = 0 for all x /∈ Ek. Then the total number of simulation observations
x has received up to iteration k is Nk(x) = åk

i=0 ai(x). The cumulative sample mean of solution x is

Ḡk(x) = åNk(x)
j=1 G j(x)/Nk(x) if Nk(x)> 0, where G j(x) is the jth observation of G(x).

Figure 1 illustrates how AHA works in a two-dimensional example. The initial MPA is the feasible
solution space (the bold rectangle) and the current best solution x0 is the user provided initial feasible
solution. In the first iteration, AHA sampled x11 and x12. AHA simulates x0, x11 and x12 and determines
x0 is the current sample best solution. The new MPA is then the largest rectangle that contains the current
sample best solution x0 in its interior, but not any of the previously sampled solutions. Figure 1 plots two
more iterations. Formally, AHA is described below

Algorithm 1 Adaptive Hyperbox

Step 0 Let x0 be the starting solution provided by the user. Set the iteration counter k = 0. Let
S0 =S (0) = {x0} and x̂∗0 = x0. Set E0 = {x0}. Determine a0(x0). Take a0(x0) observations from
x0, set N0(x0) = a0(x0), and calculate Ḡ0(x0).

Step 1 Let k = k+ 1. Identify Hk (for k = 1, Hk = Q). Sample xk1,xk2, . . . ,xkm independently from
Hk using a sampling distribution Fk defined on Hk. Remove any duplicates from xk1,xk2, . . . ,xkm
and let Sk be the remaining set. Let S (k) = S (k−1)∪Sk.

Step 2 Let Ek = Sk
⋃
{x̂∗k−1}. For all x ∈ Ek, take ak(x) simulation observations and update Nk(x) and

Ḡk(x). For all x /∈ Ek, let Nk(x) = Nk−1(x) and Ḡk(x) = Ḡk−1(x).
Step 3 Let x̂∗k = argminx∈Ek Ḡk(x). Go to Step 1.
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Figure 1: A two-dimensional example for AHA.

Under Assumption 1, Xu, Hong, and Nelson (2011) proved that the infinite sequence {x̂∗0, x̂
∗
1, . . .}

generated by AHA converges with probability 1 to the set M in the sense that Pr{x̂∗k /∈M infinitely often}= 0
when AHA satisfies the following conditions on the sampling and estimation schemes:

Condition 1 : The sampling scheme satisfies the following requirement:

The sampling distribution Fk guarantees that Pr{x ∈Sk} ≥ e for all x ∈N (x̂∗k−1) for some e > 0 that
is independent of k.

Condition 2 : The estimation scheme satisfies the following requirements:

1. Ek is a subset of S (k);
2. Ek contains x̂∗k−1 and Sk;
3. ak(x) is allocated such that minx∈Ek Nk(x)≥ 1 for all k = 1,2, . . . and minx∈Ek Nk(x)→ ¥ w.p. 1 as

k → ¥.

2.2 Stochastic Kriging

Stochastic kriging (Ankenman, Nelson, and Staum 2010) is a simulation metamodeling technique based
on the well-known kriging technique widely used in spatial statistics. Stochastic kriging explicitly models
the intrinsic noise in stochastic simulation output. As a result, unlike kriging, the interpolation surface
of a stochastic kriging model almost always does not pass through experiment points and is not an
“exact” interpolation. Compared to polynomial based simulation metamodeling techniques (Barton and
Meckesheimer 2006), stochastic kriging is able to capture uncertainty globally.

Stochastic kriging models g(x) as
g(x) = b0 +M(x) (2)

where b0 is a constant representing the overall surface mean, M is a stationary Gaussian random field with
mean 0. A more general trend term can be used to model the surface mean. But in kriging literature, it has
been shown that a constant overall surface mean works very well for a large variety of applications. Using
a Gaussian random field M in the model captures the uncertainty before running simulations on x and
is referred to as extrinsic uncertainty in Ankenman, Nelson, and Staum (2010). The correlation function
reflects the “similarity” between solutions that are spatially close to each other. We adopt a commonly
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used model with a a secondary-order stationary Gaussian correlation function

Cov
[
M(x),M(x′)

]
= t2 exp

(
−

D

å
d=1

qd(xd − x′d)
2

)
.

