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ABSTRACT 

Naval Surface Warfare Center Panama City Division (NSWC-PCD) has developed a System Performance 

and Layered Analysis Tool (SPLAT) using MATLAB.  The overall goal is to detect terrorist threats, par-

ticularly in an open crowded area, in a timely manner.  Given a sensor configuration and a scenario speci-

fication, it combines a layered set of threat detection sensors to determine overall system performance in 

terms of probability of detection, probability of false alarm, and cost. SPLAT avoids overly optimistic 

performance estimates inherent when a series of closely spaced detection events are modeled as discrete, 

independent Bernoulli trials.  SPLAT describes all sensors using multi-dimensional lookup tables, thereby 

circumventing the need to mathematically model complex sensor performance functions. This methodol-

ogy is sufficiently general that it can be applied to a broad class of problems where multiple stationary 

sensors attempt to detect a moving target.   

1 INTRODUCTION 

Throughout the world terrorism shows no signs of diminishing.  Significant terrorist attacks over the last 

decade have ranged from coordinated team efforts like the 9-11, Twin Towers attacks and the 2008 

Mumbai, India attacks; to multiple, synchronized single-terrorist cells like the London subway bombing 

and the Tokyo subway Sarin gas attack; to lone wolf attacks like the Fort Hood shooter.  Reaction to this 

threat has led to increased deployment of threat detection systems at airports (Chamberlain 2002; Duncan 

2002) and densely populated events as well accelerated research and development of new threat detection 

systems. 

 Potential terrorists have a myriad of weapons to choose such as knives, handguns, small assault wea-

pons (Tuttle and Stohl 2009), explosives, dirty bombs (Reel 2002), etc.  In general, particular threat detec-

tion systems focus on detecting a specific weapon characteristic.  For instance, a munitions or explosives 

detection sensor would detect trace explosive chemicals while a radiation detection system would detect 

radioactive material.  Unfortunately, no one system will detect every possible weapon.  However, com-

bining multiple detection sensors to cover a broad spectrum of weapons should greatly improve the over-

all probability of detecting a weapon on a terrorist.  The goal of such a system is the timely identification 

of potential terrorist threats, particularly in an open crowded area. 

 Preliminary research shows that combining detection sensors into a layered system-of-systems looks 

promising (NRC 2004).  Figure 1 illustrates the concept with a three-layer detection system concept com-

plete with hypothetical sensor coverage patterns, a likely threat, and a threat trajectory through the layers.  

Note that the depicted sensors do not represent any particular sensors.  They merely represent a broad 

range of coverage patterns, automated sensors and man-in-the-loop sensors.  Here Layer 1 acts as a long-

range cueing sensor that detects suspicious targets and designates them for tracking and further scrutiny 

by subsequent layers.  Layer 2 then tracks the designated targets and further scans them for biometric and 
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physical features indicating that they may be carrying weapons.  All suspicious targets identified by Layer 

2 are then passed off to Layer 3 which either confirms or denies the presence of weapons on the target.  

This particular approach makes sense when Layer 1 has a scan rate fast enough to scrutinize all of the 

candidate targets and cull them for subsequent layers with potentially slower scan rates.  Of course, se-

lecting the specific fusion rules to combine detection information within and across layers depends on 

specific sensor scan rates.  And culling candidate targets may not be necessary when all sensors have high 

scan rates. 

 

 

Figure 1:  Multi-Layered Target Detection System Concept 

 

 NSWC-PCD has developed SPLAT using MATLAB to evaluate candidate sensor and layer configu-

rations.  Given a configuration, it calculates performance in terms of probability of detection, probability 

of false alarm, and cost.  The tool will be used to help select detection sensors and to compare various 

sensor and layer configurations.  SPLAT describes all sensors using multi-dimensional lookup tables, the-

reby circumventing the need to mathematically model complex sensor performance functions as part of 

the analysis.  As long as a sensor performance can be characterized using as lookup table, SPLAT can 

evaluate the sensor.  The lookup tables can be determined from experimentation, agent-based methods, 

high level simulation, data farming, or highly complex physics-based models.  Even hypothetical lookup 

tables can be used.  Utilizing this generalized sensor performance description gives SPLAT tremendous 

flexibility in that it can evaluate detection sensors at any stage of development. 
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2 TECHNICAL CHALLENGES 

The purpose of SPLAT is to analyze candidate threat detection sensor configurations and to quantify their 

performances in terms of probability of detection, probability of false alarm and cost.  These configura-

tions will be designed to provide the timely identification of potential terrorist threats operating in an open 

crowded area.  The performance evaluations will help dictate final sensor selection and the overall system 

layer configuration.  However, SPLAT must overcome significant technical challenges before any analy-

sis can take place. 

