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ABSTRACT 

This approach combines in a semi-automatic way known simulation-based bottleneck detection methods. 
It considers the integration of these methods into the simulation, significantly influencing execution speed 
and acceptance of the industrial environment. Even if the majority of detection tasks are automatically 
driven some user interaction is needed to find the bottlenecks. The paper describes common bottleneck 
definitions; already published bottleneck detection methods; and deployment of the new approach. The 
approach consists of a two-step procedure, first analyzing the system, and then generating scenarios 
testing the system’s sensitivity against changes. Based on the scenarios, the bottleneck is derived. The 
applicability of the approach is discussed on a real-world paint shop system and items limiting system 
performance are identified.  

1 INTRODUCTION 

Bottlenecks are everywhere and become increasingly more important by playing a significant role in 
understanding the environment we live in. Understanding the environment provides opportunities to gain 
a competitive business advantage in improving market position. Understanding always relates to 
planning, and planning theory has been developing constantly since the 1980’s (Theory of Constraints, 
Lean Manufacturing, Six Sigma) (Burton-Houle 2001). They attempt to organize systems to provide 
maximum benefit for all participants. Since bottlenecks limit performance it is important to identify and 
eliminate these limitations to maximize utilization of existing equipment and reduce investment costs 
(Williams and Sadakane 1997). 

Manufacturing systems influence the overall design of a factory and hence a special focus must be 
placed on systems during planning. This is often done by simulation, which provides the possibility to 
evaluate systems prior to realization and investment of capital. Simulation also provides the possibility to 
use a dynamic model perspective and use random events to describe production processes more 
realistically (Law and Kelton 2000). In combination with bottleneck detection, simulation can help 
improve the overall manufacturing process and create a better work flow resulting in more throughput 
with less investment. During the last decades, research has been done to find bottlenecks in 
manufacturing systems by using simulation (Heinicke and Hickmann 2000, Roser, Nakano and Tanaka 
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2003, Sengupta, Kanchan and Van Til 2008). That research focused most on output-analysis and 
calculating coefficients which try to indicate the bottlenecks. Output-analysis was used to study systems 
in terms of coefficients like utilizations (Lima, Chwif and Barreto 2008). However, these coefficients are 
only indicators of potential bottlenecks without proving that the bottleneck is the true system constraint. 
This is one limitation of the existing approaches. Another limitation is current methods require manual 
user interaction and interpretation, and are unable to detect bottlenecks directly. These two limitations 
restrict the actual usage of bottleneck detection to experts. The new semi-automatic bottleneck detection 
approach is developed to overcome these restrictions. The basic idea of the new approach is an automatic 
integration of simulation in the bottleneck detection process, with a limited amount of user interaction. 
Moreover, the success and efficiency to detect bottlenecks using the new approach depends on the 
architecture of integrating it into simulation. This relates mainly to the used simulator. The presented 
approach considers this challenge by being generic and useable with any available commercial simulator. 
The duration of bottleneck detection depends on the needed simulation execution time.  

The presented example uses SLX (Simulation Language with eXtensibility) from Wolverine Software 
Corporation as the simulation engine. The approach combines different published bottleneck detection 
methods into one approach and tries to automate as many bottleneck detection related tasks as possible. 
The approach also proves if a detected bottleneck is really the system constraint.  

The remainder of this paper is structured as follows: Section 2 focuses on defining the term 
bottleneck and shows reasons for bottlenecks within manufacturing systems. Section 3 shows the existing 
research on simulation-based bottleneck detections methods. Section 4 describes the new presented 
bottleneck detection approach and Section 5 provides an example for using the approach. 

2 REASONS FOR BOTTLENECKS 

(Lima, Chwif and Barreto 2008) define a bottleneck, also called constraint, as the root of system’s 
performance problem. Moreover, the term performance means how agile a system works considering its 
goals. As for manufacturing systems, the goal of a factory is to make money and consequently produce 
products to sell at a profit (Goldratt and Cox 2010). Hence performance can be measured in money from 
sold products or in throughput per time period.  