The variance of M(x) for all x′ is given by t2 and the amount of correlation depends only on the distance
between x and x′, with different weights q = [q1, . . . ,qD]

T . The jth simulation observation of G(x) is then
modeled as

G j(x) = b0 +M(x)+ e j(x), (3)

where the simulation noise e j(x), referred to as “intrinsic uncertainty” in Ankenman, Nelson, and Staum (2010),
is I.I.D. normal distributed with a mean 0 and variance V(x), independent of M(x). After N(x) simulations,

the point estimator of g(x) is the sample mean Ḡ(x) = åN(x)
j=1 G j(x)/N(x).

Let x1,x2, . . . ,xL be the design points. Let gL = [g(x1),g(x2), . . . ,g(xL)]
T , ḠL = [Ḡ(x1), Ḡ(x2), . . . ,

Ḡ(xL)]
T , and SLL be the covariance matrix of gL. Also let Se be the covariance matrix for the simulation

noises for all design points. In this paper, we assume that all simulations use independent random number
streams since it has been shown that Common Random Numbers (CRN) may actually hurt the performance
of stochastic kriging (Chen, Ankenman, and Nelson 2012). So Se is diagonal and Se(i, i) = V(xi)/Nk(xi).
We denote Se =V N−1 where V and N are diagonal matrices and the (i, i)-th elements are V(xi) and Nk(xi),
respectively. Denote the covariance matrix of ḠL as S = SLL+Se . Let the prediction points be x1,x2, . . . ,xS.
Let gS = [g(x1),g(x2), . . . ,g(xS)]T . Denote the L×S covariance matrix between gL and gS as SLS, and its
transpose as GSL. Further denote the covariance matrix of gS as SSS. Ankenman, Nelson, and Staum (2010)
show that the joint distribution of ḠL and gS is multivariate normal

(
gS

ḠL

)
∼ MVN

[
b01L+S,

(
SSS SSL

SLS S

)]
, (4)

where 1L+S is a L+S column vector of ones. Given ḠL = Ḡ, the conditional distribution of gS is multivariate
normal and its mean is the MSE-optimal stochastic kriging predictor

ĜS = b01S +SSLS−1 (Ḡ−b01k
)
, (5)

and the covariance matrix is
ŜSS = SSS −SSLS−1SLS. (6)

The unknown parameters b0,t2,q1, · · · ,qD are estimated via maximal likelihood estimation. Sample
variances are used to estimate V(x1), · · · ,V(xL) and Ankenman, Nelson, and Staum (2010) showed that
doing so does not introduce any prediction bias.

3 SKOPE PROCEDURE

The SKOPE procedure provides a specific implementation of the sampling scheme of AHA. On iteration k,
instead of uniformly randomly sampling solutions from the MPA Hk, SKOPE builds a stochastic kriging
metamodel to help predict solution quality inside Hk and select the “most promising” solutions to be
included in the sampling set Sk.

3.1 Experiment Design

It is common to use a space-filling design such as the Latin Hypercube Design (LHD) when one uses
stochastic kriging or ordinary kriging to construct a metamodel (Santner, Williams, and Notz 2003). On
iteration k, when AHA constructs the hyperbox MPA Hk, we apply the Matlab function lhsdesign() to
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create a Latin hypercube design that maximizes the minimal distance between any pair of design points
inside Hk. The more design points we have, the more accurate the metamodel will be. However, more
design points also means there will be less simulation budget remaining for future AHA iterations. How
to balance this trade-off and choose the number of design points (denoted as Lk) is a very challenging
research question. A simple rule of thumb (Jones, Schonlau, and Welch 1998) suggests that there should
be 10 design points per dimension. We will follow this rule up to D = 10. We also require that Lk ≤ 0.05Vk,
where Vk is the number of solutions in Hk. This is to avoid using unnecessarily many design points when
AHA has made Hk small enough. In addition, it also helps avoid numerical problems when stochastic
kriging calculates the inverse of the correlation matrix for design points.

Experiment design for SKOPE has its unique challenges. As AHA searches the solution space, we
will have simulation observations for all previously sampled solutions x ∈ S (k), in addition to the Lk
design points inside Hk. As simulations are expensive, we want to fully utilize information available and
also include S (k) or a subset of it as design points. However, as x ∈ S (k) are not spread evenly and
they tend to concentrate around Hk, using all x ∈ S (k) as design points will likely make the correlation
matrix almost singular. It will be an interesting research issue to study how to select a subset of S (k) to
maximally increase the predictive power of the metamodel without causing numerical problems. In this
paper, we will adopt the simple strategy of using all x ∈ S (k) and the Lk LHD points inside Hk. If there
is a numerical problem with computing the inverse of the correlation matrix, SKOPE will only use the Lk
LHD points.

