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ABSTRACT 

In the context of online- and symbiotic simulation, the precise initialization of simulation models based 
on the state of the physical system is a fundamental requirement. In these simulations, the simulation 
model typically serves as an operational decision support tool. Obviously, it can therefore not start empty 
and idle. The accurate capturing of initial conditions is fundamental for the quality of the model based 
predictions. In literature, it is only generally stated that the simulation model must maintain a close con-
nection with the physical system. Our work systematically investigates which data from the physical sys-
tem is needed for initialization, how it shall be transferred into the simulation model in a standardized 
way, and which potential problems must be solved in the simulation system to adequately initialize its 
model elements. We present a solution based on the core manufacturing simulation data (CMSD) stand-
ard, suggest necessary extensions and demonstrate a prototypical implementation. 

1 INTRODUCTION 

Simulation, especially discrete-event simulation, is used within many different disciplines and application 
areas. In production and logistics, simulation is a well accepted technique for planning and operations 
(VDI 2000). Simulation is used for the prediction of system behavior and operational decision support, 
e.g., for the evaluation of control alternatives. To do this, several challenges in modeling and simulation 
of complex production systems, like the integration of simulation techniques with general manufacturing 
applications have to be addressed (Fowler and Rose 2004). 

A close integration of simulation and general manufacturing applications can also reduce the time be-
tween data collection and simulation experimentation; and along this way reduce the occurrence of errors. 
Techniques like data-driven simulation model generation have been developed in the past to support these 
objectives (Bergmann and Strassburger 2010, Lorenz and Schulze 1995). 

Furthermore, approaches described by the terms online-simulation (Davis 1998) and symbiotic simu-
lation (Aydt et al. 2008) were established aiming at the close integration between a simulation model and 
the physical system. Online-Simulation was motivated as a support tool for short-term decision making 
based on state of the physical system. It focuses on predictions of the future behavior of the physical sys-
tem. Symbiotic simulation extends this to a more “biological” motivated interpretation, and discusses the 
mutual benefits between the simulation environment and the physical system including the direct control 
of the physical system. 

Both approaches require a mechanism to permanently and quickly “feed” data from the physical sys-
tem into the simulation environment to have an up to date state representation of the physical system in 
the model. The accurate capturing of initial conditions is fundamental for the quality of the model based 
predictions.  
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Our work investigates systematically which data from the physical system (here: manufacturing sys-

tems) is needed for initialization, how it shall be transferred into the simulation model in a standardized 
way, and which potential problems must be solved in the simulation system to adequately initialize its 
model elements. We present a solution based on the core manufacturing simulation data (CMSD) stand-
ard, suggest necessary extensions and demonstrate a prototypical implementation. 

The remainder of this paper is structured as follows: in Section 2 we discuss related work. Section 3 
introduces CMSD and discusses its current application. In Section 4, we first introduce the requirements 
for the initialization of simulation models and classify the input data required from the physical manufac-
turing system. We then present a solution how to map this data onto the CMSD standard and suggest re-
quired enhancements to CMSD. 

In Section 5, we document the verification of our approach by using a model generator capable of 
building a base model and initializing it with data from the physical system. Section 6 critically reviews 
the achievements and documents possible areas of future work. 

2 RELATED WORK 

All simulation models in symbiotic or online simulation can typically be treated as non-terminating simu-
lations, i.e., there are initial conditions which are fundamental for obtaining meaningful simulation re-
sults. Therefore the “empty” model has to be initialized in a way that the current real system state is 
equivalent to the model state. 

When discussing the initialization of simulation models the quality and availability of input data ob-
viously has the most impact for the correctness of the model (Davis 1998). While the general mechanism 
of on-line simulation and the quality of input data is discussed in many ways in literature, there are fewer 
sources that methodically describe how to represent initialization data.  

In Hanisch, Tolujew, and Schulze (2005) two basic strategies for model initialization are discussed. 
The first alternative is to maintain a “parent” simulation, from which simulations clones can be derived. 
The parent simulation stays in sync with the physical system and is constantly updated with its state. 

