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ABSTRACT

In this work, we present a model of social network showing non-trivial effects on the dynamics of trust and
communication. Our model’s results meet the characteristics of a typical social network, such as the limited
node degree, assortativeness, clustering and communities formation. Simulations have been run first to
present some of the most fundamental relations among the main model’s attributes. Next, we focused on the
emerging asymmetry with which trust develops within different communities in a network. In particular, we
considered categories of nodes differing for their communication profiles and a specific example of bridge
between two communities. The results are discussed to provide insights about the dynamic formation of
communities based on trust relations. These results are the basis for future works with the aim of better
understanding the dynamics of the diffusion of trust and its influence on a growing social network.

1 INTRODUCTION

Simulating the dynamics of social networks is a research topic that is increasingly addressed for different
reasons. The most recent is the success of some well-known systems, Facebook to mention the most
cited, but other applications of the social network model have proved to be extremely interesting. In the
literature, there exist many works that have applied models of social networks to real case studies. The
exchange of the emails in a community of people, for instance, represents a relevant case study (Tyler,
Wilkinson, and Huberman 2003), as well as the dynamics showed by individuals joining and leaving groups
of interests, which may stem from leisure (e.g. the case of online games) to scientific research or corporate
projects (Newman 2004). In many cases, the research trail is that of increasing the complexity of models
and of simulations to address more elaborate research goals and analyze network’s properties. The aim of
our work is twofold:

e To present our model of dynamic social network based on knowledge exchange between nodes and
the simulation results of the stochastic behaviors and emergent properties;

e The analysis of a case study based on the effects of trust and of communication efficiency on the
formation of communities and on the flow of knowledge.

More precisely, our social network model includes the selection of partners and the action choice, mimicking
the diffusion of knowledge between actors, in the form of questions and answers. Each actor knows a
variable number of fopics, each one characterized by a degree of knowledge and a degree of interest in
knowing more. As a result, some not trivial, recurrent behaviors have been observed and analyzed.

The background for our work comes from the large, interdisciplinary literature related to dynamic social
networks, which exhibit peculiar characteristics with respect to non-social networks, the most notable of
which are related to degree correlations of adjacent nodes and to clustering (Jin, Girvan, and Newman 2001,

978-1-4577-2109-0/11/$26.00 ©2011 IEEE 3146



Allodi, Chiodi, and Cremonini

Newman and J. 2003, Skyrms and Pemantle 2000). Social networks are typically assortative, meaning
that the degree correlations of adjacent nodes is positive, i.e. nodes of high degree tend, on average, to be
connected with other nodes of high degree. This observation has fostered some relevant studies about the
special structure and behavior of social networks, which distinguish them from other non-social networks.
The second peculiar characteristic, clustering, has been extensively studied and contribute to explain the
assortativity of social networks. Clustering has been defined in term of network transitivity, that is, given
an edge between a pair of nodes A and B and another edge between nodes A and C, a network is said
to be high transitive if it is likely that there will also be a connection between nodes B and C (Newman
and J. 2003). For social networks, it has been observed how the clustering coefficient is typically greater,
possibly orders of magnitude greater, than in the corresponding random graph (Watts and Strogatz 1998,
Newman 2003, Newman 2001). The clustering effect of social networks has been observed since long by
sociologists, which have called it “triadic closure bias”, i.e., the tendency that individuals have of meeting
a friend of a friend rather than maintaining relations with reciprocally disconnected friends or meeting
strangers (Hanaki, Peterhansl, Dodds, and Watts 2007).

The clustering effect is key to the study of social networks and consequently for the work we are
presenting in this paper, because it implies that the network’s dynamic behavior is nonrandom and that
communication of a node with new nodes is mainly driven by information made available by already known
“friends” or “acquaintances”.

2 RELATED WORK

Recent research has dealt with models of social networks more complex than the ones studied in the past,
which were mostly concerned with studying the fundamental mechanisms of social network growth. More
recent studies have, instead, focused on advanced features like trust, recommendation, cooperation and
information exchange, as we did in this work.

