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ABSTRACT 

This paper proposes a new hybrid algorithm for solving the Arc Routing Problem with Stochastic De-
mands (ARPSD). Our approach combines Monte Carlo simulation (MCS) with the RandSHARP algo-
rithm, which is designed for solving the Capacitated Arc Routing Problem (CARP) with deterministic 
demands.  The RandSHARP algorithm makes use of a CARP-adapted version of the Clarke and Wright 
Savings heuristic, which was originally designed for the Vehicle Routing Problem. The RandSHARP al-
gorithm also integrates a biased-randomized process, which allows it to obtain competitive results for the 
CARP in low computational times. The RandSHARP algorithm is then combined with MCS to solve the 
ARPSD. Some numerical experiments contribute to illustrate the potential benefits of our approach. 

1 INTRODUCTION 

The Capacitated Arc Routing Problem (CARP) is a well known NP-hard optimization problem which was 
first introduced by Golden and Wong (1981). It can be informally described as follows. Consider: (a) an 
incomplete graph or network; (b) a set of customers located on some of the edges of the network with a 
demand to be satisfied; (c) a cost matrix representing the costs (or distances) of traversing each edge; and 
(d) a homogeneous fleet of vehicles with limited capacity. Then, the goal is to find a set of routes which 
minimizes total routing costs while satisfying all customers’ demands. Notice that the Arc Routing Prob-
lem with Stochastic Demands (ARPSD) is a generalization of the CARP where customers’ demands are 
not deterministic in nature but stochastic, i.e. each demand can be modeled as a random variable. Consid-
ering stochastic demands over deterministic ones is a more realistic but also difficult scenario. Unfortu-
nately, most of the existing literature focuses on the deterministic case. Therefore, the main goal of our 
approach is to contribute to fill the lack of scientific works on the stochastic case by proposing a hybrid 
algorithm which takes advantage of both heuristics and simulation techniques. 

Thus, the main difference between the CARP and ARPSD is that in the former, the customer’s de-
mands are know beforehand while in the latter, they have a stochastic nature, which means that only its 
probabilistic distribution and expected values are known beforehand, but its exact values are not revealed 
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until the vehicle reaches the customer’s edge. This random behavior of the customer’s demands could 
cause an expected feasible solution to become an unfeasible one if the final demand of any route exceeds 
the actual vehicle capacity. This situation is referred to as “route failure”, and when it occurs corrective 
actions must be introduced to obtain new feasible solutions. 

The CARP has application in real life problems such as refuse collection, snow removal, inspection of 
distributed systems or routing of street sweepers. These applications have an stochastic behavior which 
makes the ARPSD more suitable to model them. 

The remaining of this paper is structured as follows. First of all, in Section 2 a literature review on the 
ARPSD is presented, including some of the most remarkable results on the area. Next, in Section 3, the 
ARPSD is briefly described. Section 4 describes the approach we propose for solving the ARPSD. Sec-
tion 5 presents some numerical results which are discussed in Section 6. Finally, Section 7, summarizes 
the main conclusions of this work. 

2 LITERATURE REVIEW 

The existing literature for the ARPSD is not very extensive. As far as we know, the ARPSD was first 
considered in Fleury et al. (2002) and further extended in Fleury et al. (2005). In these works, the ARPSD 
was not approached directly. Instead, the scope was to evaluate the robustness of solutions for the CARP 
if the demands were in fact stochastic, and how this robustness could be improved. In particular, the work 
of Fleury et al. (2005) contains an application of the Hybrid Genetic heuristic, originally proposed by 
Lacomme et al. (2001) for the CARP. Different solutions were obtained by varying the vehicle capacity in 
each run of the heuristic. The solutions obtained were then evaluated by means of simulation studies. The 
ARPSD with Normal distributed demands was first approached directly by Fleury et al. (2004). The au-
thors propose a Memetic Algorithm, which is an extension of the algorithm suggested by Lacomme et al. 
(2004). For each edge, the Normal distribution describing the demand was truncated to avoid negative 
demands and demands that exceeded the vehicle capacity. The problem was further restricted by only al-
lowing a single failure per route. If a route failure occurred, the serving vehicle would always be immedi-
ately returned to the depot prior to serve the next edge.  