 First, detailed sensor performance for many of the candidate sensors does not exist.  Second, sensor 

performances will be a function of numerous target (terrorist), weapon and environmental conditions; in 

general, we may not know all of these variables.  Third, the number and range of sensor variables makes 

evaluating sensor performance over all possible variable mixture levels virtually impossible.  Fourth, 

SPLAT needs to be capable of evaluating different sensor deployment patterns like number of and type of 

sensors at each layer and their precise deployment locations.  And finally, SPLAT must account for non-

independent sensor detection opportunities. 

3 LAYER GEOMETRY AND LAYER INDEPEDENCE 

3.1 Layer Cuboid Structure and Threat Movement through Layers 

A cuboid in three-dimensional Cartesian space encompasses each layer.  The cuboid is subdivided into 

voxels which are square in the x-y plane and are 2-feet by 2-feet by 1-foot.  Note that a fundamental mod-

eling assumption is that the voxels must be both sufficiently large (in the x-y plane) to encompass a target 

and sufficiently small that sensor performance does not vary significantly across adjacent voxels. 

Note that all the performance analysis calculations take place at the voxel level.   Furthermore, the 

analysis assumes that all target trajectories progress across the layer from x = 0 to the maximum x-value 

which occurs at the layer boundary.  In other words, targets may not move backwards.  In practice, a tar-

get moving backwards would merely create a longer target trajectory thereby presenting more opportuni-

ties for the sensors to detect a target.  Although SPLAT cannot directly model this backwards motion, the 

SPLAT probability calculations would still work.  However, since they would be based on a shorter tra-

jectory, they would conservatively underestimate the actual probabilities of detection. 

3.2 Detection Opportunities and Independent Layers   

NSWC-PCD’s extensive experience with mine-hunting systems has demonstrated that the typical ap-

proach of modeling detection opportunities as independent Bernoulli trials tends to be overly optimistic.  

This unrealistically inflates overall probability of detection.  For instance, consider a potential threat 

standing still in a voxel and let Sensor 1 have a probability of detection for that voxel equal to 0.5.  Fur-

thermore, let the entire detection process for Sensor 1 take two seconds.  The sensor, then, would have 10 

detection opportunities if the threat were stationary for twenty seconds.  Under the independent Bernoulli 

trial assumption the overall probability of detecting a threat at least once over twenty seconds would be 

1.0 – (0.5)
10

 which equals 0.99902.  As the time the target stays in the voxel increases, the probability of 

at least one detection would asymptotically approach 1.0.  This analysis is inherently flawed in that each 

detection opportunity is not independent from each other. 

In general, if a detection model for a sensor were capable of including each and every variable that af-

fected its performance, the outcome of a detection opportunity would be not be random at all; it would be 

completely deterministic.  In practice, however, we can only capture a subset of all of the variables that 

affect sensor performance.  Furthermore, we cannot measure this subset with absolute precision.  Many 

variable measurements include random noise.  Given an imprecise measurement subset, however, we can 

still measure a sensor’s performance for a random target.  Repeating this process over and over is a stan-

dard methodology to determine a sensor’s probability of detection for a truly random target.  However, 
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the idea of a random target explicitly means that both the excluded variables and any random noise com-

ponents on the variable measurements must be truly random in nature. 

 The preceding example analysis failed to capture the point that although the excluded variables were 

in fact random for the first detection opportunity, they were no longer random for any subsequent detec-

tion opportunity.  In fact, there was likely very little change in the excluded variables from one detection 

opportunity to the next since the time interval was only two seconds.  Whether or not the random noise on 

the measured variables is truly random from one detection opportunity to the next depends on the nature 

of the measurements and how these measurements are taken.  Therefore, as a target moves through a layer 

presenting detection opportunities, many of the variables (both included and excluded) affecting sensor 

performance are highly correlated. 