Walter et al. presented the work most closely related to ours, although different in the research
goal (Walter, Battiston, and Schweitzer 2008). They considered a model of trust-based recommendation
system on a social network, which assumed the transitivity of trust along a chain of relationships connecting
agents, while the trust dynamics is restricted to neighbors only. Similarly, in our work trust is local because
a node maintains trust relationships with friends only but, differently to them, we admit only a limited
degree of trust transitivity (which is restricted to the best friend-of-friends) and did not model trust chains.
However, in many other aspects the two models have similar features, such as the correlation between trust
and node similarity, node’s preferences heterogeneity, and the dependence on knowledge sparseness. On
one side, differently from our work, their modeling of the trust function is more complete, including a
fast negative dynamics that we have not yet included. On the other side, while their model is of a static
network with no rewiring of edges, ours is a model of an evolving social network, providing node choice
rules reflecting the typical assortativity of social networks and a rich behavior dynamics that we simulated.

Brzozowski and Romero studied different features for recommending people in a directed social
network (Brzozowski and Romero 2010). Although not directly related with our work, relevant for us is
their analysis of structural closures in directed social networks, along with observations regarding forbidden
triad and the relative relevance, under certain conditions, of similarity.

Hanaki et al. provided relevant observations with regard to the emergent cooperative behavior in
social networks (Hanaki, Peterhansl, Dodds, and Watts 2007). In particular, they examined the correlation
between the strength of ties and the level of cooperation of the network. With respect to our work, the
interaction dynamics driving the evolution of the network is based on different assumptions and rules for
the node selection. We have verified their findings in our context and found a confirmation under certain
configurations of the simulated social network. Trust in their work has been modeled as a weighted sum of
past trust’s average and depends on a factor measuring past experiences. Differently, we have not introduced
a weighted average to model trust but, similarly to their work, in our model nodes trust others based on a
self-declared expertise of the counterparts and on the frequency of past interactions.
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Important for the analysis of mixing patterns and community structures in networks is the work by
Newman and Girvan (Newman and Girvan 2003). This research analyzed most of the characteristics
that our model of social network presents and that we have tested and discussed in this work, from the
assortative mixing to the formation of communities, from the relevance of friend-of-friend relationships to
the dynamics of the growing network.

3 MODEL DESCRIPTION

We consider a set of N nodes, ny,ns,...,ny each one characterized by a Personal state PS,, and a Friend
state F'S,.

Personal State.  The Personal state PS represents which topics a node knows, how well it knows
them, and how much interested it is in each one of them. In the model these information are described
as tuples having the form (ropic,quality,interest). We consider a set of topics T representing all distinct
topics that the population of nodes knows; each node n; knows a variable subset of them, 7; C T. Therefore
each node n; has a Personal state having the form PS,, = (U;cr(topic;,quality; ;,interest; j)).

Friend State. = The Friend state F'S represents the connections a node has with other nodes (i.e.,
“friends”). A connection is a reciprocal relation between two nodes and is established when a question is
asked by one and a valid answer is provided by the other (details about the interaction mechanics will be
described in the following). When the first interaction between two nodes occurs, both nodes update their
Friend states by adding a new pair composed by the friend’s identifier n; and a counter answers keeping
track of the answers received by another node. The reason for this choice is that friendship is considered
reciprocal in our model of social network, therefore both nodes establish a reciprocal connection. On the
contrary, trust, which in our model is a function of the number of answers received, is directed, therefore the
parameter answers is increased only by the receiver node when an interaction takes place. More formally,
each node n; has N; C N friends, and a Friend state having the form FS,, = (Ujen, (n), answers, ;).

3.1 Trust

In our model, the meaning of trust is “an expectation of technically competent role performance”, as for
Barber’s subtypes of trust (Barber 1983, Thomborson 2010). Although relatively general, this definition
reflects the dynamics of nodes in our social network. A node interacts with another based on the expectation
of increasing its knowledge by establishing a relationship with a more competent counterpart. Trust tends
to be local in our model, because a node interacts with unknown ones only when neither a friend nor a
best friend-of-friends nodes can answer to its question.

More specifically, in our model, the notion of trust is key to the behavior of a node in two different
actions: the choice of the peer node to interact with and the knowledge it gains from the selected peer.
In other words, a node trusts another one when it chooses it and when subsequently it learns from it.
Operationally, the two attributes that control these actions are the quality associated to the topic for which
an interaction takes place and the answers recording the past history of interactions between the two nodes.
In particular:

e Attribute guality is used for node selection among friends, best friend-of-friends or randomly chosen
nodes, while attribute answers for selecting the best friend-of-friends.

e The difference between values of attribute guality owned by the respondent and the requester node
represents the nominal amount of learning of the requestor node.