The maxmin LHD only supports hyperbox-shaped design space, which may not be the case if the
original DOvS problem constraints involve more than boundary constraints for decision variables. It is
possible to approximately use an LHD in a convex design space as explained in Liu and Staum (2010). But
this is not essential to the discussion of SKOPE and we will test SKOPE on problems with only boundary
constraints.

3.2 Selecting the Sampling Set

The goal of SKOPE is to use the stochastic kriging metamodel to help AHA select a sampling set that has
average solution quality higher than what a simpler sampling scheme like the uniform random distribution
is able to achieve. There are multiple ways to utilize a kriging metamodel to identify a good solution to
simulate. Huang et al. (2006) used ordinary kriging for optimizing stochastic black-box systems. For a
minimization problem, they introduced a utility function u(x) for a solution x not sampled yet

u(x) =−Ĝo(x)− cso(x), (7)

where Ĝo(x) is the ordinary kriging predictor for G(x), so(x) is its standard deviation, and c is a user
chosen constant. In their study, they chose c = 1, i.e., they are willing to trade one unit of the predicted
objective value for one unit of prediction uncertainty as measured by the standard deviation so(x). Then they
determine the “effective best” solution x∗∗ among all of the n previously sampled solutions x1,x2, · · · ,xn as

x∗∗ = argmaxx1,x2,··· ,xn
u(x). (8)

They then computed the Expected Improvement (EI) function for each x defined as

E[I(x)]≡ E
[
max

(
Ĝo(x∗∗)−G(x),0

)]
·

(
1−

√
V(x)√

V(x)+so(x)2

)
, (9)

where the expectation is taken with respect to the conditional distribution of G(x)∼ N(Ĝ(x),so(x)2). In
the right hand side of (9), the first term gives the expected improvement in objective value from the current
effective best solution. The second term attempts to balance the intrinsic uncertainty V(x) and extrinsic
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uncertainty so(x)2 in a heuristic manner. They assumed that V(x) is the same for all x, which is an
unrealistic assumption in most simulation applications. They then maximized EI across the solution space
using the Nelder-Mead simplex algorithm.

Although we could adopt their approach and use stochastic kriging to replace the ordinary kriging
model and modify the utility function u(x) and E[I(x)] accordingly, we choose not do to so for the following
reasons. First, u(x) is only a heuristic way to measure the overall quality of x. There is no justifiable
way to choose the parameter c, which has a significant impact on the performance of the procedure.
Second, the E[I(x)] maximization problem introduces another nonlinear optimization problem. Although it
is deterministic, it still adds considerably to the complexity of the procedure as the formula of E[I(x)] would
involve the stochastic kriging predictor and the cumulative distribution function of the normal distribution.
Third, AHA is a population-based random search algorithm. If we need to select, say, 25 solutions in the
sampling set, it would be extremely difficult to find solutions with the top 25 EI values. Finally, the EI
approach only uses marginal distributions for G(x) and fails to fully leverage the information available in
the multivariate normal distribution of GS.

We propose to address this problem using a combination of Ordinal Optimization (OO) (Ho, Zhao, and Jia 2007)
and Monte Carlo simulation. We first present some notations. Recall that Vk is the number of solutions
inside the MPA Hk on iteration k. Let Tk be the set of good enough solutions among all Vk solutions
(typically the top solutions), Sk be the set of prediction points for the stochastic kriging model, and sk be
the size of Sk.

We first blindly pick enough prediction points via uniform random sampling inside Hk to ensure that
with a large probability g1, a good enough solution x ∈ Tk is in Sk, i.e., Pr(|Tk

⋂
Sk| ≥ 1)≥ g1. When we

uniformly randomly pick Sk from Hk, the probability is given by

Pr(|Tk

⋂
Sk| ≥ 1) = 1−

(
Vk −Tk

sk

)
/

(
Vk

sk

)
. (10)

We can then search for the smallest sk such that (10) is at least g1. We set g1 = 0.95 in our numerical
experiments. When Vk is large, we set Tk =Vk/10000 such that sk will not be too big. We also require that
sk ≤ min(0.1Vk,5000) to avoid memory usage issue and numerical problem of inverting the correlation
matrix when Sk fills Hk too densely.