The first exact algorithm for the ARPSD, and the only one we are aware of, was proposed by Christi-
ansen et al. (2009). Their work is further motivated by a previous work for solving the Vehicle Routing 
Problem with Stochastic Demands (VRPSD) presented in Christiansen et al. (2007). In particular, they 
formulate the ARPSD as a Set Partitioning Problem and develop a Branch-and-Price algorithm in which 
the pricing incorporates demands’ stochastic nature. Laporte et al. (2010) have recently developed a local 
search approach for the stochastic version of the undirected CARP in the context of garbage collection. In 
their paper, the problem was cast within the framework of a stochastic program with recourse. A first-
stage solution is constructed by means of a developed Adaptative Large Neighborhood Search Heuristic 
(ALNS), which considers the expected cost of recourse. Closed form expressions were derived for the ex-
pected cost of recourse by extending the concept of route failure commonly used in the VRPSD. Their 
computational results show that ALNS solutions were better than those obtained by first optimally solv-
ing a deterministic CARP and then computing the expected cost of recourse actions using random varia-
bles for the demands. 

Finally, other works related to the ARPSD which are worth to be mentioned are found in Chen et al. 
(2009) and Ismail et al. (2011). In the former, the authors address an realistic ARP based on a small-
package delivery real-world application. In this problem, uncertainty as whether a street segment requires 
service on a particular day is considered and incorporated to a proposed model called Probabilistic Arc 
Routing Problem (PARP). To solve the PARP, they use a solution procedure which incorporates the street 
segments presence probabilities into an adapted local search. The local search they use was primarily de-
signed by Bertsimas et al. (1993) for solving the Probabilistic Traveling Salesman Problem (PTSP) Jaillet 
(1988). Regarding the work of Ismail et al. (2011), these authors consider a real-life condition of the 
CARP in waste collection operations. In particular, they study how rain can affect the total collected 
waste weight. Two CARP models were suited for the case study, each one considering stochastic de-
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mands and time windows. The authors developed a constructive heuristic, the so-called Nearest Procedure 
Based on Highest Demand/Cost (NPHDC), which works in conjunction with switching rules to search for 
the best feasible solution. 

3 THE ARC ROUTING PROBLEM WITH STOCHASTIC DEMANDS 

The Stochastic (or Probabilistic) Arc Routing Problem (SCARP or PCARP) is a family of arc routing 
problems characterized by the random nature of at least one of their parameters or structural variables. 
This uncertainty is usually modeled by means of suitable random variables which, in most cases, are as-
sumed to be independent. The ARPSD is a case of this family where the random parameter is the demand 
of the customers which is modeled by a random variable. Thus, the ARPSD is a combinatorial optimiza-
tion problem that can be defined as follows. Let G = (V, E, C, Q) be a connected undirected graph which 
is incomplete, where: 

1. V is a set of nodes, including the one representing the depot or distribution center. 
2. E is a set of edges or arcs connecting some of the nodes of V. 
3. C is a cost matrix representing the positive costs related to the movement from one node to an-

other. These costs are usually based on the distances or lengths of the edges which are traversed 
on the movement from one node to another. 

4. Q is a vector of demands representing the non-negative random demand associated with each 
edge. Every one of these demands Qi  is considered to be a random variable with known mean 
E[Qi]=qi  and probabilistic distribution. 

 In addition, there is a fleet of identical vehicles, each of them with a maximum capacity W >> { 
E[Qi] / Qi in Q }. Under these circumstances, the usual goal is to find a set of feasible vehicle routes that 
minimizes the total delivering costs while satisfying the following constraints: 

1. Each route starts and ends at the depot node, so every route is a roundtrip. 
2. All edges demands are satisfied. 
3. Each edge with positive demand is served by exactly one vehicle. Notice, however, that every 

edge can be traversed as many times as required by the same or different vehicle. 
4. The total demand to be served by any route cannot exceed the vehicle capacity W. 