 SPLAT analysis employs the conservative approach of using the maximum probability of detection 

along the target trajectory through a layer as a single, discrete probability of detection opportunity.  Al-

though this nonlinear approach makes the mathematical analysis extremely complex, it provides a solu-

tion without knowing joint sensor probability of detection.  And even though it underestimates probability 

of detection, it does not over estimate it.  It is a conservative and practical solution that accounts for corre-

lated detection opportunities. 

 SPLAT also assumes that for a random candidate target moving along a random trajectory, the detec-

tion process for sensors in each detection layer operate independently from sensors in other detection lay-

ers.  For instance, consider a target carrying a loaded pistol; Magnetic Sensor 1 in Layer 1 detects magnet-

ic objects while Chemical Sensor 2 in Layer 2 detects gunpowder.  Clearly, the underlying physics 

involved in magnetic and chemical sensing make Sensor 1 and Sensor 2 independent.  However, note that 

in the Figure 1 example, Layer 1 sensors identify specific targets for tracking and scanning by subsequent 

layers. This scenario creates a conditional target detection dependence between layers; such targets are no 

longer random and in general, under these conditions sensor independence is no longer valid.   

4 VARIABLE OVERLOAD AND MAPPING SENSOR PERFORMANCE 

4.1 SPLAT Coordinate System Variables 

For flexibility, SPLAT employs a general sensor approach in which all sensor performances consist of 

multi-dimensional lookup tables as previously described.  At a minimum, these lookup tables must in-

clude x, y, and z so the probability of detection can be calculated at the voxel level. In addition to the x, y, 

and z indices, when necessary, the SPLAT coordinate system also accommodates θ, orientation to target.  

This enables SPLAT to properly account for a sensor’s angular position relative to the threat.  And with 

the addition of scenario variable β, position of weapon on the target, SPLAT can analyze a target carrying 

a hand gun in their front pocket differently than a target carrying a hand gun in their back pocket.  The 

presence of any such sensor angular performance variation is sensor specific.  In summary, the SPLAT 

coordinate system includes four variables:  x, y, z, and θ. 

4.2 Other Inputs and Variable Overload 

Numerous other inputs affect SPLAT.  These inputs describe environment, threat, atmospheric conditions, 

weapon type, threat movement, layer sizes and configurations, and fusion rules to combine the layer de-

tections.  And besides the four SPLAT coordinate system variables, each sensor will have its own lookup 

table variables.  For example, the lookup table for an optical sensor might contain illumination while the 

lookup table for an imaging sensor may contain weapon cross-sectional area.  Figure 2 depicts the situa-

tion.  The massive number of potential variables feeding into SPLAT is potentially overwhelming. 

4.3 Scenario Probability Density Function 

A fundamental problem of having an abundance of input variables is that the analysis usually requires a 

specific value for each variable before it can calculate system performance.  Often, though,  the user  may  
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• Stochastic flow model

• Linear paths through layers

• Random start & end points

• Path weighting

• …

• Gender

• Size
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• …

• Geography
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• Vehicular traffic
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• …

Threat

• Temperature

• Humidity

• Sunlight
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• …
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Sensor                
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• Or
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• …

Threat Detection System

Environment

• Relative sensor positions

• Absolute layer positions

• …

Position

• Hand gun

• Assault Weapon

• Explosives

• Location on Body

• …

Threat

Detected ?

Pedestrian Flow Model

Layer        

Configuration

• Detection modes

• Physics-based

• Look-up tables

• …

• No. layers

• Sizes

• Grid size

• Geometry

• …

Scenario pdf

 

Figure 2:  Inputs Affecting SPLAT 

 

not care about system performance against a specific target like white males between 5’ 8” and 6’ 00” 

carrying a hand gun in their front pocket; the user just wants to know what is the aggregate system per-

formance against a general threat.  SPLAT provides the user with this flexibility. 

SPLAT uses a scenario probability density function (pdf) to describe the probability of all possible 

input variable configurations.  For instance, an atmospheric pdf describes how temperature, humidity, 

sunlight, particulates, etc. jointly vary.  Other pdfs capture the relationship between threat characteristics 

and weapon characteristics.  For many input variables the user has the option to choose a specific value, a 

range of values or to aggregate over that variable using the known scenario pdf.  