We then generate Monte Carlo samples from the conditional distributions of the unknown objective
values of Sk to rank these prediction points and select a subset of Sk that with a large probability g2 includes
the best solution in Sk in the sampling set Sk. We let p(x) be the probability that x is the best solution
in Sk. We then rank x ∈ Sk in descending order of p(x) and select the first S ≡ min{S : SS

s=1 p(xs) > g2}
solutions to be included in Sk. We let g2 = 0.9 in our numerical experiments. We also impose an upper
bound S = 25. We admit this is an arbitrary choice. However, we need to balance effort spent in the current
iteration and future iterations and it is extremely challenging to analyze this tradeoff. Indeed, if including
25 solutions is not enough to ensure that with probability g2, the best solution in Sk is included in Sk,
it probably means the metamodel either cannot predict the objective values of the prediction points with
reasonable certainty or the objective values of these prediction points are close. In either case, AHA can
most likely do just as well by selecting the best S = 25 as by selecting a lot more of the prediction points
to be included in Sk.

In the Monte Carlo simulation procedure, we generate J samples from the multivariate normal distribution
with mean and covariance matrix given in (5) and (6). For the jth sample of gS, denoted as GS

j , we let
Is( j) be the indicator function for prediction point xs,s = 1,2, . . . ,sk. When xs is the top solution (including
a tie) in this sample GS

j , Is( j) = 1; otherwise Is( j) = 0. The probability that xs is the best solution in

the prediction set Sk is then estimated as p̂s = åJ
j=1 Is( j)/J. We want J to be large enough to have good

estimates. Since this procedure is typically much faster than the actual simulation, we use J = 1000 in our
numerical study.
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Another practical issue is the uniform random sampling procedure may generate duplicate solutions
among the sk sampled solutions. We may keep sampling until we have sk unique prediction points. However,
during the early stage of DOvS, the design space is typically quite large and the number of duplicate solutions
is negligible. Also the computation overhead of doing so probably outweighs its benefit. We thus will skip
this issue and just uniformly sample the MPA Hk to generate sk solutions and keep the unique ones as the
prediction set Sk.

3.3 The AHA-SKOPE Procedure

We are now ready to describe the SKOPE procedure implemented in the AHA framework to improve the
sampling scheme of AHA. We assume that the feasible solution space is a hyperbox so that LHD can be
directly applied.

Algorithm 2 AHA-SKOPE

Step 0 Same as Algorithm 1.
Step 1.1 Let k = k+1. Identify Hk (for k = 1, Hk = Q). Use the max-min LHD to fill Hk with a design

point set Lk. For each x ∈ Lk, take ak(x) simulation observations and update Nk(x) and Ḡk(x).
Step 1.2 Determine sk according to (10). Using a uniform random distribution defined on Hk, sample

sk solutions (excluding the design set Lk), remove any duplicates and obtain the prediction set Sk.
Step 1.3 Use the Monte Carlo simulation procedure in Section 3.2 to select at most S solutions from

Sk. Let S′k be the remaining set. Let Sk = Lk
⋃

S′k and let S (k) = S (k−1)∪Sk.
Step 2 Same as Algorithm 1.
Step 3 Same as Algorithm 1.

We have the following proposition to show that AHA-SKOPE maintains the local convergence property
of AHA under Assumption 1.

Proposition 1 Let x̂∗k ,k = 0,1,2, . . . be a sequence of solutions generated by Algorithm 2 when applied
to Problem (1). Suppose that Assumption 1 is satisfied. Then Pr{x̂∗k /∈ M i.o.}= 0.

Proof: Because AHA-SKOPE only modifies the sampling scheme, we only need to verify that AHA-
SKOPE satisfies Condition 1. To do so, we need to compute Pr{x ∈ Sk} for all x ∈ N (x̂∗k−1). We first
notice that N (x̂∗k−1) ⊆ Hk−1 by construction (Xu, Hong, and Nelson 2011). Denote the sk prediction
points independently and uniformly sampled within Hk−1 as x1,x2, . . . ,xsk . For all x ∈ N (x̂∗k−1), we have
Pr{x1 = x2 = · · · = xsk = x} = Pr{x1 = x}sk = (1/Vk−1)

sk ≥ (1/|Q|)|Q|. So there is a nonzero probability
that Sk only contains x and thus x ∈ S′k. By construction, x ∈ Sk. So Condition 1 is satisfied. 2

4 Numerical Experiments

Xu, Hong, and Nelson (2011) compared AHA to another locally convergent DOvS algorithm COMPASS,
which has been tested against a leading commercial OvS solver (Xu, Hong, and Nelson 2010) via extensive
numerical experiments and shown to be highly competitive. AHA’s performance has been shown to be
much better than that of COMPASS when dimension is high (e.g., ≥ 10) and slightly worse than that of
COMPASS for lower dimensional problems. Because these studies have established the competitiveness
of AHA, we will focus on comparing AHA-SKOPE with AHA.

