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ABSTRACT

Consider the context of constrained simulation optimization (SO), that is, optimization problems where
the objective function and constraints are known through a Monte Carlo simulation, with corresponding
estimators possibly dependent. We identify the nature of sampling plans that characterize efficient algorithms,
particularly in large countable spaces. We show that in a certain asymptotic sense, the optimal sampling
characterization, that is, the sampling budget for each system that guarantees optimal convergence rates,
depends on a single easily estimable quantity called the score. This result provides a useful and easily
implementable sampling allocation that approximates the optimal allocation, which is otherwise intractable
due to it being the solution to a difficult bilevel optimization problem. Our results point to a simple
sequential algorithm for efficiently solving large-scale constrained simulation optimization problems on
finite sets.

1 INTRODUCTION

The constrained Simulation Optimization (SO) problem is a nonlinear optimization problem in which the
objective and constraint functions can only be observed with error through a Monte Carlo simulation.
The functions involved in the optimization are implicitly expressed through the simulation, as opposed
to more traditional settings in which an explicit expression of the functions is required. The flexibility
of incorporating complex stochastic function structures into optimization problems has resulted in the
widespread adoption of SO formulations and consequent attention among researchers.

SO problems are broadly categorized by the nature of the feasible region and the type of solution
required. Depending on the nature of the feasible region, SO problems are generally considered either
categorical, integer-ordered, or continuous, with problems falling in more than one of these categories being
considered mixed SO problems. SO problems in each of the integer-ordered and continuous categories can
require global or local solutions. For examples of SO problems in each of these categories, visit the library
of SO problems at www.simopt.org (Pasupathy and Henderson 2006; Pasupathy and Henderson 2011).

In this paper, we consider the stochastically constrained SO problem on categorical or finite spaces.
This variation involves identifying the best system (or design) from a finite population of systems, as
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measured by an estimable objective function, from among those systems that are feasible, as measured
by a set of estimable constraint functions. This formulation subsumes the unconstrained version of the
categorical SO problem. Unlike the unconstrained version, research on the constrained version is still in
its infancy. Attempts at solution have been relatively few and very recent; entry points to work in this area
include Andradéttir and Kim (2010), Hunter and Pasupathy (2012), and Lee et al. (2012). Among this
work on the stochastically constrained SO problem, we know of no work that focuses on optimal allocation
to efficiently solve problems on large finite sets.

To provide a better sense of the specific questions we answer, consider the following setting. Suppose
simulation runs are allocated across the available systems according to an allocation scheme on the design
space. After expending a certain amount of the simulation budget, the system with the largest observed
objective function estimate among those estimated to be feasible is chosen as the best system. The estimated
best system may or may not coincide with the true best system, thereby giving rise to the notion of a
false selection event, which is the event that the estimated best system is not the true best system. The
probability of false selection (P{FS}) is the probability of observing a false selection event.

Our questions in this paper relate to the behavior of P{FS} as a function of the simulation budget
and its allocation across systems, with a special emphasis on settings where the design space is large and
while making no independence assumptions between the objective and constraint estimators for a system.
Specifically, we ask:

Q.1  What is the optimal simulation budget allocation across designs, that is, what is the nature of the
budget allocation that maximizes the rate of decay of P{FS} to zero?

Q.2 What is the nature of the optimal budget allocation scheme as the number of systems within the
design space becomes large?

Q.3 Can the answer to Q.2 be used to construct an easily implementable algorithmic scheme to solve
large-scale stochastically constrained finite SO problems?

Our answer to question Q.1 appears in Section 3 and is a relatively simple extension of recent work
by Hunter (2011), Hunter and Pasupathy (2012), and Hunter et al. (2012), and is in general based on the
seminal work by Glynn and Juneja (2004). We answer question Q.2 in Section 4, where we demonstrate that
the optimal allocation in the proposed setting reduces to a form that is remarkably simple in structure and
intuition. Specifically, we show that as the number of systems becomes large, the optimal simulation budget
allocated to any suboptimal system i is inversely proportional to a suboptimality/infeasibility measure of a
system that we call the score. Not surprisingly, the score for system i depends only on the random variables
inherent to the system i and best feasible system. Furthermore, the score has an expression that seems easily
estimable when the distributions driving the observations from each system are known or assumed. For
example, when the observations corresponding to the constraint and objective functions from each system
are independently normal, the score for a system is the sum across its optimality gap and infeasibility gaps
for violated constraints, each measured in standard deviation units. More generally, calculating the score
amounts to minimizing a strictly convex function with box constraints.