The second alternative is to generate and initialize the simulation model on demand by using a suita-
ble model representation of the physical system. 

Using the first alternative, one first has to create a simulation model and initialize it appropriately. 
Only afterwards it can be incrementally updated with the state of the physical system, e.g., whenever 
some measurement data is obtained. This may be problematic when the prediction of the simulation mod-
el contradicts a certain measurement. The model must then take measures to adapt to the actual state of 
the physical system, e.g., by using rollback mechanisms or by interpolating. Additionally, the simulation 
environment has to supply mechanisms to derive a child model from the parent model. This is something 
which is rarely found in commercial simulation packages. 

The second alternative suggests to automatically generate and initialize the model at the point where 
it is needed. Here, all information required for initialization must be acquired at the point of creating the 
simulation model. Although some detailed implementation problems must be addressed, this approach 
seems suitable for several commercial simulation packages. In this paper we will discuss how this ap-
proach can be implemented using a standardized exchange format for the domain of manufacturing sys-
tems. 

To return to the initially stated objective of reaching a closer integration of simulation with general 
manufacturing applications, the usage of standards has to be discussed. In the last years, there have been a 
number of efforts for standardization of exchange formats for model descriptions (e.g., CMSD-IM and 
SysML (Schönherr and Rose 2009)). These standards were developed to support the exchange of model-
ing information between non-simulation applications and simulation systems.  

Their capabilities have been demonstrated in some real world applications (Johansson et al. 2007; 
Riddick and Lee 2008). Several CSMD based model generators have been presented in the past, including 
Bergmann, Fiedler, and Strassburger (2010) and Johansson et al. (2007).  
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As the focus of the presented scenarios is often the planning phase of a production system, most of 

these model generation approaches produce an “empty” simulation model, which has to run through a 
warm-up phase. When addressing the operational phase of a production system the model initialization is 
of much higher importance, though. We therefore address this issue in detail in the following sections. 

3 CORE MANUFACTURING SIMULATION DATA (CMSD) INFORMATION MODEL 

The core manufacturing simulation data (CMSD) information model is an open standard developed with-
in the simulation interoperability standards organization (SISO). It has been developed in cooperation 
with academic and industrial partners under the leadership of the National Institute of Standards and 
Technology (NIST).  

The primary objective of the CMSD Information Model is to facilitate interoperability between simu-
lation systems and other manufacturing applications. Towards this objective it provides a data specifica-
tion for the efficient exchange of manufacturing data in a simulation environment (SISO 2010). Purposes 
of the CMSD standard are to: 

 enable data exchange between simulation applications and other software applications 
 support the construction of manufacturing simulators 
 support the testing and evaluation of manufacturing software 
 enable greater manufacturing software application interoperability (SISO 2010) 

Two different methods are used for representing the CMSD standard: the Unified Modeling Language 
(UML), and the XML schema definition language (XSD). The UML representation has been organized 
using packages shown in Figure 1. The classes suitable for the initialization of simulation models are dis-
cussed in section 4.2. For more detailed information about CMSD, see SISO (2010), Leong, Lee and Rid-
dick (2006), and Johansson et al. (2007). 

The CMSD standard provides data structures and an information model which were designed to firstly 
support the exchange of modeling information. To cover the complexity of production and logistic sys-
tems and a wide range of modeling approaches, the standard allows aspects of the system to be mapped in 
CMSD in multiple ways.  

All CMSD classes which describe objects, like jobs, machines and so on can be extended by user de-
fined properties. 
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Figure 1: The packages of the CMSD Information Model (SISO 2010) 

The capabilities of CMSD were demonstrated in a research project (FACT), which focuses on the de-
veloping of new and modified production systems (Johansson et al. 2007). The results of their experienc-
es were used to enhance and evaluate the standardization process. This project was settled in the system 
planning process. There are no documented applications of using CMSD in system operations. However, 
the data structures provided by CMSD seem also capable of transporting information of dynamic system 
components. In this paper we show how it is possible to map state information to CSMD classes so it can 
be used to initialize simulation models. 
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Before we describe how the modeling and state information could be mapped into CMSD data struc-

tures we first have to discuss and classify the input data of the simulation model obtained from the pro-
duction or logistics systems. 