In general, trust should be time dependent; typically, a repetition of interaction within a time period
reinforces trust, while the absence of interaction reduces trust (Burt 2001). Such dependency has been
modeled in our work. The quality gain is discounted, that is recent friendships (those with a small number
of answers) would result in smaller gains (with respect to the difference of quality between the respondent
node and the requester) with respect to older friendships.
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Therefore, trust has a dynamic based on the history of interactions. For this reason, we operationally
measure trust by the number of interactions (i.e. attribute answers) between nodes.

As for Burt (Burt 2001), this assumption could be seen as the “baseline hypothesis” for trust setting
the benchmark for future improvements and, by analyzing the dynamics of interactions, some interesting,
qualitative insights could be derived about the dynamics of trust in the evolution of a relatively complex
social network.

3.2 Node Setup

The Personal and the Friend state of nodes are initialized as follows:

Topics. A random set 7; of topics is defined for each node. The maximum number of topics assigned
to the nodes can be limited by setting the maximum rate A7 € (0, 1], so that |T;| < A7 -|T|.
Quality and Interest. The quality associated to each topic of a node’s Personal state is set to a random
value in [1,100]. For the interest, the initial value is equally distributed among all topics, and is

calculated as 100/|T;.

Topic 0. A dummy topic called ropic is always present and, when chosen, a topic that does not belong
to the node’s Personal state is selected. Forcing its presence in the Personal state means that each
node has always a chance of requesting an unknown topic. The quality associated to topicy is
always zero, while the interest is calculated as for the other standard topics during the network
evolution.

Friends. All nodes have no friends at setup, making the evolution of the network fully stochastic. At
start up, the selection mechanism is the random choice, then the preferential selection mechanism
increasingly rely on local connections. As for the topics, a maximum number of friends per node
can be configured by setting a maximum rate Ay € (0,1], so that |N;| < Ay - |N|.

3.3 Node Choice

In our model, interactions between nodes represent a flow of knowledge, with nodes knowing less about
a topic that ask to those knowing more and with the answers that increase the topic’s knowledge of the
requesters. The node’s choice is preferentially bound to nodes already belonging to the requester’s Friend
state and to “best friends-of-friends”. Only when these two options fails, then a random choice is executed.

“Best friend-of-friend” node. A “best friend-of-friend” node is a node belonging to a friend’s
Friend state, owning the selected topic in its Personal state (i.e., “a friend of a friend who knows about the
topic that is requested”) and having the higher value of the answer attribute (“the most reliable friend of a
friend”). It is worth noting that the inclusion of “best friends-of-friends” among the nodes that could be
chosen fosters network transitivity and the triadic closure bias.

More specifically, a node chooses another node as follows:

1. For a given node ny, a topic (fopic;, € Ty) is selected among those in the node’s personal state
PS,,. The selection is made by chance, with the chances being determined by the relative weights,
i.e., the value of the interest associated to the topic (interesty j.).

2. The node n; to interact with is chosen based on the quality associated to the selected topic. Node
ny is the one owning fopic;, and having the maximum quality, ;. among node n;’s friends and
“best friends-of-friends”.

3. Node ny must know more than node n; about ropic,, that is quality, ;, > qualityy ;..

4. If no node satisfies the previous conditions, the selection of a counterpart for node n; is made
randomly over the entire population N (i.e., this is the case at start up).
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3.4 Personal State Update

The update of the Personal state after a successful interaction is the key mechanism of our model. The
Personal state is updated by the requestor only, because an assumption of our model is that the behavioral
dynamics of nodes is driven by the new knowledge that a requestor node gains when an interaction is
completed. The idea is that the new knowledge depends on the difference between the quality associated to
the fopic known by the responding node and the quality associated to the same topic known by the requestor.
That difference increases both the requestor’s topic quality (“the node learns something about that topic™)
and its interest in that topic (“the node wants to learn more about it”). In this way, the interaction between
nodes based on a topic that both know enhances the similarity of connected nodes, which tends to form
clusters as a consequence of the triadic closure bias.