Aggregate system performance is a useful measure.  However, aggregating probability calculations 

prematurely can lead to disastrous results.  Once aggregation removes a variable from the analysis, the 

analysis can no longer discern how changes in that variable affect performance.  For instance, if two sen-

sors were complimentary in nature in that one could detect all threats below 4 feet and the other could 

detect all threats above 4 feet, aggregating over height before the joint sensor performances were calcu-

lated would effectively destroy their complimentary nature.  SPLAT has gone to extensive lengths to pre-

serve any complimentary nature between sensors. 

4.4 Mapping Sensor Performance into SPLAT Coordinates 

Figure 3 illustrates how SPLAT maps sensor performance into Layer Coordinates.  In this example 

Pd(X|V1, V2)  is  the sensor performance  as  a function of relative position X conditioned on two scenario 
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variables, V1 and V2.    For this example, X represents the (x, y) position only.   The scenario indicates 

that  V1 = 1.0  and that V2  is  unknown.  Therefore, SPLAT will use the  Pd(X|V=1.0, V2)  conditional 

 

Scenario pdf – p(V1,V2)

V1 - known conditions

V2 – unknown conditions

Sensor Performance – 2 Variable Example

Pd(X | V1,V2)

Scenario

X – Relative position

Position

Marginal scenario pdf – p(1.0,V2)

Scenario:

V1=1.0

Unknown V2

Pd(X | V2, V1=1.0)

Pd(X | Scenario) = Pd(X | S) = 

∑ Pd(X | V2, V1=1.0) * p(1.0,V2)

Pd(X | Scenario)  is now a function of X 

alone and can now be used in the layer 

analysis

Pd(X | S)

 

Figure 3:  Calculating Conditional-Marginal Sensor Performance in Sensor Coordinates 

 

sensor performance values.  Since V1 = 1.0, SPLAT calculates the marginal scenario pdf p(V1=1.0, V2).  

Now SPLAT  calculates  Pd(X|Scenario),  the  conditioned-aggregate  sensor  performance  conditioned  

on the scenario by the summing the conditional sensor performance values Pd(X|V=1.0, V2) over all V2 

and weighting each by the marginal scenario pdf p(V1=1.0, V2).  Now, Pd(X|Scenario) = Pd(X|S) is only 

a function of X, the relative sensor coordinates (Feller1966). 

 A simple coordinate transform maps Pd(X|S) to Layer coordinates.  Figure 4 shows a hypothetical 

plot of sensor performance Pd(L) after this coordinate transform.    Similarly, L represents (x, y) position 

in Layer Coordinates.  To complete calculating expected sensor performance we now need a pedestrian 

flow model that probabilistically describes movement through the layer.  For this example, we will gener-

ate a simple pedestrian flow pdf by enumerating all possible straight-line paths through the layer.  For ex-

ample, the blue lines on the x-y grid located in the bottom left quadrant of Figure 4 show all of the possi-

ble paths through the layer given that the starting point is 10.  Continuing with this, we create p(path(j,k)), 

the joint probability of starting at point j and ending at point k.  Since p(path(j,k)) is a joint probability 

density function, reasonable care must be taken to ensure that it behaves like a pdf. 

Given a path, SPLAT calculates the maximum pd along that path.  Now by forming a weighted sum 

of these maximum pds over all possible paths, SPLAT completes the performance calculation.  The 

weights are the p(path(j,k)) values.  The example in Figure 4 shows the last steps in this process as well as 

a graph of maximum probability of detection given starting point and the overall mean maximum pd. 

Note that by cleverly transforming and combining probability of detection lookup tables and joint 

pdfs using conditional probability, marginal probability, and the law of total probability, SPLAT is a dis-
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crete, analytic solution to the system performance calculation.  SPLAT contains no Monte Carlo analysis 

or approximations.  Effectively, SPLAT is a massive probability calculator. 

 

Pd(X | S)

• Sensor Geometry

• Layer Geometry

Coordinate 

Transformation

Pedestrian Flow pdf

Pd(L)

Pedestrian Flow Paths

Sensor coordinates

Layer coordinates

Mean Pd = 0.81

Pd(Threat| Path(j,k)) = 

Pd(T | Path(j,k)) = 

Max(Pd along path(j,k))

Pd(Threat) = Pd(T) = 

∑ Pd(T | Path(j,k) * 

p(Path(j,k))

Pd(T | Starting Point)

 

Figure 4:  Enumerating Paths and Calculating Overall Performance 

5 RESULTS 

5.1 Graphical User Interface (GUI) 

Early in the development of SPLAT it became clear that layer design and sensor placement requires some 

visual feedback to approximate the area coverage for each individual sensor.  The large number of envi-

ronmental and target description variables and options make it difficult to describe the input scenario.  Al-

so, the layer areas need gateways, barriers, and defined traffic flow patterns.  Hence, a graphical user in-

terface was developed to facilitate the design of the detection layers and the choice of scenario variables.  