 
Note that, as all the arc demand must be served by the same vehicle, the problem model is valid both for 
the case that the demand is distributed all over the arc and for the case that demand is located in a single 
point of the demand. 

4 OVERVIEW OF OUR APPROACH 

Our methodology is based on two main ideas: (a) the ARPSD can be seen as a generalization of the 
CARP, i.e. the CARP can be considered a special case of the ARPSD where the random demands have 
zero variance; and (b) while the ARPSD is yet an emerging research area, efficient metaheuristics do al-
ready exist for solving the CARP –in fact, state-of-the-art metaheuristics based on the use of Genetic Al-
gorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization or hybrid GRASP are able to 
provide near-optimal solutions for most known CARP benchmarks. 

Accordingly, the key idea behind our approach is to transform the ARPSD instance into a new prob-
lem which consists of solving several “conservative” CARP instances, each characterized by a specific 
risk (probability) of suffering route failures. The term conservative refers to the fact that only a certain 
percentage of the vehicle total capacity is considered during the routing design phase. The remainder ca-
pacity will be free in this phase in order to have it available in case actual demands included in the route 
served by the vehicle are greater than expected. With that we are protecting somehow from route failures. 
This empty vehicle capacity can be considered as a safety stock since it reflects the level of extra stock 
that is maintained to buffer against possible route failures. 
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This idea is adapted from Juan et al. (2011), where the VRPSD is presented as a generalization of 

the CVRP. In that paper, a Biased Randomized version of the Clarke and Wright Savings (CWS) heuristic 
as the algorithm to solve the conservative CVRP instances. In the current paper, we will use the Random-
ized Savings Heuristic for the Arc Routing Problem (RandSHARP), proposed in Gonzalez et al. (2012). 
The RandSHARP algorithm is a Biased Randomization of the SHARP heuristic, being the SHARP an 
adaption of the CWS heuristic to solve the CARP. The methodology defined to solve the ARPSD in the 
described way, consists on the following steps (see Fig. 1): 

1. Consider an ARPSD instance defined by a set of n customers. Each customer has associated a 
stochastic demand characterized by its mean and probabilistic distribution. For simplicity, assume 
that all the customers have the same probabilistic distribution despite everyone have its own 
mean. 

2. Considering the maximum vehicle capacity, W, set a value for k, the percentage of the vehicle ca-
pacity that can be used in the route design phase. Compute W* = k W.  

3. Consider a CARP problem named CARP(k), consisting of the CARP version of the ARPSD 
where the customer’s demands are represented by their means and the vehicle have the capacity 
restricted to W*. 

4. Solve the CARP(k) problem with the RandSHARP algorithm. This solution will be an aprioristic 
solution for the original ARPSD. Furthermore, it will be a feasible solution as long as there are 
not any route failures. This means that the additional demand that might be originated during the 
execution phase in each route does not exceed the vehicle reserve capacity. 

5. Using the previous solution with m routes, estimate the expected cost due to possible failures on 
any route. This is done using Monte Carlo simulation. To this end, random demands are generat-
ed and whenever a route failure occurs a corrective policy is applied registering the associated 
cost of this action. Every time a route fails, the cost of a round-trip from the depot to the failing 
customer’s edge is computed as cost of corrective action. After iterating this process some thou-
sands of times, a random sample of observations regarding these variable costs are obtained and 
an estimate for its expected value can be calculated. Then, the expected total costs due to possible 
route failures can be computed by the addition of these variable costs and the costs of the deter-
ministic solution obtained in the design phase. 

6. Using the aprioristic solution with m routes, obtain an estimate for the reliability of each route. In 
such context, the reliability index is defined as the probability that a route will not suffer a route 
failure. This reliability index is computed by direct Monte Carlo simulation using the probabilis-
tic distribution that model customer demands in each route. Remark that in each route, over-
estimated demands could sometimes be compensated by under-estimated demands. 