The term bottleneck is defined in two different ways. The first way takes into account the potential 
performance increase a bottleneck can provide when it gets solved (Li et al. 2007). Bottlenecks are those 
system`s items which increases performance when the item’s negative impact is reduced or eliminated. 
The second way focuses on the limitations a bottleneck creates for the system (Roser, Nakano and Tanaka 
2003). Hence a bottleneck is a production stage that has the largest effect on slowing down or stopping 
the entire system. 

In addition to these definitions, a variety of other definitions exist. Roser, Nakano and Tanaka 
distinguish within production networks between primary, secondary and non-bottlenecks. A primary 
bottleneck has the largest effect on the system. Secondary bottlenecks limit the system`s performance as 
well, but to a fewer extent. Non-bottlenecks do not have any influence on system’s performance (Roser, 
Nakano and Tanaka 2001). 

Also defined are static and dynamic bottlenecks, considering the time when they occur. Dynamic 
bottlenecks change over time, influencing a system during a specific time frame, while static bottlenecks 
are influencing the system all the time (Lima, Chwif and Barreto 2008). 

Related to this definition a momentary and average bottleneck can be differentiated. Bottlenecks at a 
specific time are called momentary, but average bottlenecks relate to all momentary bottlenecks and 
consider the most significant one as the primary factor of system`s limitation (Roser, Nakano and Tanaka 
2002). 

Taking the definitions into account a queuing system can be studied with regard to two main 
coefficients. First the arrival rate λ, which describes how many products arrive at the system during a time 
frame. Second the service rate μ, which describes how many products can be processed by the system 
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during a time frame. As soon as the arrival rate becomes greater than the service rate, inventory gets 
created in front of the system, and the system is unable to keep pace. Hence a bottleneck exists. 

However, there are also situations in which the arrival rate is only occasionally higher. This can be 
due to variation along the process (Sengupta, Kanchan and Van Til 2008). Variation can be defined as the 
quality of non-uniformity of items. For example, products which do not have exactly the same weight, or 
processes which vary in terms of time (Hopp and Spearman 2008). In some cases, both the arrival and the 
service rate can vary over time, impacting the dynamic system capacity. Capacity means the maximum 
throughput of an item e.g. machine (Hopp and Spearman 2008). Figure 1 shows an example for such a 
situation. This figure shows that the capacity of the three different machines varies and hence the 
bottleneck shifts along the process and with time. Here a process is a sequence of tasks which must be 
done on products at different machines. In Figure 1, the numbered rectangles show the bottlenecks at 
different times. At the very beginning machine 2 is the bottleneck, but later machine 1 becomes the 
constraint. However, machine 1 is limiting the system for the longest uninterrupted time (see bottleneck 4 
in Figure 1). Since the capacities change, no clear bottleneck can be identified. 

Based on these interferences and stochastic events, bottleneck detection is challenging. As a result, 
static analysis is unable to detect bottlenecks and hence simulation must be used to identify the most 
significant bottlenecks. 
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Figure 1: Dynamic Bottleneck Behavior 

3 EXISTING SIMULATION-BASED BOTTLENECK DETECTION METHODS 

3.1 Overview 

Analytical bottleneck detection methods model systems in a deterministic and often static way. This level 
of detail is suitable for long-term bottleneck prediction, but can be inadequate in the short term when a 
higher level of detail is needed (Leporis and Králová 2012). Improving complex and dynamic 
manufacturing processes by bottleneck detection requires a high level of detail (down to the technicians 
and machines) to predict the bottleneck in an accurate way. This enhanced level of detail can be provided 
by simulation. Moreover, most simulators can generate standard information about system’s performance 
also related to bottleneck detection, such as utilization, break downs and waiting times (Leporis and 
Králová 2012). 