3.4.1 Quality Increase

The quality increase does not depend only on the respondent’s topic quality, but also on the number of
answers a node has already received from the counterpart, which is where the notion of trust is more
relevant. Intuitively, a node distrusts another one when they interact for the first time and this distrust
progressively diminishes as interactions occur, with a negative exponential dynamics. This means that the
knowledge gain of a node from the interaction with another one is discounted by a term that starts at a
given value (i.e. p) and goes to zero exponentially.

More formally, we call n; the requestor node, n;» the respondent node, and topic . the topic for which
the interaction take place. The quality gain obtained by ny is calculated as

qualityy ;. — quality; ;.

Oquality j, = (H

Y+pe e
with:

e y>1: the nominal fraction of dquality that ny could learn from another node for x — oo, i.e.
limy_,e pe & = 0;

e x : the value of the attribute answers of node ny with respect to node n;;

p : the initial discount applied to learning for x = 0. Intuitively, it represents the distrust a node

has towards another one before any interaction occurs;

0 : the parameter controlling at which rate node n; increases its trust towards node n;.

3.4.2 Interest Increase and Reduction

The dynamics of a topic’s interest could be either positive (interest gain) or negative (interest reduction).
Interest Gain. The interest associated to the topic that a node requested increases when the interaction

successfully completes, otherwise it remains unmodified. The new interest depends on the dquality value

calculated in (1). The function used to calculate a new value of the interest has the exponential form:

5quulir)'l./7j*

Ointeresty j, = a(l—e —F ) 2

with o > 1 and 8 > 1 the two parameters we use to control, respectively, the scale and the slope of the

function. This function has 2erest ~ () and 2-interest () meaning that the interest is increasing, but with
dquality dquality
diminishing marginal gains. This way nodes tend to exhibit preferences among the topics of their Personal
state, but the polarization is mitigated and the emergent behavior is not trivial. During simulations we
have consistently seen heterogeneous behaviors among nodes, with some strictly polarized, while others
not showing strong preferences.
Parameter 3 is important, because changing the slope of the interest growth modifies the tendency of

interests to polarize. Nodes strongly polarized on few topics (i.e., high interest values) tend to acquire
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knowledge more quickly and so be more likely to act as respondents in following iterations. In general, the
result is a tendency to form isolated communities connected with strong ties. With interests less polarized,
instead, nodes tend to choose a wider range of topics, then forming larger communities connected with
weaker ties.

Interest Reduction. As a result of a successful interaction and the increase of the chosen topic’s
interest, a proportional interest reduction is applied to all the other topic’s interests belonging to the node’s
Personal state. The reason for decreasing interests associated to topics known by a node except the one
chosen, intuitively, is that it seemed to us not reasonable to model actors of a social network as having
an always increasing total amount of interest. On the contrary, interests in different topics should balance
each other, within certain limits.

For this reason, when an interaction completes successfully, all topics known by node n;, except topic s,
have their corresponding interest decreased by Sinteresty .. (t,t—1) = Sinteresty ji(tx,tx—1)/(|Ty| — 1),
that is the value of the interest gain for topic;, at t; divided by the number of topics |7;| minus one. As
a side note, the interest reduction applies to topicy as well, which is included in the total number |T;| of
topics known by node n;.

3.5 Metrics

For the analysis of the network’s dynamics that are presented in this work, we consider some relevant
metrics: the Clustering Coefficient and the Communication Efficiency.

Clustering Coefficient. For the Clustering Coefficient we adopted the definition introduced by Watts
and Strogatz: the Clustering Coefficient in social networks measures the cliquishness of a typical
friend circle (Watts and Strogatz 1998).

Communication Efficiency. With Communication Efficiency we want to measure how often nodes
are able to successfully interact, i.e. to receive an answer to a request, with respect to the number
of requests they made during a simulation. The number of requests made by the population of
nodes equals the number of ticks of the simulation, shown as I', because for each tick a node is
selected and a request is produced. Formally, we define:

. .. Total No. of Answers Y2 ¥ jeN, answers; j
Communication E f ficiency = =
Total No. of Requests r

4 NETWORK SIMULATIONS

All simulations have been run with the same basic configuration:

e Number of nodes N = 150;
e No limitation to the number of friends (out-degree);
e Duration of the simulation/No. of ticks I" = 150000.