From the implementation standpoint of Q.3, when solving constrained SO problems with large finite
spaces, our insight from answering Q.2 points to a solution scheme with three repeating steps: estimate the
score, update the optimal simulation allocation across systems to be in inverse proportion to the estimated
scores, and then select designs on which to execute the simulation according to the updated allocation
scheme. As we demonstrate, this procedure results in a simple sequential algorithm that asymptotically
achieves the optimal budget allocation scheme, while reliably solving “large” problems with known or
assumed distributions.

2 PROBLEM SETTING AND FORMULATION

In this section, we outline a formal problem statement, notational conventions, and assumptions.
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2.1 Problem Statement

The problem statement we consider here is identical to that in Hunter and Pasupathy (2012). Unlike Hunter
and Pasupathy (2012), however, the investigation in this paper pertains to the setting where the number of
systems r is large.

Problem Statement: Consider a finite set i = 1,2,...,r of systems, each with an unknown
objective value /; € R and unknown constraint values g;; € R, j=1,2,...,sandi=1,2,...,r.
Given constants ¥; € R, j=1,2,...,s, we wish to select the system with the lowest objective
value h;, subject to the constraints g;; < ¥;. That is, we consider

Problem P: Find arg min A

i=12,..r
st. g <y, forall j=1,2,...,s,

where h; and g;; are expectations, estimates of h; and g;; are observed together through
simulation as sample means, and a unique solution to Problem P is assumed to exist.

Let ¢ = (aj,,...,0,) be a vector denoting the proportion of the total sampling budget
given to each system, so that };_, o; =1 and o; >0 for all i =1,2,...,r. Let the system
having the smallest estimated objective value among the estimated-feasible systems be
selected as the estimated solution to Problem P. Then we ask, what vector of proportions
a maximizes the rate of decay of the probability that this procedure returns a suboptimal
solution to Problem P?

2.2 Notational Conventions

Where it is reasonable to do so, we generally use upper case letters for random variables, lower case letters
for fixed quantities, bold type for vectors, and script letters for sets. For brevity, we write i <r and j < s to
indicate i = 1,2...,rand j=1,2...,s. For vectors x = (xj,x2,...,x,) and y = (y1,y2,...,Vm), the notation
x <y means x; < y; for all i < m. Throughout the paper, we let system 1 denote the best feasible system,
that is, the system with the smallest value of h; that satisfies the constraints g;; < y; for all j <s.

2.3 Assumptions

This paper follows from the general theory for constrained simulation optimization with correlation between
the objective and constraint estimators outlined in Hunter et al. (2012). To this end, we require the same
assumptions as those required in Hunter et al. (2012). First, to estimate the unknown quantities /; and
8 = (gi1,82,-..,8is), we assume we may obtain replicates of the output random variables (H;, G;) from
each system, where each system is simulated independently of the others.

Assumption 1 The systems are simulated independently of each other, that is, the random vectors (H;, G;)
are mutually independent for all i < r.

We also require the assumption that no system lies exactly on a constraint, and that no system has
exactly the same objective function value as that of the best feasible system, system 1. This assumption
is standard in literature that seeks an optimal sampling allocation since it ensures that two values may be
distinguished with finite simulation budget.

Assumption 2 We assume h; # hy for all i <rand g;; # y; for all i <r,j <s.