7. Obtain an estimate for the reliability index associated with the aprioristic solutions. Under the as-
sumption that customer demands are independent, which is a reasonable hypothesis, this can be 
attained by simply multiplying the reliability of each route. A solution reliability level can be 
considered as a measure for the feasibility of the solution in the ARPSD context. 

8. Depending on the total costs and the reliability indices associated with the solutions already ob-
tained, repeat the process from Step 1 with a new value of the parameter k to explore different 
scenarios. 

9. Finally, provide a sorted list with the best ARPSD solutions found so far as well as their corre-
sponding properties such as cost or reliability index. 

5 COMPUTATIONAL EXPERIMENTS 

The methodology described in the previous section has been implemented as a Java application to evalu-
ate its performance. Java SE6 over Netbeans IDE was used here instead of a more efficient language such 
as C or C++ for several reasons: (a) being an object-oriented programming language with advanced 
memory management features like the garbage collection and with a readily-available data structures, it 
allows a somewhat faster development of algorithmic software; (b) it offers immediate portability to dif-
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ferent operating systems; and (c) it offers better replicability and duplicability than other languages. How-
ever, it has the counterpart that having a poorer performance than C or C++, mainly due to the fact that 
Java is executed over a virtual machine, adding this some overload to execution. To perform our experi-
ments a standard personal computer was used to perform all tests, an Intel® Core™2 Quad CPU Q9300 
at 2.50 GHz and 8 GB RAM running in Windows® 7 Pro operating system. 

 

 
 

Figure 1 – Flow diagram of the methodology 
 
In order to generate the random demands, and for its use in Biased Randomized process of the Rand-

SHARP algorithm implementation, a state-of-the-art pseudo random number generator has been em-
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ployed. Specifically, we used the LFSR113 from the SSJ library L’Ecuyer (2002). To test our methodol-
ogy, the gdb dataset originally proposed in Golden et al. (1983) has been used. This dataset consists of 23 
small-medium CARP problem instances, so we will consider the instances assuming that the customer 
demand defined on the instance is the mean of the stochastic variable which defines actual customer de-
mand on ARPSD. Furthermore, we will consider that this demand is distributed following a Log-Normal 
probabilistic distribution. In order to assess the methodology on different circumstances, we have per-
formed the tests in three different scenarios, each one with a different variance for the Log-normal ran-
dom variable: (1) 0.05·E[Qi], (2) 0.25·E[Qi] and (3) 0.75·E[Qi]. 

The experiments were run varying the k parameter from 0.75 to 1.00, with a step of 0.01, to evaluate 
both conservative and non-conservative scenarios. For each k parameter, a complete execution was per-
formed with a duration of 180 seconds. Then, the best k value was selected and compared with the result 
obtained with the solution without safety stock. The best k value was decided as the value that provides a 
solution with the less expected costs, considering expected cost as the sum of the deterministic cost of the 
solution with the stochastic cost of the solution (obtained with MCS). 

Table 1:  gdb dataset results – 0.05·E[Qi] variance 

 
 Best Known Solution Our Best Solution 

In-
stance 
Name 

Route
s 

Costs 
(1) 

Expected 
Costs (2) 

Gap (1) – (2) Reliability Routes k 
Ex-

pected 
Costs (3) 