4 METHODOLOGY FOR MODEL INITIALIZATION 

4.1 Input Data 

Various data which describe the production system and its state are needed for the simulation studies. The 
VDI (The Association of German Engineers) classifies relevant input data into three clusters: technical, 
organizational and system load data as shown in Figure 2. 

 

Figure 2: Relevant input data for simulation studies (VDI 2000) 

The class of the technical data describes the layout and topology of the entire system as well as the 
properties of single system components. The organizational data specifies the operation structuring and 
process organization, especially working shifts models, strategies and resource allocations. Finally, the 
class system load data describes jobs and their properties. 

While technical data and organizational data are mostly relevant for data-driven model generation ap-
proaches, the system load data focuses on the data primarily relevant for model initialization. 

In this paper we define initialization as a manner to setup simulation models in such a way that the 
model's internal control structures (event lists, random number generators, simulation clock, component 
states, etc.) reflect the current state of a real system with sufficient accuracy for forecasting purposes 
(Hotz 2007). 

For the initialization only data about the system load and the state of all resources is of interest (Table 
1). We assume that all other aspects, like technical data (system layout, topology) are already reflected in 
the simulation model, e.g., by using manual or automated model generation approaches (Bergmann and 
Strassburger 2010). 
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Table 1: Categories of initialization data 

Data about Example characteristics 
Resources Machine status Idle, working, setup, paused, failed… 

Worker Place, working, paused, … 
Conveyor Idle, working, paused, failed. … speed, type, number  

Job Process step, state, scrap percentage, type … 
Part Place, state 
System time  
 

Data on the states of resources is the first class of data which is required to initialize a simulation 
model. Concerning machines, the active setup of the machine and its current working state are particular-
ly important. Fundamentally, we can distinguish six main working states of a machine: idle, busy, setup, 
broken/failed, paused and under maintenance. The information which specific job currently occupies the 
machine is only of secondary interest, as this can typically be modeled as a property of the job. 
 While machines are typically immobile, we have to distinguish other resources like workers and con-
veyors, for which the current location can also be of relevance.  

Workers have partially other relevant states as other resources. Similar to the machines they have an 
attribute “working state”, but it can have other values. While “in movement” is a valid status for a worker, 
“failed” is not. Furthermore, workers are usually mobile resources, so they have a current location (often 
at a machine) and when in movement they should have a destination and an arrival time.  

Conveyor is a class of resource which can have quite heterogeneous properties depending on the type 
of conveyor. Depending on the level of detail in the simulation model, in the simplest case they can be 
treated like machines. Other parameters, such as current speed, acceleration, type, location and number of 
carriers can be important if they are represented in the simulation model. 

The central element for initialization of simulation models are the jobs in the system, as they repre-
sent the dynamic objects of the physical system. Without their accurate reproduction in the model, we 
cannot use it as a tool for operational decision support. The basic requirement for initializing a job appro-
priately is to know its current process step and its processing status. It also has to have knowledge about 
its process plan, e.g., the machine order. 

From these two facts crucial information for the simulation can be derived: If a job is at a certain pro-
cess step (say 7) and has a certain state (say blocked) we can derive that it is located in a buffer in front of 
machine 7. Similarly, if its state is “started” we can derive that it is being processed at a certain machine. 

Furthermore, information about scrap or rework percentages can be relevant, especially when dealing 
with lot sizes larger than one.  

Further detailed information about jobs can be needed when considering parts which are consumed, 
e.g., in assembly processes. Here we might need data on availability of parts at the current workstation. 