Since this paper builds directly from the theory derived in Hunter et al. (2012), the following two
assumptions, standard in literature using large deviations theory, are required. Since our focus in this
paper is to derive a broad sampling law for a large number of systems, we replicate these assumptions for

completeness and refer the reader to Dembo and Zeitouni (1998) for further explanation. We first define
the required notation.
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Let random variables from the simulation be replicates of (H;,G;) = (H;,G;1,Gp,...,G;is) for each
i <r. Then define the sample mean after ¢ observations as

(H;(t),Gi(t)) = (Hi(t),Gu(1),...,Gis(t)) = (L Xh_y Hit, ey Gtk -+ + Yoy Gisk) -

We use (H;,G;) = (H;(o4t), Gi(ait)) as shorthand for the estimator of (h;,g;) when system i receives o; > 0
proportion of the total sampling budget ¢. For simplicity, we ignore that ¢ is not necessarily an integer. Let
the cumulant generating functions of H;(t), G;;(t), and (H;(t), Gi(t)) be Ag}(@) = logE[eeg"(t)L A(th,.(e) =
logE[eGGif(’)], and AEZ;.G,-)(O) = 10gE[e<97(Hf(t)’G"(’))>], respectively, where 8 € R, @ € R**!, and (-,-)
denotes the dot product. Let the effective domain of a function f(-) be denoted by D, = {x: f(x) < oo}
and its interior by D5. Let Vf(x) be the gradient of f with respect to x, and f'(x) the derivative of f with
respect to x.

Assumption 3 Let the following hold for each i <r and j <s:

(1) the limit Ay, 6,)(0) = tlim %Agzh), G) (10) exists as an extended real number for all @ € R**!, where
[l —So0 Ui

we denote A, (8) = lim 1AW (16) and A, (0) = lim LA (16) for all 6 € R;
—o0 i —oo i
(2)  the origin belongs to the interior of D A, G,)° that is, 0 € D}’\(H. 6’

3) A(H;’Gl.)(e) is strictly convex and C* on QS\(Hi-G;>

4) A6, (0) is steep, that is, for any sequence {6(7)} € Dy, , converging to a boundary point of
DA(H,__G'_), then tli_>r£10|VA(HhG[)(9(t))| = oo,

Under Assumption 3, the large deviations principle (LDP) holds for the estimators H(t), Gij(t),
and (H;(t),Gi(r)) with strictly convex rate functions J;(x) = supgep{0x — Ag,(0)}, Jij(y) = supger{0y —
Acy(6)}, and [(x,y) = supgege1 {(8, (.9) — A, (8)}, respectively. Let Y= (1., 1),

(x,3) € Ty, 6 = int{VA@,.G,(8) : 0 € DY},

and let F5 denote the closure of the convex hull of the set of points {(h;,¥) : (h;,¥) € RST'}.

Assumption 4 The closure of the convex hull of all points (/;,¥) € R*! is a subset of the intersection of

(¢}

the interiors of the effective domains of the rate functions /;(x,y) for all i < r, that is, F5 C D{ZIS"(H_ Gy’

3 CHARACTERIZATION OF THE OPTIMAL BUDGET ALLOCATION

Recall that our problem context is Problem P (see Section 2.1), and our solution context involves three steps:
sample from each of the designs to obtain objective function and constraint function estimators; estimate the
feasible set of systems by observing their constraint function estimators; and estimate the optimal system
from the estimated feasible set as that system having the smallest estimated objective function value. In this
section, we rigorously characterize the optimal allocation as the allocation that minimizes the probability
that the system returned as the “solution” at the end of some sampling effort ¢ is not the true best system.

We build upon the characterization of the optimal budget allocation for general distributions in the
presence of correlation between the objective and constraint estimators that was formally derived in Hunter
et al. (2012). Hunter et al. (2012) characterize the optimal allocation as the solution to a concave
maximization problem. We replicate the key results here, and then further characterize the solution to
the concave maximization problem in terms of its Karush-Kuhn-Tucker (KKT) conditions (Boyd and
Vandenberghe 2004). For brevity, results are presented without proof.

Recall that ¢ is the computing budget, o; € [0, 1] is the fraction of the simulation budget devoted to
system i, H; = (ot) ™! ):,‘fi  Hix, and G; = (ot)~! ZZZ | Gijk. From Hunter et al. (2012), the probability of
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selecting a system other than the best feasible system, system 1, is