Number of friends. The first result regards the number of friends, which is a critical attribute because
it represents the average outdegree of a network. It influences the topology and, as already mentioned,
in social networks it should be limited. In our simulations we have consistently observed that the limited
outdegree is an emergent behavior and does not need to be set by design. The typical average rate of
friends was between 2% and 10% of the population.

Number of topics per node. The number of topics per node is a key factor for determining the
emergent behavior of the network. We have analyzed: (i) the dependence of the average number of answers
per edge, thus, qualitatively, the trust of a requesting node towards a respondent node; (ii) the dependence
of the Communication Efficiency. We have observed a positive correlation in both cases: the more topics
a node knows the more answers it receives and the better is the Communication Efficiency of the network.
In short, heterogeneity of interests improves the flow of knowledge and the growth of the social network.
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This result is intuitive, because nodes with higher number of topics tend to be less polarized, then to ask
questions on more topics and to interact with more nodes. This permits them to enlarge their friend circle
and communicate more. Figure 1(left) shows these results.
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Figure 1: Results by varying the number of topics per node (left) and the number of topics in the network
for different values of the parameter 8 (center and right).

Slope of the interest function. In this case we have tested the variation of the average number of
answers per node and the Communication Efficiency, setting different values of the parameter 8 defined
in equation (2). We recall that B modifies the slope of the exponential function that determines the new
value of interest after a successful interaction. Increasing the value of 8 has the effect of decreasing the
slope, hence the value of interest increases more slowly as well as the tendency of nodes to polarize their
interests. The results of Figure 1 (center and right) are not trivial, in particular for what regards the average
number of answers per node. The value Number of topics=50 is an exceptional case, because due to the
scarcity of communication, varying 8 makes practically no difference. For higher values of the number
of topics, the effect of B on the communication is visible and the correlation emerges. It is, however, also
evident how for very high values (e.g. for § = 500 and = 1000), meaning very small increases of the
interest value, there is not a clear difference and the stochastic behavior is dominant. The same does not
hold for the Communication Efficiency that is clearly dependent from f.
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Figure 2: Model’s efficiency with p = 10 (left), p = 50 (center), p = 100 (right).

Learning rate. Communication Efficiency have shown to significantly vary for different configurations
of the model. In particular, the rate at which nodes learn seems to strongly affect this metric: learning
speed is controlled directly by two parameters, p and 6, and indirectly by dquality, the difference between
the topic’s quality of the requester node and that of the respondent. We recall that p and 8 control how
fast a respondent node becomes trustworthy to a requesting node, with respect to the number of answers
received by the latter. The higher the p, the lower the initial trust between two nodes will be; the higher
the 0, the slower a node will trust another one.

To better understand these dynamics, we tested a standard configuration (150 nodes, y = 10, B = 50)
varying p and 0 between simulations, and testing each setup through different numbers of topics in the
network. These results are shown in Figure 2. As expected, higher values of p and O result in higher
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Figure 3: Case Study.

Communication Efficiency, because, intuitively, slowing the rate at which nodes trust each other, slows
the rate at which they learn from their interactions, so that they need more answers before the quality
associated to a topic becomes close to that of the best respondents.

We can observe that increasing the value of 0, initially, it sensibly improves the Communication
Efficiency, while at higher values its increments are not as much significant. To clarify, we can consider p =
100 as showed in Figure 2. By changing 6 from 1 to 20, the efficiency increases across all the simulations
by almost 17%, while changing it from 20 to 100 provides much lesser benefits, in the order of 3-5%. This
behavior is constant whatever the value of p is set to, as the distances between the curves clearly picture.
Finally, we note how for low values of 0 (e.g., 8 = 1), the effect of distrust dissipates quickly with few
interactions, without any relevant difference on the Communication Efficiency for all values of p.

5 CASE STUDY

The case study we present is of a particular network configuration as showed in Figure 3. In that simulation,
which we stopped at I' = 60793, four clear communities of nodes have emerged, with two of them (i.e.
Cluster 3 and Cluster 4 in Figure 3) loosely connected by few links and through a single node bridging
most communication between the two clusters.