Because the current implementation of AHA-SKOPE can only deal with boundary constraints, we will
only use two of the test problems in Xu, Hong, and Nelson (2010) with hyperbox constraints only. We
provide brief descriptions of these test problems and details can be found in Xu, Hong, and Nelson (2010).

The first test problem is the singular function of Hong and Nelson (2006):

g1(x1,x2,x3,x4) = (x1 +10x2)
2 +5(x3 − x4)

2 +(x2 −2x3)
4 +10(x1 − x4)

4 +1. (11)
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When only integer solutions are considered, this function has three local minima: (0,0,0,0) with
g1(0,0,0,0) = 1; (1,0,0,1) with g1(1,0,0,1) = 7; and (−1,0,0,−1) with g1(−1,0,0,−1) = 7. We add
normally distributed noise with zero mean and standard deviation max(

√
g1(x1,x2,x3,x4),30) to make it a

stochastic optimization problem. The feasible solution space is −50 ≤ xi ≤ 50,xi ∈ Z +, i = 1,2,3,4 with
104,060,401 feasible solutions.

The second test problem is the high-dimensional test problem of Xu, Hong, and Nelson (2010):

g2(x1,x2, . . . ,xD) =−b exp

{
−g

D

å
d=1

(xd −x ∗)2

}
, (12)

where we set g = 0.001,b = 10000 and x ∗ = 0. The response surface has the shape of an inverted multivariate
normal density function with a single globally optimal solution at x = (x ∗,x ∗, . . . ,x ∗). We experiment
with D = 10 and the feasible region is −15 ≤ xd ≤ 15,d = 1, . . . ,D, with a total of 8,196,282,869,808,010
feasible solutions. Normally distributed noise with standard deviation 0.3×|g2(x)| is added.

We run AHA and AHA-SKOPE on these test problems for 5 trails each. For the singular function, the
initial solution is x0 = (−30,−30,−30,−30); for the high-dimensional function, x0 = (12, 12, 12, 12, 12, 12,
12, 12, 12, 12). For AHA, we set the number of solutions sampled per iteration close to what AHA-SKOPE
sampled each iteration. For the singular function, we set it to 50; for the high-dimensional test function, it
is 100. We use the same simulation budget allocation rule as in Xu, Hong, and Nelson (2011) to determine
ak(x). AHA converges asymptotically to a local optimal solution. But in numerical experiments, we have to
stop AHA and AHA-SKOPE in finite time. We apply a local optimality test (Xu, Hong, and Nelson 2011)
when Hk contains only one interior solution x̂∗k , and stop AHA/AHA-SKOPE when the test finds x̂∗k to be
the local optimal solution with a statistical guarantee.

Figure 2 and 3 are the performance plots for the singular function and the high-dimensional test function
with D = 10, respectively. Since we know the true objective value of a solution, we measure the progress
of the algorithm using the true objective value of the current sample best solution. The curves are the
average of 5 independent AHA/AHA-SKOPE runs. As can be seen clearly from the plot, AHA-SKOPE
achieves much faster progress than AHA alone early on in the optimization progress, demonstrating the
value of SKOPE when the DOvS application has a very limited simulation budget and the optimization
process has to be stopped well before the local optimal solution can be found.
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Figure 2: Performance plot for the singular function.

We have found in numerical experiments that there are two major factors hindering the effectiveness of
SKOPE. As the MPA Hk becomes smaller, which can happen very quickly due to the efficiency of AHA
in cutting down the search space (Xu, Hong, and Nelson 2011), we have to limit the number of design
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Figure 3: Performance plot for the high-dimensional test function D = 10.

points and prediction points to avoid numerical problems when computing the inverse of correlation matrix
in the stochastic kriging step. Our approach now is quite crude and impose a somewhat arbitrary bound on
the number of design points and prediction points. We also only use LHD points inside Hk when using all
x ∈ S (k) as design points makes the design correlation matrix near singular. Undoubtedly, our approach
is not making full use of available information to construct a metamodel with the best predictive power
possible. This is an area that needs further research.