Gap (1) – (3) Reliability 

gdb1 5 316 366.3 15.92% 0.73 5 1 366.3 15.92% 0.73
gdb2 6 345 403.1 16.84% 0.74 6 1 403.1 16.84% 0.74
gdb3 5 275 321.7 16.98% 0.73 5 1 321.7 16.98% 0.73
gdb4 4 287 341.9 19.13% 0.69 4 1 341.9 19.13% 0.69
gdb5 6 383 450.8 17.70% 0.74 6 1 450.8 17.70% 0.74
gdb6 5 298 346.3 16.21% 0.73 5 1 346.3 16.21% 0.73
gdb7 5 325 380.6 17.11% 0.73 5 1 380.6 17.11% 0.73
gdb8 11 360 371.5 3.19% 0.96 11 0.98 371.4 3.17% 0.96
gdb9 11 318 338.2 6.35% 0.91 11 0.98 337.3 6.07% 0.94
gdb10 5 285 307.2 7.79% 0.84 5 0.98 305.8 7.30% 0.83
gdb11 6 413 415.2 0.53% 0.98 6 0.93 413.4 0.10% 0.96
gdb12 7 478 480.9 0.61% 0.99 7 1 480.9 0.61% 0.99
gdb13 7 544 544.3 0.06% 1.00 7 0.93 544.2 0.04% 1.00
gdb14 5 104 106.8 2.69% 0.95 5 0.99 106.7 2.60% 0.95
gdb15 4 58 58.1 0.17% 0.99 4 1 58.1 0.17% 0.99
gdb16 6 129 130.7 1.32% 0.95 6 0.99 130.4 1.09% 0.97
gdb17 5 91 92.4 1.54% 0.95 6 0.99 91.0 0.00% 1.00
gdb18 5 168 174.8 4.05% 0.87 5 0.99 173.2 3.10% 0.87
gdb19 3 55 55.9 1.64% 0.96 3 1 55.9 1.64% 0.96
gdb20 5 123 123.5 0.41% 0.98 5 1 123.5 0.41% 0.98
gdb21 7 159 161.0 1.26% 0.96 7 0.96 160.3 0.82% 0.96
gdb22 9 202 204.5 1.24% 0.95 9 0.99 204.2 1.09% 0.97
gdb23 12 237 238.6 0.68% 0.98 12 1 238.6 0.68% 0.98
Averages 6.67% 0.88 0.987  6.47% 0.89

 
Results are displayed on Tables 1-3. In these tables, results of computational experiments are shown. 

The tables are structured in two halves. The first, marked as Best Known Solution (BKS), contains the re-
sults for the deterministic solutions without safety stock. These solutions correspond to solve the ARPSD 
as a CARP considering the demands as deterministic with value qi. The first column of this part contains 
the number of routes of the solution. Next two columns are the deterministic cost and the expected cost 
for the solution. And the last two columns are the gap, in %, from the expected cost to the deterministic 
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cost of the BKS, and a reliability index computed as the probability of a route failure. In the other half, 
marked as Our Best Solution, the result for the best k found is displayed. These solutions are obtained se-
lecting CARP(k) solution which obtains less total expected costs computed with Monte Carlo simulation. 
In the first two columns of this part, the number of routes of the solution and the best k values are dis-
played. In the following column we have the expected cost of this solution computed with MCS. Finally, 
on the last two columns, the gap ,in %, from this expected cost to the deterministic cost of the BKS and 
the reliability index of the solution are shown.  

6 DISCUSSION OF PROPOSED METHODOLOGY AND RESULTS 

The idea of solving the ARPSD by solving its associated CARP but considering a vehicle safety stock is 
not new. Fleury et al. (2005) proposes four different scenarios with different values of safety stocks and 
compared their performance. It differs from our approach since our methodology evaluates a wider range 
of safety stock values and uses different criteria in the selection of the best solution. Furthermore, our 
methodology uses an additional Monte Carlo simulation procedure to assure the correct behavior of the 
solution for the CARP(k) problem for the ARPSD prior to select it as the solution. When analyzing the 
proposed methodology, we can remark some benefits from it: 

 In some sense, it can be said that our methodology is reducing the complex ARPSD to a limited 
set of conservative CARP, where high quality algorithms are already available. 