From the states and conditions discussed above, a certain set can be used for initialization quite easi-
ly. This is especially true for all enumerated data types which merely describe a state of an element (e.g., 
machine state “idle”).  

Other data, like the current status of already started jobs (including maintenance or repair jobs) can be 
quite difficult to capture from the real system and to map into the simulation model state. First of all, this 
data will most likely not be explicitly available from the real system. Rather, if we want to know a re-
maining process time, we will most likely only be able to determine a job’s starting time and its planned 
processing time. From this we may be able to estimate its remaining processing time. Still, it may be dif-
ficult to appropriately integrate this information into the simulation system.  
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4.2 Using CMSD for Modeling Input Data 

The CMSD standard offers a variety of classes which can be used for representing the data discussed in 
the previous section. In this section we focus on the discussion of those CMSD classes which seem ap-
propriate for model initialization purposes. In particular, we suggest the usage of the classes Resource, 
Part, Job, JobEffortDescription, Schedule, ScheduleItem and ProcessPlan (see Figure 3).  

  

 

Figure 3: Resource and job related classes (SISO 2010) 

In the following discussion we assume that the simulation model generation has created all necessary 
elements, parameters, and data types consistent with potential initialization values (e.g., all actually occur-
ring setup states must be present and meaningful to the model). 
 We first describe the set of basic initialization data (Table 2) that can be mapped directly onto attrib-
utes of the classes distinguished in CMSD (figure 4). Later in this section, we will also describe exten-
sions needed in CMSD and how to implement them using the property concept of CMSD. 

Machines as the most important resource type can be completely described in terms of their current 
setup and their operational readiness. The current setup state is represented as a reference to a setup state 
definition, which was created during the model generation. The operational readiness can be described 
through an enumeration value of the ResourceStatus class. The predefined enumeration values (busy, idle, 
broken, under maintenance, and unknown) are not sufficient. We suggest to include at least the states 
“paused” and “in setup.”  

The basic state of workers and conveyors can be described analog to machines, with the difference 
that workers have no setup state and some ResourceStatus does not apply (e.g., broken). 

Next to resources, jobs are the most important elements for accurate model initialization. In CMSD, 
the Schedule and the ScheduleItem classes have to be used to specify scheduled jobs that are not yet re-
leased into the production system. The classes Job and JobEffortDescription are used for Jobs which are 
already in the production system. They define the current or the next step of a job’s process plan and all 
actual and planned times/dates. A job can be a normal manufacturing, a maintenance or a repair opera-

ResourceType: 

Resource: ResourceReference [0..*]
HourlyRate: CurrencyTyoe [0..1]
EmployeeSkill: SkillReference [0..*]
Size: GrossDimensions[0..1]

Identifier: Identifier
Description: String [0..1]
ReferenceMaterial: ReferenceMaterialReference [0..*]
Property: Property [0..*]

::IdentifiableEntity

ResourceType
ResourceClass: ResourceClassReference [0..1]
Name: String [0..1]
CurrentStatus: ResourceStatus [0..1]
CurrentSetup: SetupDefinitionReference [0..1]
ShiftAssignment: CalendarReference [0..*]
Associated

Resource
UniqueEntity

Status: JobStatus
UpdateTime: Timestamp [0..1]
RequestingParty: ContactInformation [0..1]
PerformingParty: ContactInformation [0..1]
AssociatedOrder: OrderInformationReference [0..*]
Priority: String [0..1]
PrecedenceConstraint: JobConstraint [0..*]
SubJob: JobReference [0..*]

Identifier: Identifier
Description: String [0..1]
ReferenceMaterial: ReferenceMaterialReference [0..*]
Property: Property [0..*]