The existing simulation-based bottleneck detection methods can be grouped into three categories: 1. 
static-calculation methods, 2. coefficient-based methods, and 3. scenario-based methods. The first 
category analyzes simulation input data to identify the bottleneck, the second category analyzes 
simulation output data based on coefficients, and the third category performs simulation scenarios to 
evaluate the sensitivity of different model items. A scenario is defined as a modification to an existing 
initial simulation model. 

3.2 Static-Calculation Method 

One simple way to detect bottlenecks is static and deterministic calculations by using input data provided 
for simulation. This is a form of input-data analysis and offers an overview about the overall system 
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configuration (Law and Kelton 2000). Also, such calculations are often used for validation and 
verification purposes (Wenzel et al. 2007). Based on these calculations, critical system items can be 
predicted. 

Given the known demand a manufacturing system must meet during a time period (e.g., 1000 
produced items during 10 weeks) the system’s takt time can be calculated. By further simplifying 
system’s items into single servers, the system process time can be calculated and compared to takt. If the 
takt time is greater than the process time, the item is not the bottleneck. However, if the process time 
exceeds the takt time, an item is unable to keep pace with the takt and limits the overall system. Such 
simple calculations can identify possible bottlenecks. If no item has a process time greater than the takt 
time, process times approaching the takt time can be identified as critical based on system’s variation. 

3.3 Coefficient-Based Method 

Unlike static calculations, coefficient-based simulation bottleneck detection is based on simulation output 
data. Simulation calculates coefficients to evaluate manufacturing system’s performance. Different 
coefficients have been utilized in the past. 

3.3.1 Utilization-Method 

One of the most common coefficients to find bottlenecks is the utilization of items, such as machines and 
technicians. This method measures the percentage of time a machine is active (Roser, Nakano and 
Tanaka 2003) to detect bottlenecks. The item with the highest percentage in the overall system is assumed 
to be the limiting factor in the system (Lima, Chwif and Barreto 2008). The utilization-method needs to 
identify the time when an item’s state changes (Faget, Eriksson and Herrmann 2005): (1) Inactive state, 
when an item is waiting for new tasks or it is blocked due to downstream blockage; (2) Active state, when 
an item is performing a function. Moreover (Faget, Eriksson and Herrmann 2005) highlighted in detail 
that the machine with the longest average active period is considered to be the bottleneck, as this machine 
is least likely to be interrupted by other machines, and in turn is most likely to dictate the overall system 
throughput. 

3.3.2 Waiting-Time-Method 

Another method considers the cumulative time products must wait for the availability of a specific item 
(e.g., a machine). The item, which has the highest cumulative waiting time of all items in the 
manufacturing system, is assumed to be the overall system constraint (Roser, Nakano and Tanaka 2003, 
Lima, Chwif and Barreto 2008). When using this method two assumptions must be made (Roser, Nakano 
and Tanaka 2003). First, this coefficient is only valid for linear-connected items, without multiple product 
types, since multiple product types can lead to occasions where a machine with a few parts being 
processed slowly constrain the system more than a machine with a lot of parts being processed quickly 
(Roser, Nakano and Tanaka 2003). Second, this method only works when the queues ahead of the items 
have an infinite capacity; otherwise, one item could lead to a blockade of another item upstream, when its 
queue is full (Roser, Nakano and Tanaka 2003). 

3.3.3 Inter-Departure-Time-Method 

The inter-departure-time-method is similar to utilization-method, however, it analyzes inter-departure 
data. The method defines four different states of an item to find the bottleneck (e.g., a machine) 
(Sengupta, Kanchan and Van Til 2008): 1. Cycle (item is performing), 2. Blocked-Down (finished 
product cannot leave item), 3. Blocked-Up (item is waiting for products), 4. Fail (item is broken). 

The method identifies the bottleneck as an item which is least affected by other items in the system. 
When analyzing the different states it is obvious that a fast item fed by a slow item is often in blocked-up 
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state. This is also true when a fast item feeds a slow item; in this case the item is often in the blocked-
down state. Hence (Sengupta, Kanchan and Van Til 2008) suggested calling an item a bottleneck when it 
has the minimum combined percentage of time being in the blocked-up and blocked-down state. In this 
case, the item is not frequently influenced by other items, but it most likely influences other items. 