P{FS} = P{[U}_,G1; > 7] Ui, (M52, Gy < ;) N (Hi < H) )]}
—————— —_————

~—
system 1 system i s‘ystem”l
estimated estimated beats
infeasible feasible system 1

and the rate function of the P{FS} is

1
_l]g?o ; logP{FS} = min <I’]l’l<11;1 (X]J]j(}/j),zl’giigrR,‘(al s (Xi>> , (1)
where o1J;(y;) is the rate function for the probability that system 1 is classified infeasible due to the
violation of the jth constraint, and R;(0, ;) = infy <y, y.<y (0011 (x1;) + 061;(x;,¥;)) is the rate function
for the probability that system i is estimated feasible and system i has a “better” estimated objective
function value that system 1. We use the double subscript on xj; to indicate that this variable is the variable
corresponding to system 1 in the ith problem R;(oy, ;).
We are interested in identifying the allocation ¢ that maximizes the rate of decay in (1). This problem
can be formally stated as

-
max min | minogJyi(y;), min R;(oq, o s.t. oa=1, o;>0.
<j§s 1 1](’)//)7 r<i<r z( 1y l)> Z i ) i —

i=1
We may equivalently write this problem as

Problem Q: max z ..

where for each i = 2,...,r, the values of R;(o, ;) are obtained by solving
Problem R; : min oy (x1;) + ali(xi,y;) st xi <xpyy, ;< Y.

As a matter of notation, we distinguish Problem R; as an optimization problem in (x;,x;,y;), and R;( @, o)
as the value of its objective function at optimality. By Hunter et al. (2012), Problem R; is a strictly convex
minimization problem with a unique optimal solution. Further, Problem Q is a concave maximization problem
to which the optimal solution exists, and the solution is strictly positive, that is, &¢* = (¢, 05, ..., @) >0
and hence all systems receive a nonzero fraction of the sampling budget at optimality.

From the analysis in Pujowidianto et al. (2012), under some regularity conditions, for large enough r,
the optimal allocation &* is obtained as the solution to the KKT system

Ri(e o) = Re(0tf, 0 ) for all i,k # 1, @)
" JR; (o, o) /0
= 8R,~(oc1,ocl. )/805,-

We derive an explicit expression for the summands in equation (3) in the following Lemma 1.

172



Pujowidianto, Hunter, Pasupathy, Lee, and Chen

Lemma 1 For a system i, the ith term in the summand of equation (3) is given by
8R,~(a1 s OCl')/a(Xl . 11 ()C]ki)

IR;(on, ;) /oy Li(x},y}) @

where (x;,x},y}) is the unique optimal solution to Problem R;.

Let Ay > 0 and A;; <0, j < s be the Lagrange multipliers associated with the constraints in Problem R;,
where A; = (A, Ait, ..., Ais). We also define the following sets which are functions of these Lagrange
multipliers and the optimal solution to Problem R;:

Gﬁ* ={j:24;<0and y}kj:}/j};

Cr = {j: Ay =0and y}; <y}

™ = {i: Ay >0,x}; = x and C} empty,i # 1};

8y ={i: Ay =0,x; <xi, and C¥ nonempty,i # 1};
8% ={i: Ay >0,x};=x and C¥ nonempty,i # 1}.

The sets C/* and € form a partitioning of the set of constraints {1,2,...,s} for each design i, and the
sets I'*,8;, and 8¢ form a partition of the design space {1,2,...,r}. For example, it is seen that when the
objective function and constraint estimators are mutually independent, the sets C;* and Cj are the sets of
constraints on which system i is infeasible and feasible, respectively. Likewise, under mutual independence,
the sets I'*,§;, and 8}, correspond to the set of truly feasible designs, the set of truly infeasible designs
that are better than system 1 in objective function value, and the set of truly infeasible designs that are
worse than system 1 in objective function value, respectively.

From equations (2) and (3), the terms of the simplified summand in equation (4) of Lemma 1 can be
further simplified to

Ri(ay, o) =Ri(o, o ) for all i,k # 1, 5)
L (x1;)
jerwusy 11 Yi)

=1. (6)

We note that the summand in equation (6) contains nonzero terms only for systems in I'* U8, since the
rate functions for systems in 8}, do not depend on the rate function corresponding to system 1, ;(-).

Since the rate functions involved in (5) and (6) are unknown and cumbersome to estimate, Problem Q
is usually impractical to solve in all generality. However as we demonstrate in the sections that follow,
the KKT conditions for Problem Q become remarkably easier to solve under certain conditions — most
notably when the number of systems r tends to infinity. This limiting approximation forms the basis of
our proposed solution to Problem Q.