The network structure is of particular interest for studying how trust is distributed in these communities.
All of them are formed by some core nodes (i.e. proxies, pictured as orange dots) having a rate of answers
produced exceeding of more than 100% the answers they get from other nodes; some peripheral nodes
(pictured in blue) that get more answers than those they produce; and finally some intermediate nodes (i.e.,
ex-proxies, pictured in green) that have played the role of proxies, but whose rate of answers is now below
the threshold. For all the clusters we have studied how trust and interest values are distributed, showing
that there is a clear relationship between the topology, the trust distribution and the distribution of interests.

Furthermore, the network structure is also interesting for the presence of that bridging node between the
two clusters, which permits to study how communication is established between two separate communities,
how it flows and how trust drives the dynamics of the attraction or repulsion between them.

Asymmetries in trust distribution. First we investigated the distribution of trust among nodes in
the clusters. Table 1 shows the results calculated for the three node categories (i.e., proxy, ex-proxy and
peripheral nodes) in each cluster. For each category, trust is represented as directed, that is a node category
trusts other ones (labelled as “trust from” in Table 1) or a node category is trusted by other nodes (labelled
as “trust fowards” in Table 1).

Figure 4 provides a graphical representation of the distribution of trust among the different node
categories. Trust is pictured as a gradient of color, from a low level of trust (light blue) to a high level (dark
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Table 1: Trust directed to and from each type of node (rows) within the four clusters (columns). In boldface
the highest trust towards nodes, while underlined is trust from nodes. Clusters are numbered from left to
right starting from the the top-left corner.

1 2 3 4

from PROXY nodes 155 179 8.3 8.5
towards PROXY nodes 395 41.6 19.0 235
from EX-PROXY nodes 23.1 22.1 119 124

towards EX-PROXY nodes 28.8 21.1 154 155
from PERIPHERAL nodes 242 29.1 19.7 21.0
towards PERIPHERAL nodes 14.6 11.7 69 9.9

Figure 4: Trust from (left) and fowards (right) nodes.

red). The picture on the left of Figure 4 shows the distribution of trust from the nodes (dark red nodes trust
much others, light blue ones don’t trust much, and yellow nodes are more balanced), whereas the picture
on the right represents the distribution of trust toward the nodes (dark red nodes are highly trusted from
others, light blue ones aren’t trusted much, and yellow nodes are balanced). The results are described in
Table 1. Proxy nodes act as highly trustworthy nodes (red in Figure 4 (right)) and on the opposite not
trusting much other nodes (light blue in Figure 4 (left)); peripheral nodes, conversely, strongly trust other
nodes (red in Figure 4 (left)), but are not trusted much (light blue in Figure 4 (right)). It is clear from these
results that in our social network model trust seems to be partitioned between trusting and being trusted
with few intermediate cases, which, broadly speaking, means that who trusts a lot is, typically, not trusted
much and vice versa.

To better understand this behavior, we further analyzed if there was a relationship between nodes’ trust
and the distribution of interests associated to their topics. In other words, we made the hypothesis that
there should be a skewed distribution of interests among nodes reflecting the different trust.

To this end, for each cluster, we considered the different node categories, and the interests associated
to each category. We calculated the sum of the k interests with highest values, with k selected as the
smallest number of different topics owned by proxies, ex-proxies or peripheral nodes of the cluster (i.e. in
this way, we are sure that for all nodes categories, there are at least k interests to sum). Figure 5 shows
how the distribution of interest values is indeed skewed and strongly localized among peripheral nodes,
which are the less trusted (as previously showed in Figure 4). The opposite happens for more central nodes
(proxies) and ex-proxies, which exhibit lower interest values. It seems then confirmed that trustworthiness
is concentrated in nodes with low interest and high quality values, while untrustworthiness is a characteristic
of nodes with high interest and low quality values.
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Figure 5: Interest distribution. High interest values are concentrated among red nodes, while lower values
are located in the light blue nodes. Scales are evaluated locally for each cluster.