3.3.4 Shifting-Bottleneck-Method 

Also well-known is the shifting-bottleneck-method for bottleneck detection (Roser, Nakano and Tanaka 
2002, Sengupta, Kanchan and Van Til 2008, Lima, Chwif and Barreto 2008). As a first step, system items 
must be grouped into two different states as in the utilization-method. Two different types of bottlenecks 
are found here (Roser, Nakano and Tanaka 2001):  

� Momentary bottleneck: The item with the longest uninterrupted active period at the specific time. 
Furthermore (Roser, Nakano and Tanaka 2002) explained that the overlap of the active period of 
a bottleneck with the previous or subsequent bottleneck represents the shifting of the bottleneck 
from one machine to another machine. Hence, the longer the uninterrupted time of an item, the 
more likely it is that the specific item constraints and influences other items.  

� Average bottleneck (Roser, Nakano and Tanaka 2002): The sum of sole-bottleneck and shifting-
bottleneck time is calculated to identify the bottleneck. The item with the highest sum is assumed 
to be the constraint. 

3.4 Scenario-Based Method 

Scenario-based bottleneck detection methods use simulation’s capability to answer What-If questions and 
test different model scenarios (Pawlewsik and Fertsch 2010). The concept can be defined as follows: The 
item with largest sensitivity of system’s performance index to this item’s production rate in isolation is 
defined as the bottleneck item (Sengupta, Kanchan and Van Til 2008). So this method changes the 
simulation model to find the bottleneck. According to (Li et al. 2007) the first step of this method is to 
identify critical model items, which can influence and constrain the overall performance. Items in this 
case can be, for example, the number of technicians or the number of machines. 

Next, different sets of scenarios, for each critical item, are defined where the capacity of the different 
model items is changed. For example the number of technicians on a specific machine could be increased. 
After the definition, the different scenarios are simulated and the resulting performances are compared. 
The scenario which provides the biggest increase in performance is selected and the underlying change is 
called the bottleneck.  

When using this method it must be considered whether a bottleneck can be found depends exclusively 
on the pre-defined scenarios. It is important to find all possible model items which can constrain the 
system. Another consideration is that the scenarios can only be compared if the changes in the scenarios 
are comparable. For instance, if scenario A increases the number of technicians by one unit and scenario 
B increases the number of machines by one hundred units, it is likely that B raises production more than 
A, but that does not mean that the number of machines is the bottleneck. This is because the increases are 
not comparable. Besides that it must be also considered how many model items are changed in one 
scenario, which relates to design of scenarios and sensitivity analysis. More information on that can be 
found in (Law and Kelton 2000). 

4 SEMI-AUTOMATIC SIMULATION-BASED BOTTLENECK DETECTION APPROACH 

An overview of the approach can be found in Figure 3. It is a cyclic approach and in each cycle two 
sequential phases are performed. The first phase is called analysis-phase and provides an overview about 
the system’s behavior. The second phase is called detection-phase and identifies possible bottlenecks 
based on performed scenarios.  
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4.1 Analysis Phase and Detection Phase 

The analysis-phase starts with simulating the initial model. Different coefficients, similar to the ones 
presented in Section 3.3, are calculated based on simulation outputs.  