4 A LIMITING APPROXIMATION TO THE OPTIMAL BUDGET ALLOCATION

With a view toward efficiently solving Problem Q, this section proposes a “closed-form” limiting approxi-
mation to the solution of the KKT system for Problem Q, obtained as a certain asymptotic limit. Specifically,
it is shown in Section 4.2 that under certain conditions, the fraction of the budget that should be devoted
to each of the suboptimal systems is inversely proportional to an easily-expressed penalty measure that
we call the score. In the following Section 4.1, we detail some important properties of the summands
appearing in the KKT system for Problem Q before we proceed to the main results.

4.1 Some Key Properties

First, we show through Lemma 2 that the summands appearing in the KKT system for Problem Q are
within a positive finite constant from each other.
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Lemma 2 There exists ¢ > 0 such that

I (xTi) < Il(ka)
L(xf,yi) = I(xg,y;)

for all i,k e " US;,.

Lemma 2 essentially states that neither 7y (x7;),i € [ U8, nor [;(x;,y; ) is zero, an assertion that is intuitively
clear upon noting that the sampling proportions o;* > 0 and the rate functions /; (-), /;(-, -) are strictly convex.

We now demonstrate two key assertions in the following Theorem 3. First, we state that at optimality,
each of the summands appearing in (6) of the KKT system for Problem Q tends to zero as the number of
systems in I U8} tends to infinity. The second assertion uses the first to demonstrate that, as the number of
systems in I U8, tends to infinity, the optimal budget fractions are such that the true best design receives
“far more” of the simulation budget than any of the suboptimal designs.

Theorem 3 As [ US| — o, the following hold.

I (x};
Ii(xivyi)
(i) o /o — 0 forall i e T*US,.

— 0 forall iecI™US;,.

Theorem 3, particularly through assertion (ii), conveys an important message. As the number of systems
in I U S}, tends to infinity, optimality dictates that the fraction of the budget given to the optimal design,
system 1, far exceed any of the fraction given to suboptimal designs in I'* U8, This result makes intuitive
sense if one thinks of each of the suboptimal systems as individually attempting to “beat the best design”
by inducing a false selection event. Optimality dictates that the best design receive far more sample than
these competitors in a bid to minimize the probability of occurrence of the most likely of the numerous
false selection events, made possible by the assumption [[* U8} | — co.

Consider the assumption that |[I™ US},| — oo in the context where the objective function and constraint
estimators for each system are mutually independent. In such a context, the assumption implies that the
collective cardinality of the set of truly feasible systems, I', and the set of truly infeasible systems that are
“worse” than the best design, 8,,, tends to infinity. In the more general context, the interpretation becomes
slightly more nuanced. A sufficient condition that guarantees that the assumption holds in the general
context is that the cardinality of the set of truly feasible systems I" tends to infinity. The conditions on
the supremum norm of the variances and means being bounded is to avoid pathological cases where the
number of designs tends to infinity, but the effect of the designs being added is diminishing in the sense
that they do not compete in any real way to increase the overall probability of false selection.

4.2 The Limiting Approximation and A Sequential Algorithm

We now have the machinery required to characterize the allocation given to the suboptimal systems as
|T* U8 | — co. Theorem 4 asserts that as [[* US| — o, the ratio of the rate R;(0f, ;") to the optimal
fraction o¢* for the ith system tends to the minimum value attained by the rate function ;(x;,y;) in the box
xi <hp,y; <7.

Theorem 4 As [["US} | — oo,

Ri(af,arf Ri(af
(o, 0) _ Riloy) _ inf  [(x;,y;) foralli=2,....r.

o o Xi<hiy <y

Theorem 4 combined with the fact that the KKT system for Problem Q in (5) dictates equating
Ri(af, o) = Re(af, o) for i,k € {2,3,...,r} provides a basis for budget allocation. Theorem 5 provides
an expression for this allocation among suboptimal systems through the scores S;,i =2,3,...,r for the
various systems.
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Theorem 5 As [["US! | — o, the allocation to non-best systems i = 2,...,r is determined by

inf I(x
o Sk e Shyyg<y i)
of S inf  L(xy;)
k i xighhyigyl( i, Yi)

where the score S; for (suboptimal) system i as

Si:= inf [i(x;,y;) foralli=2,...,r.
l xi<hpy;<Y l( 17)’,) T
Theorem 5 shows that when the number of systems is large, the allocation to the suboptimal systems
becomes inversely proportional to the score of each suboptimal system. This result is useful in practice,
as we demonstrate through Algorithm 1 — a sequential algorithm that uses the notion of the score.