The response surface shape also has a big impact on the effectiveness of SKOPE. If the response
surface over the MPA Hk is almost flat everywhere but has a narrow valley around the optimal solution(s),
it will be very difficult to obtain a metamodel with the necessary predictive power to guide AHA. This is
especially relevant in the early stage of optimization when Hk is huge. In addition, if the magnitude of
differences in objective values are too big, the predictive capability of stochastic kriging is also impaired
considerably. In all cases, a poor metamodel can mislead AHA and performs worse than a uniform random
sampling distribution. It will also make AHA’s performance highly volatile from trial to trial. A better
implementation of stochastic kriging may help alleviate some of these problems. However, we feel that it
can also be effectively addressed by a pre-processing step of DOvS. Through a combination of experience,
expert input, first-order analytical model, and preliminary simulation experiments, the decision maker
should and could remove a significant part of feasible solution space that are orders of magnitude inferior
to good solutions.

5 CONCLUSIONS AND DISCUSSIONS

We propose a stochastic-kriging based SKOPE procedure as a sampling scheme for a class of locally
convergent adaptive random search DOvS algorithm to improve their finite-time performance, especially
in the early stage of optimization. We feel this is very important for many practical DOvS applications
where simulation is very time-consuming and a very limited number of simulations can be expended for
an optimization task. We integrate the SKOPE procedure with a locally convergent DOvS algorithm AHA
and prove that AHA-SKOPE maintains the local convergence property of AHA. We show in numerical
experiments that SKOPE leads to significant performance improvement, especially in the early stage of
optimization.

To fully utilize the benefit of SKOPE, there remain several further theoretical and computational issues
that warrant further research. The first question is how to choose design points. Since AHA and most
other DOvS algorithms are an iterative process, there are many previously sampled solutions that can be
used as design points. Although more design points in principle can reduce the prediction uncertainty
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of the stochastic kriging metamodel, in the later stage of optimization, we tend to have many sampled
solutions closely clustered together, which makes the design point correlation matrix very close to singular.
Therefore, it is very important to select a subset of visited solutions that will not make the correlation matrix
near singular while reducing the prediction uncertainty of the metamodel maximally. We have restricted our
attention to improving the sampling scheme of AHA using SKOPE and used the same simulation budget
allocation rule as before. Ankenman, Nelson, and Staum (2010) discussed how to allocate simulation
budget for a set of fixed design points to minimize the Integrated MSE (IMSE) of the metamodel. In the
DOvS setting, IMSE probably is not the most useful measure of the utility of the metamodel because the
metamodel should reduce prediction uncertainty for promising solutions while pay less attention to clearly
inferior ones. When applied to higher dimensional problems, the current stochastic kriging implementation
(www.stochastickriging.net) can have numerical difficulties. A more scalable implementation of stochastic
kriging will also make SKOPE more applicable in high-dimensional DOvS applications.
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Shi, L., and S. Ólafsson. 2000. “Nested partitions method for stochastic optimization”. Methodology and
Computing in Applied Probability 2:271–291.

Sun, L., L. J. Hong, and Z. Hu. 2011, December. “Optimization via Simulation Using Gaussian Process-
Based Search”. In Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White, and M. Fu, 4134–4145. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Xu, J., L. J. Hong, and B. L. Nelson. 2010. “Industrial Strength COMPASS: A Comprehensive Algo-
rithm and Software for Optimization via Simulation”. ACM Transactions on Modeling and Computer
Simulation 20:3:1–3:29.

Xu, J., L. J. Hong, and B. L. Nelson. 2011. “An Adaptive Hyperbox Algorithm for High-Dimensional
Discrete Optimization via Simulation Problems”. INFORMS Journal on Computing published online
before print.

Yan, D., and H. Mukai. 1992. “Stochastic discrete optimization”. SIAM Journal on Control and Optimiza-
tion 30:594–612.

AUTHOR BIOGRAPHIES

JIE XU is an assistant professor in the Department of Systems Engineering and Operations Research at
George Mason University. His research interests include Monte Carlo simulation, stochastic optimization,
computational intelligence, and applications in risk management and aviation. He is a member of INFORMS,
IIE, and IEEE. His email address is jxu13@gmu.edu.

477