Next the detection-phase automatically generates the scenarios based on different coefficients. For 
example, if the utilization coefficient of an item (e.g., a machine) is greater than a pre-defined value, the 
detection-phase will generate a scenario in which the item’s capacity is increased. Equation 1 shows how, 
for each and every machine, the utilization is calculated and compared to a pre-defined value. If the 
utilization is greater than or equal to the pre-defined value, a scenario is generated. That means for each 
and every critical item, which could be a bottleneck (i.e., any machine or technician), a set of different 
scenarios is built. As soon as all scenarios are generated, the scenarios are simulated and their 
performances compared. The scenario which provides the highest performance increase is chosen and its 
underlying change is declared as bottleneck (as shown in Equation 1 for machine utilization). In addition 
to that, the user has also the possibility to build scenarios on his/her own (semi-automatic approach). 
Then the underlying change is used to modify the initial simulation model and the approach starts again 
with the analysis-phase. The approach ends as soon as no scenario can create an additional performance 
increase. In this case, the bottleneck is out of the scope of the defined scenarios. 

   (1) 

4.2 Balancing Algorithm 

The balancing algorithm applies only if all the scenarios are comparable, as explained in Section 3.4. This 
algorithm tries to find the maximum possible performance increase a specific scenario can generate. For 
example, if one scenario considers a specific machine, the algorithm tries to find the machine’s capacity 
which provides the maximum system performance increase. In this example, the algorithm changes the 
machine’s capacity multiple times (consequently multiple simulations are executed) until it finds the 
“best” capacity. Hence a scenario is more than just one modification to the initial model, but what change 
to its item provides maximum performance increase is identified. This is done for all scenarios comparing 
the different performances. In this case, scenarios’ performances represent the potential of scenarios’ 
underlying change to improve the system. 

Use of the balancing algorithm is shown in Figure 4. The algorithm assumes that the maximum 
system performance, provided a specific scenario item, can be found by increasing item’s capacity (e.g., 
machine capacity) multiple times and analyzing when an increase of the capacity does not lead to an 
increase to system’s performance anymore. In this case it is assumed that the maximum system 
performance of the scenario is found. However, the number of changes is limited to avoid long algorithm 
execution times. 
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Figure 3: Bottleneck Detection Approach 

Three different pieces of information are passed to the balancing algorithm: 1. The item which shall 
be changed. 2. The number of changes done to the item. 3. The increase to item in each change. 

When all information is provided the algorithm works as shown in Figure 4. For each iteration, the 
algorithm changes the item’s capacity by the provided increase. The scenario is simulated and the 
performance of the scenario in the specific change is saved. Once all changes are executed, the algorithm 
returns the maximum possible performance increase by this scenario. 

The performance of a simple balancing algorithm depends on the increase value used as well as 
number of changes. More sophisticated balancing algorithms could be used to increase the overall 
efficiency of the approach. Moreover, it is assumed that the bottleneck can be found by dealing with one 
change and ignoring multiple changes to different model items in one scenario.  

As described, the analysis and detection-phase are performed automatically, referring to calculating 
system coefficients and also building and executing scenarios. Nonetheless, manual preparations are 
needed to configure the approach for a specific field of application (e.g., painting, machining or 
assembling). The preparation must be done once per field and can be reused in a generic way. The 
following manual steps must be performed:  

� Find System Target: The overall target of the analysis must be defined and a main coefficient of 
the system performance must be found (e.g., throughput of parts). 

� Find possible Bottlenecks: Analyze what system items could generate bottlenecks, such as any 
machine or technician. 

� Find representative Coefficients: Based on the possible bottlenecks, coefficients must be found to 
detect such bottlenecks (e.g., high machine utilizations). 

� Define generic Scenarios: Map discovered coefficients and possible bottlenecks and generate 
model changes to build a scenario. Generic means general scenarios must be defined 
hypothetically, for example a machine or a technician in the system could be the bottleneck, and 
the performance could improve if the number of items is increased. During the execution of the 
approach the generic scenarios become more specific, for example machine 1 or technician 3 
could be the bottleneck and their capacity gets extended. The mapping of possible bottlenecks 
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and coefficients also relates to defining bounds for the coefficients. The bounds indicate whether 
a scenario shall be generated (e.g. when machine’s utilization is greater than a defined bound). 