Table 2:  gdb dataset results – 0.25·E[Qi] variance 

 
 Best Known Solution Our Best Solution 

Instance 
Name 

Routes 
Costs 

(1) 
Expected 
Costs (2) 

Gap (1) – (2) Reliability Routes K 
Expected 
Costs (3) 

Gap (1) – (3) Reliability 

gdb1 5 316 365.3 15.60% 0.74 5 1 365.3 15.60% 0.74
gdb2 6 355 405.5 14.23% 0.75 6 1 405.5 14.23% 0.75
gdb3 5 275 317.5 15.45% 0.75 5 1 317.5 15.45% 0.75
gdb4 4 287 337.2 17.49% 0.71 4 1 337.2 17.49% 0.71
gdb5 6 377 442.5 17.37% 0.74 6 1 442.5 17.37% 0.74
gdb6 5 298 345.2 15.84% 0.75 5 1 345.2 15.84% 0.75
gdb7 5 325 377.6 16.18% 0.75 5 1 377.6 16.18% 0.75
gdb8 11 360 398.8 10.78% 0.87 11 1 398.8 10.78% 0.87
gdb9 11 322 363.9 13.01% 0.82 11 0.98 362.7 12.64% 0.85
gdb10 4 275 309.8 12.65% 0.68 4 1 309.8 12.65% 0.68
gdb11 6 411 428.2 4.18% 0.90 6 0.95 425.5 3.53% 0.92
gdb12 7 490 506.6 3.39% 0.97 8 0.95 503.4 2.73% 0.97
gdb13 7 544 551.9 1.45% 0.95 7 0.94 551.8 1.43% 0.95
gdb14 6 106 111.0 4.72% 0.90 6 1 111.0 4.72% 0.90
gdb15 4 58 59.4 2.41% 0.91 4 1 59.4 2.41% 0.91
gdb16 7 131 136.0 3.82% 0.91 7 0.93 134.7 2.82% 0.93
gdb17 6 91 92.7 1.87% 0.93 6 0.85 92.2 1.32% 0.95
gdb18 5 166 179.5 8.13% 0.79 5 0.98 177.2 6.75% 0.84
gdb19 3 55 58.4 6.18% 0.85 3 1 58.4 6.18% 0.85
gdb20 5 123 127.1 3.33% 0.91 5 1 127.1 3.33% 0.91
gdb21 7 158 165.7 4.87% 0.87 7 0.98 165.4 4.68% 0.86
gdb22 10 204 210.5 3.19% 0.90 10 0.95 210.0 2.94% 0.90
gdb23 12 237 247.4 4.39% 0.88 12 0.99 246.2 3.88% 0.89
Averages 8.72% 0.83 0.978  8.48% 0.84

 
 The methodology is not restricted to single CARP algorithm, different algorithms could be used 

with the methodology in order to obtain robust solutions for the ARPSD. 
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 The methodology is valid for any probabilistic distribution, so it can handle different real life sce-

narios. 
 As the decision-maker can consider different solutions with different values of k, the methodolo-

gy makes the selection more flexible in order to consider different utility functions. 
 The methodology is easily parallelizable as the solution for any value of k can be computed inde-

pendently. 

Table 3:  gdb dataset results – 0.75·E[Qi] variance 

 
 Best Known Solution Our Best Solution 

Instance 
Name 

Routes 
Costs 

(1) 
Expected 
Costs (2) 

Gap (1) – (2) Reliability Routes k 
Expected 
Costs (3) 