The GUI also provides an interactive environment to run SPLAT with step-by-step visual feedback for 

the quality of the resultant detection layer. 

5.2 Scenario Definition 

Figure 5 shows the scenario definition screen.  Scenario variables are selected from list-boxes that allow 

one or more choices in each category.  The size of each layer is defined in an editable table.  The general 

commands in the left-hand column allow the user to navigate through the program and to save his results. 

The scenario variables are a function of the available sensors.  All variables in a sensor model must be 

included in the scenario.  Some extra variables are included to help the user describe the targets of interest 
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such as gender, height, weapon, location, etc.  If the user either has no information about a variable, or 

would just rather ignore it, the results will be aggregated over all values of that variable. 

 

 
 

Figure 5:  Scenario Input Screen 

 

 Once the scenario is defined, the sensor performance for each available sensor against the described 

targets under the defined conditions is calculated.  Thus, the sensor performance goes from being a func-

tion of the target type, position, orientation, and the environment to just a function of the target's position 

and orientation. 

5.3 Layer and Sensor Definition 

Figure 6 shows the sensor selection screen.  Sensors are added by clicking on the layer axes in the center 

of the screen.  Slider bars at the bottom of the sensor placement panel adjust the pitch and height of the 

sensor.  Beside the sensor selection buttons, the user may scale the performance of each sensor type.  The 

figure shows that the bottom layer is covered by six sensors; the two sensors on the lower corners on the 

images have a rectangular coverage pattern (in green) while the other four sensors have flashlight cover-

age patterns.  The images on the right show the resultant probability of detection per cell at a specified 

height.  Probability is scaled using a gray scale.  Red blocks show the positions of barriers.  And the red 

path drawn on the images shows the path of minimal detection probability.  That is, it is the best path that 

a knowledgeable target could take to avoid detection. 

5.4 Path Flow Models 

The flow of pedestrian traffic through the layer determines whether or not a subject will enter into a par-

ticular sensor’s field of view.  Given that a subject comes into the sensor's detection area, his path deter-
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mines his range to the sensor and his orientation relative to the sensor.  All these factors can influence the 

probability of detection.   

 

 
 

Figure 6:  Sensor Placement Screen 

 

To calculate the expected performance for a given layer design, SPLAT has multiple path flow mod-

els available.  The straight-line path model, in which subjects enter the layer and follow a straight-line 

path to an exit, provides a lower bound for the detection rate based on random behavior.  Subjects spend a 

minimal amount of time in the layer and have a fixed heading.  This model executes quickly and allows 

for the enumeration of all paths, calculating the maximum probability of detection over each path indivi-

dually.  Unfortunately, in the presence of barriers many paths must be eliminated.  And sometimes there 

is no route to an exit at all.  To solve this problem, the limited turns model allows turns at specific layer 

row locations.  Although all possible paths are still enumerated, the computation time increases from on 

the order of K
2
 to K

N+2
 where N is the number of turn layers.  Also, this solution is difficult to use as the 

choice of the turning point rows can greatly modify the outcome. 

A stochastic traffic flow model using a modified Brownian motion provides the desired flow around 

barriers and through the layers.  Probability distributions for the start and end points are determined by the 

gate positions.  The path between each start and end is modeled using a Brownian bridge (Karlin and Tay-

lor, 1981).  Rescaling the Gaussian distribution accommodates movement around barriers.  Figure 7 

shows the selected layer design and the resultant path flow using the stochastic model.  Here the green 

areas indicate gates and the red areas indicate barriers.  The blue areas indicate high density foot traffic 

areas.  The lower layer has no gates so traffic can enter and leave anywhere along the layer boundaries. 