� Balance Scenarios: Make sure that changes of the scenarios are comparable to each other with 
regard to the system target. This is done by the explained balancing algorithm. However, such an 
algorithm must be defined for each and every possible scenario. 
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Figure 4: Balancing Algorithm 

The presented approach combines multiple aspects. In reference to the bottleneck definitions it 
considers both ways of defining a bottleneck: The first way, which considers the additional performance a 
bottleneck can provide (see Section 2), is used within the scenario concept. The second way, which 
focuses on the limitations a bottleneck causes to the system (see Section 2), is taken into account by 
calculating the different coefficients.  

Finally, the approach also combines the different categories of simulation-based bottleneck detection 
methods. The coefficient-based analysis is combined with the scenario-method. As a result, the approach 
attains a higher performance compared to just performing scenarios, without deep system knowledge. It 
also proves if a possible bottleneck really constrains the system, unlike the coefficient-based methods. 

The new approach is simulator-independent. However, the simulation system used must have specific 
capabilities. First, the simulator must be able to generate the needed output coefficients. Most simulators 
provide simple coefficient outputs by default. However, coefficients like “longest active machine at a 
time” used in the shifting-bottleneck-method could be more challenging. Second, the simulator must be 
able to handle multiple scenarios and change the model automatically; otherwise scenario-usage is not 
possible. Third, the simulation speed is significant, since all scenarios are simulated with regard to 
confidence intervals. Hence, each change in one scenario must be simulated in multiple runs. 

The architecture for the implementation is shown in Figure 2. An external bottleneck detection GUI is 
used to coordinate all needed approach-steps and informs the user about bottleneck detections. The GUI 
starts approach’s analysis-phase by launching the simulation and also retrieving the coefficients. Based on 
the coefficients the GUI builds scenarios and starts the simulation again. In this case the detection-phase 
is started and the balancing algorithm within the simulation finds for each scenario its maximum 
performance. Upon completion of the scenario tests, the GUI retrieves the scenarios’ performances and 
compares those to identify the bottleneck. 
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5 APPLICATION EXAMPLE 

The bottleneck detection approach is demonstrated using a paint shop application. A paint shop can be 
modeled as a conveyor system, which moves different part types on different carrier types through the 
system. More information about the methodical procedure for describing such systems with simulation is 
provided by (Williams and Sadakane 1997). The generic simulation model consists of a flow graph with 
directional links and nodes. Major inputs are: conveyor network (length, capacity, routing logic, etc.), 
carrier types and number of carriers per type, system operating times (number of shifts, breaks, etc.), 
number of technicians and their assignments (flexing patterns, effective minutes per shift, etc.) and 
work/equipment times. The simulation generates detailed statistics on throughput per part type, technician 
utilization and queue lengths. The model takes into account randomness of work times and part arrivals 
(sequence and inter-arrival times). 
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Figure 5: Results for Analysis-Phase 

Nodes in the network are referred to as “stops” and links as “paths”. A conveyor consists of a number 
of paths and moves carriers at a specific speed. At any stop a station can be located where different tasks 
(e.g., loading or unloading parts on carriers) or specific value-added processes (e.g., heating parts) can be 
executed. The tasks are executed by technicians. Carriers move along paths, where equipment (e.g., ovens 
or washers) might be located. 

As mentioned in Section 4, manual preparation is needed to use the approach. The following 
preparation steps are performed to use the approach in the field of paint shops. As soon as these steps are 
performed they can be reused on any paint shop type. 

� Find System Target: The performance of the simulation model is measured in throughput: 
unloaded carriers during a week. 

� Find possible Bottlenecks: Manual system analysis provides the following possible bottlenecks: 
(1) The number of carriers in the system is too few, (2) The capacity of a station in terms of 
number of technicians is too small, (3) Length of a path between two different stations is too 
small to support the necessary system flow rate, (4) The conveyor speed is too slow. 