Unbalanced communication from trusted zones to untrusted zones. With respect to the bridging
node and the communication between Cluster 3 and Cluster 4, we can observe that the communication flow
between the two clusters through the bridging node is asymmetric. This is represented by trust gradients.
In particular:

o In Figure 4 (right), the bridging node is uniformly yellow, meaning that its trustworthiness is greater
than that of peripheral nodes. With respect to communication this means that it is similarly queried
from Cluster 3 and from Cluster 4, and then it produces more answers than a typical peripheral
node (which makes it more similar, then, to an ex-proxy);

o In Figure 4 (left), the bridging node is not uniformly colored, being yellow with respect to
communications towards Cluster 4 and light blue with respect to Cluster 3. This means that the
bridging node trusts more Cluster 4 nodes than those of Cluster 3. The reason is that it receives
more answers from Cluster 4 than from Cluster 3.

We have further inspected the asymmetric communication flowing between the two clusters through
the bridging node. Given the previous observation, that the bridging node typically queries Cluster 4’s
nodes and is queried by Cluster 3’s nodes, we made the hypothesis that the two effects were not disjoint,
rather there could be a communication flow from Cluster 4 to Cluster 3 mediated by the bridging node.

To verify the hypothesis, we firstly checked which topics were involved in communication between
the bridging node and Cluster 3’s nodes and between the bridging node and Cluster 4’s nodes.

Figure 6 (left) shows the results. We can see that the bridging node communicates with Cluster 3,
therefore it likely responds to queries, mostly about topics 17 and 8 (topics 9 and 1 are the remaining).
With Cluster 4, instead, it typically interacts, therefore it likely queries, about topics 17, 8, 3 and 19 (with
topics 9 and 1 with only a single interaction). Topics 17 and 8 are then good candidates to represent the
knowledge that flows from Cluster 4 to Cluster 3. Figure 6 (right) adds a new evidence for our hypothesis
by showing which nodes have been involved in communication regarding topics 17 and 8. We see again the
asymmetry between the two clusters. With Cluster 4, the bridging node interacts with only three different
nodes, querying them about topic 8 and 17. Differently, from Cluster 3, many more nodes interact with
the bridging node, querying it.

The explanation for this effect is that the bridging node, in its Personal State, has a high value of the
interest attribute associated to topics 17 and 8. Nodes of Cluster 4 are the ones that have been selected as
the best node choice and at each interaction the bridging node increases the quality associated to topics 17
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Figure 6: Flow of knowledge. On the arcs on the right of the bridging node pass the increase in quality
that is shared over the edges on the left of the bridging node.

and 8 and the corresponding interest. Therefore, it has progressively become more expert on those topics,
therefore more likely to be selected as the peer for an incoming query. On the other side, some nodes of
Cluster 3 own either topic 17 or topic 8 and they select them for a new interaction. The bridging node has
been selected by chance by one of those Cluster 3’s nodes, becoming friend. From that first connection,
the triadic closure mechanism has fostered other Cluster 3’s nodes to select the bridging node as the best
friend-of-friend and this way more communication have been established.

Communication about topic 17 and 8 then flows from Cluster 4 to Cluster 3 passing through the bridging
node: The asymmetry between direction of trust and direction of communication is evident, being the latter
directed from a trusted zone to an untrusted zone with respect to the bridging node.

6 CONCLUSIONS

In this work, we have presented a dynamic social network model based on the exchange of knowledge
among nodes and on trust, both as a factor driving the network evolution. Results of the simulation showed
several emergent properties of the system, in which trust evolves asymmetrically among group of nodes.

A case study has been analyzed focusing on a particular network configuration in which the effects
controlling the flow of knowledge among different community of nodes were particularly clear. We speculate
that, even if our model is yet untested with respect to real-case scenarios, it could be considered as an
interesting and potentially meaningful model to analyze real dynamics, because the emergent behavior and
characteristics of the model presented are widely studied and supported in literature, and because it permits
to evaluate and possibly manipulate even very localized dynamics of group formation and knowledge
exchange. There are some extensions that should be done. One of the most important is to further improve
the modeling of trust, for instance by including a negative effect able to explicitly model distrust events.
Another is the definition of roles to be applied to nodes with different mode of interaction. Finally, one
of our goals for future works is to find a real case study and analyze the ability of our model to describe
its dynamics. Nevertheless, the results already achieved do appear as a promising and interesting research
direction and worthy of further development.
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