Gap (1) – (3) Reliability 

gdb1 5 316 362.9 14.84% 0.77 5 1 362.9 14.84% 0.77
gdb2 6 345 395.1 14.52% 0.78 6 1 395.1 14.52% 0.78
gdb3 5 275 315.0 14.55% 0.77 5 1 315 14.55% 0.77
gdb4 4 287 330.7 15.23% 0.75 4 1 330.7 15.23% 0.75
gdb5 6 377 435.8 15.60% 0.76 6 1 435.8 15.60% 0.76
gdb6 5 298 340.0 14.09% 0.77 5 1 340 14.09% 0.77
gdb7 5 325 373.6 14.95% 0.77 5 1 373.6 14.95% 0.77
gdb8 10 366 416.5 13.80% 0.79 10 1 416.5 13.80% 0.79
gdb9 11 318 382.9 20.41% 0.72 11 0.98 381.2 19.87% 0.77
gdb10 4 275 309.0 12.36% 0.70 4 1 309 12.36% 0.70
gdb11 6 411 440.9 7.27% 0.83 6 0.92 440 7.06% 0.83
gdb12 7 474 527.9 11.37% 0.87 7 1 527.9 11.37% 0.87
gdb13 7 544 566.6 4.15% 0.88 7 0.97 565.8 4.01% 0.88
gdb14 6 106 114.0 7.55% 0.86 6 0.95 113.8 7.36% 0.86
gdb15 4 58 61.3 5.69% 0.81 4 0.84 60.9 5.00% 0.83
gdb16 6 129 138.8 7.60% 0.81 6 0.92 138.5 7.36% 0.81
gdb17 6 91 94.8 4.18% 0.87 6 0.86 94.2 3.52% 0.88
gdb18 5 170 187.5 10.29% 0.71 5 0.98 182.8 7.53% 0.73
gdb19 3 55 60.9 10.73% 0.80 3 1 60.9 10.73% 0.80
gdb20 5 123 130.4 6.02% 0.85 5 0.93 130.3 5.93% 0.84
gdb21 8 162 172.4 6.42% 0.86 7 0.95 170.6 5.31% 0.80
gdb22 10 204 216.6 6.18% 0.83 10 0.93 214.6 5.20% 0.84
gdb23 12 237 253.2 6.84% 0.81 12 0.94 252.1 6.37% 0.81
Averages 10.64% 0.79 0.963  10.29% 0.80

 
 Considering the results, it is clear that the more variance the customer’s demand has, the greater im-
provement is obtained with the use of safety stocks. Nevertheless, notice also that depending on the con-
crete problem instance, we obtain no gain with the use of safety stock. For example, for instances gdb1 to 
gdb8 we obtained that always the best solution were not those using a safety stock. Reviewing each one 
of these instances, it can be noticed that the total demand to be served is not an exact multiple of the vehi-
cle capacity. So these instances, somehow, already have an implicit safety stock. Despite not considering 
this during the design phase, it is improving the robustness of the solutions as it allows overcoming some 
unexpected over-demands. For the instances where an improvement is obtained, it is clear that it is great 
as the customer’s demands are more disperse. Notice also that in this case we have no considered addi-
tional penalization when a route failure occurs, than a roundtrip of the vehicle to the depot to be loaded. 
In some cases there can be additional penalization costs (e.g. due to the time lost in the vehicle reload 
procedure) which will increase the over-cost of these recourse action and then increment the gap between 
our best solution and the solution without safety stock. 
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 Finally, regarding the reliability index, we remark that the greater the variance is, lesser values of the 
reliability index are obtained. This is due to the fact that in case of high variances, over-demands can oc-
cur with greater values, so route failures are more likely to occur. Notice also that the gap obtained is 
greater as greater is the variance for the same reason, as more over-demand is get, greater penalty due to 
recourse actions is incurred. 

7 CONCLUSIONS 

This paper has presented a hybrid methodology for solving the ARPSD. The methodology, which com-
bines Monte Carlo simulation with heuristics, is based on the idea of using safety stocks during the design 
stage so that unexpected demands can be satisfied during the delivery stage. The results for small- and 
medium-size instances have shown that an improvement on solutions robustness can be achieved by em-
ploying the appropriate safety stocks. However, sometimes the over-cost of this improvement on the ro-
bustness does not compensate the cost of corrective actions required with less robust solutions obtained 
without safety stocks. For future work it will be required to study high-size instances to check the perfor-
mance of the methodology in those larger problems. In addition, a parallelization of the algorithm will be 
required as greater instances will require greater execution times to obtain high-quality solutions. Also, 
the addition of local search processes to the RandSHARP algorithm could be helpful to improve the 
quality of solutions in medium- and high-size instances. 
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