Algorithm 1 A Sequential Algorithm
Require: Number of pilot samples &) > 0; number of samples between allocation vector updates o > 0;
and a minimum-sample vector € > 0.
1: Initialize: collect &y samples from each system i < r.
2: Initialize: total simulation effort n = rdy, effort for each system n; = .

3: Update the objective and constraint estimators (H;(n;), G;(n;)), the rate function estimator f ,(x;,y;),
and the score estimator Si,n for all i <r.

4: if no systems are estimated feasible then

5. Seté,=(1/r,1/r,...,1/r).

6: else

7. Update 1(n), the estimated system 1, and its allocation &; .

8  Set &, = (Liy ST x S x (1 a; ,) for all systems i > 2.

9: end if

10: Collect one sample at each system X,k = 1,2,...,0, where the X}’s are iid random variates with

probability mass function &, and support {1,2,...,r}. Update ny, = nx, + 1.
11: Set n=n+ 6 and update &, = {n;/n,nz/n,...,n./n}.
12: if &, > € then
13:  Set 8T =0.
14: else
15:  Collect one sample from each system in the set of systems receiving insufficient sample J,,.
16:  Update n; =n;+1 for all i € J,,. Let 61 =7,,|.
17: end if
18: Set n=n+ 36" and go to step 3.

The essence of Algorithm 1 is straightforward. The algorithm evolves in stages by collecting a fixed
number of simulation observations from systems chosen strategically at the beginning of each stage, updating
the relevant estimators, and then proceeding to the next stage to begin the process over again. Specifically,
at the beginning of each stage, § > 0 observations are obtained from systems chosen with probabilities in
accordance with the prevailing estimated optimal fractions &, = {¢&; ,,05 ,, ..., @, }, where n represents
the expended number of simulation calls. The observations are then used to update the estimated scores
S,-J, for systems i > 2, and the estimated best solution i(n). The iterative process continues by using the
updated scores to modify the estimated optimal fractions &, which will in turn be used as the system
choice probabilities in the subsequent stage.

While we have characterized the relative optimal allocations for the suboptimal systems i > 2 through
the scores, this says nothing about what fraction of the budget should be allocated to the best system.
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Theorem 3 is not of direct relevance in this context since only tells us that the fraction received by best
system should far exceed that of any of the other suboptimal systems in the limit. This question is under
investigation, and a heuristic based on the rate at which o /o tends to zero seems reasonable.

CONCLUDING REMARKS

The question of efficiently identifying the best among a finite set of competing systems in the presence of
“stochastic” objective and constraint functions seems to be an important SO variation about which little is
currently known. As we have shown, it is possible to pose this question as an optimization problem having
a certain measure of simulation efficiency as the objective function, and the fraction of the simulation
budget given to the various systems involved as the decision variables. Solving this optimization problem,
however, turns out to be difficult in general because of its bilevel nesting structure. This intractability,
in combination with an interest in solving large-scale problems, has inspired our investigation into the
existence of “near optimal” allocations that are easily identifiable.

Our analysis has revealed two interesting facts: (i) as the number of systems in contention grows, the
solution to the bilevel nested optimization problem becomes “closed-form” when expressed in terms of a
single measure, called the score, encompassing the infeasibility and suboptimality of each system; and (ii)
the score for each system is itself easy to estimate in many common scenarios. These two facts lead to
a sequential algorithm that seems to efficiently solve large-scale constrained SO problems on finite sets.
For example, preliminary numerical experiments in the multivariate normal context reveal that the outlined
algorithm reliably solves constrained SO problems with many thousands of systems within seconds on a
laptop computer (with 2.66 GHz Intel Core 2 Duo processor and 8GB of memory).
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