 The gray-scale foot traffic density plots towards the right side of Figure 7 confirm the gate and barrier 

flow restrictions and demonstrate smooth traffic flow around the barriers.  Additionally, the stochastic 
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model has been designed to accept a one-step Markov transition matrix to describe movement through the 

layer if a more sophisticated traffic model is available. 

 

 

Figure 7:  Path Flow Definition Screen 

5.5 Final Calculation 

The goals of the system analysis are to 1) quantify the joint performance of the sensors as deployed in the 

layer configuration under the selected conditions and, 2) build detection rules to combine the sensor out-

puts from each layer to balance the required detection rate with an acceptable false alarm rate.  The final 

calculation from SPLAT provides the joint performance of the sensors in each layer.  It uses the sensor 

performance tables modified for the current scenario, the sensor positions in each layer, and the subject 

positions and orientations from the flow model to calculate the maximum expected probability of detec-

tion (pd) for a target passing through the layer for each sensor individually and combined with other sen-

sors in the same layer.  The combined sensor performances include the joint expected performance for all 

sensor type pairs and all triples.  Figure 8 shows that for Layer 1, the expected maximum pds are 0.7260 

for Sensor 1, 0.9100 for Sensor 2, and 0.6611 for Sensors 1 and 3 jointly.  

The performance table shown in Figure 8 provides all the values required to calculate the resultant 

overall performance from any desired combination of sensors.  Currently only values for probability of 

detection are displayed.  False alarm models for various sensors are under development (Hall,1992). 

Note that by specifying a layer configuration and sensor positions, the user has created a spatial corre-

lation between the sensors.  SPLAT’s probability analysis carefully preserves these correlations. 

Error bounds for the estimated pd for a given sensor configuration are provided by the minimum and 

maximum pd values displayed on the Pd Map images.  These account for errors due to the path modeling.  

Sensor performance error analysis will be included as it becomes available. 
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Figure 8:  Performance Table 

 

6 CONCLUSIONS AND FUTURE RESEARCH  

6.1 Conclusions 

Combining multiple threat detection sensors into a layered configuration should create a system capable 

of quickly identifying potential terrorist threats.  The overall goal is to detect such threats, particularly in 

an open crowded area, in a timely manner.  Naval Surface Warfare Center Panama City Division has de-

veloped a System Performance and Layered Analysis Tool using MATLAB.  Given a sensor configura-

tion, it calculates overall performance in terms of probability of detection, probability of false alarm, and 

cost.  SPLAT describes all sensors using multi-dimensional lookup tables, thereby circumventing the 

need to mathematically model complex sensor performance functions.  The lookup tables can be deter-

mined from experimentation, agent-based methods, high level simulation, data farming, or highly com-

plex physics-based models.  Even hypothetical lookup tables can be used.  Utilizing this generalized sen-

sor performance description gives SPLAT tremendous flexibility in that it can evaluate detection sensors 

at any stage of development. 

 SPLAT cleverly transforms and combines the probability of detection of lookup tables and joint vari-

able probability density functions using marginal probability, conditional probability and the law of total 

probability; this creates a discrete, analytic solution to overall system performance.  Furthermore, SPLAT 

avoids overly optimistic performance estimates inherent when detection events are modeled as discrete, 

independent Bernoulli trials.  Instead, SPLAT uses the maximum probability of detection over a path as a 
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single detection opportunity, thereby capturing the fact that a series of closely spaced detection opportuni-

ties are usually highly correlated.   

Additionally, SPLAT contains a powerful and flexible graphical user interface (GUI) that facilitates 

layer design, sensor placement and scenario definition.  Furthermore, it permits detailed pedestrian traffic 

flow patterns through the layers which can include gated entry and exit areas, barriers, linear paths, piece-

wise liner paths, and Markov model paths.   

The SPLAT methodology can be applied to the general problem of detecting a moving target with 

multiple stationary sensors.  The only requirement is that the sensors be adequately described using the 

required lookup table format. 

6.2 Future Research 

Currently, SPLAT contains a small number of threat detection sensors.  As more candidate sensors are se-

lected for considerations, their performances will have to be characterized in the required lookup table 

format.  And a reasonable plan to characterize them over represented levels of all significant variables 

will have to be developed. 

 Additional future research will include: development of false alarm models; development of cost ap-

proximations; implementation of fusion rules both within layers and between layers; implementing target 

tracking models; and developing sub-optimal automated sensor placement strategies. 
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