� Find representative Coefficients: The following coefficients can be used to predict if any of the 
four bottleneck types exist: (1) The number of carriers in the system is increased to determine if a 
carrier shortage exist, (2) High technician utilization indicates that more technicians may be 
needed, (3) High path utilization indicates either the path length/capacity is too small, or the 
following paths are a constraint, (4) The slowest conveyor speed in the system is a potential 
bottleneck. In addition, also (5) the waiting time (see Section 3.3.2) of a path indicates a too small 
queue between two stations. 

� Define generic Scenarios: Possible station bottlenecks are tested if an increase in capacity leads to 
more performance. Possible path bottlenecks are tested if an increase of length generates more 
performance. Conveyor speeds are analyzed if an increase leads to a higher performance, and 
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similarly, if an increase of the number of carriers leads to more performance. The scenarios are 
generated if either path or technician utilization is higher than a pre-defined value. The number of 
carriers and the conveyor with the slowest speed is always considered. Similarly, the station with 
the highest joining time creates another potential scenario. 

� Balance Scenarios: The scenarios are balanced by the algorithm shown in Figure 4. For the four 
different scenarios the specific changeable item is used as one input (e.g., a specific path). 
Moreover the increase of a specific item is set to its smallest possible increase (such as increasing 
carriers by one unit). Station capacity can be increased by decreasing its work times in 
decrements of 10%, similarly the speed of the slowest conveyor is increased by 10%. The number 
of changes is set to 10 changes for each scenario. 
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Figure 6: Results for Detection-Phase 

The example system consists of a closed loop where different value-added tasks are executed, such as 
loading and unloading of carriers, pretreatment, and paint processes. 

The following results refer to the first cycle through the analysis- and detection-phase of the 
approach. As explained, the approach executes multiple cycles, but for demonstration purposes just the 
first one is shown here.  

When executing the bottleneck detection approach, the analysis-step presents the following results 
about the defined system coefficients, without changing the system (see Figure 5). The figure shows on 
its X-Axis the different paths defined in the model. On the left Y-Axis, the utilization is shown and on the 
right Y-Axis, the cumulative waiting time of carriers at stations. Three different coefficients are 
presented: the path utilization; the utilization of the technicians working on the stations; and the waiting 
time at a station (other coefficients mentioned above are not shown due to clarity reasons). Path005 is 
identified as a path which has the highest values for all three coefficients. Based on these results it could 
be guessed that Path005 is the overall bottleneck. However, there is no specific proof for it. That is the 
reason why different scenarios are created to test multiple system items, as explained in Section 4. The 
results of the detection-phase and its scenarios can be found in Figure 6, now with a changed system. The 
figure shows on its X-Axis the different scenarios and its Y-Axis the reached throughput (e.g., the first 
scenario increased the station’s capacity). It is visible that the change to Path005 led to a significant 
throughput increase (it has the highest sensitivity to the throughput compared to the other scenarios) and it 
is possibly the strongest bottleneck inside the system. From a system point of view this result is 
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interesting, since at the end of Path005 is the loading station for carriers located. By increasing the 
capacity of this station the model is able to increase throughput. Based on this information the factory is 
able to increase its throughput by expanding station’s capacity. The approach tells how to generate more 
throughput and focus on the most critical system items.  

6 CONCLUSIONS AND FUTURE WORK 

The paper presents a semi-automatic simulation-based bottleneck detection approach which integrates 
previously defined bottleneck detection methods into one approach. Unlike existing methods, this 
approach is able to identify and prove bottlenecks based on the simulation model and ensures a higher 
data validity. This enables factories to plan and expand their systems in a more precise way. In addition 
the presented approach can be used in other flow-driven systems, due to its generic design, considering 
coefficients and scenarios. 

However, this approach has some limitations. The first limitation assumes that iterative changes are 
possible and the changes tested in the scenarios are physically possible in the actual system. Additional 
research is needed to assure reality. Moreover, the scenarios are based on just one model item, but 
bottlenecks can refer to multiple combinations of interrelated items. Future research is needed to further 
develop this consideration. Finally, this approach will be expanded to other manufacturing systems, such 
as machining or assembly lines. 
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