::IdentifiableEntity

Job
UniqueEntity

UpdateTime: Timestamp [0..1]
PartsProduced: PartGroup [0..*]
PartsConsumed: PartGroup [0..*]
ResourcesRequired: ResourcesRequired [0..*]
DueDate: Timestamp [0..1]
ReleaseDate: Timestamp [0..1]
StartTime: Timestamp [0..1]
EndTime: Timestamp [0..1]
SetupTime: Duration [0..1]
ProcessingTime: Duration [0..1]
ProcessPlan: ProcessPlanReference [0..1]
CurrentProcessPlanStep: ProcessReference [0..1]
MaintenancePlan: MaintenancePlanReference [0..1]
CurrentMaintenancePlanStep: 
MaintenanceProcessReference [0..1]
CostAllocationData: CostAllocationData [0..*]
Note: String [0..*]
Event: Event [0..*]
Property: Property [0..*]

JobEffortDescription

PlannedEffort      0..1 ActualEffort      0..1
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tion. Again it is important that the simulation model is consistent with the intended initialization, e.g., all 
necessary process plans must be available.  

As shown, the classes as defined in the CMSD standard are sufficient for basic initialization purposes 
(Table 2). For applications requiring a more detailed modeling and initialization, some extensions will be 
needed which can be brought into CMSD as a proprietary extension using the CMSD property concept. 

Table 2: Used CMSD classes and attributes 

Data  CMSD Class Relevant Attributes 
Machine state Resource 

(type = machine or station) 
CurrentStatus: ResourceStatus
AssociatedResource: ResourceReference (Worker) 

Worker Resource  
(type = employee) 

CurrentStatus: ResourceStatus 
Property - current location (LocationDefinition) 

Conveyor Resource  
(type = carrier, conveyor, 
“power and free” or trans-
porter) 

CurrentSetup: SetupDefinitionReference  
CurrentStatus: ResourceStatus 
AssociatedResource: ResourceReference (Worker) 
Property - current speed, acceleration, and type, location 
and number of carrier 

Job Job Status: JobStatus 
Priority. String 
ActualEffort: JobEffortDescription 
PlannedEffort: JobEffortDescription 

JobEffortDescription DueDate / ReleaseDate: TimeStamp 
StartTime / EndTime: TimeStamp 
ProcessPlan: ProcessPlanReference 
CurrentProcessPlanStep: ProcessReference  
MaintenancePlan: MaintenancePlanReference 
CurrentMaintenancePlanStep: MaintenanceProcessRef. 
Property - remaining processing times (double) [%] 

Schedule Schedule StartTime / EndTime: Timestamp 
ScheduleItem: ScheduleItem 

ScheduleItem AssociatedJob: JobReference 
Part Part ProductionStatus: PartProductionStatus 

Location: LocationDefinition 
System time HeaderSection CreationTime: Timestamp 

 
As discussed in section 4.1, the detailed processing status of started jobs is certainly the information 

that adds the most value to many simulation scenarios as it increases the accuracy of the initialization. We 
therefore suggest to map the remaining processing time to a simple CMSD property, named "Remain-
ingProcessingTime." It is conceivable that either the percentage and/or the absolute remaining processing 
time is specified. In our test implementation (see Section 5) we use percentage values.  

Another suggested extension is the inclusion of the number of parts of a lot that are scrapped or need 
to be reworked. Again, these parameters can be specified in percent of the lot or as an absolute number of 
units. 

Further extensions based on the CMSD property concept are possible but they highly depend on the 
specific manufacturing scenario. While most of these extensions can be easily modeled using CMSD 
properties, this holds the danger of creating incompatible CMSD dialects.  

Compared to other resources like machines or workers, conveyer systems are not so easy to abstract 
and therefore take a separate discussion. In CMSD conveyers are primarily resources, which are described 
by static attributes. In reality, however, conveyers are accumulating objects that can hold and buffer work 
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items. In our modeling approach these work items are identified by job objects. Unfortunately, CSMD 
does not provided attributes to describe the current state of the capacity of a conveyer system. 

 

 

Figure 4: Snapshot of the XML-based CMSD description for Job- and Process-Definition 

There are two ways to solve this limitation. The first alternative is to use again the property concept 
and extend the resource class with capacity state information. We suggest using the second alternative, 
which is to model the time consumption of jobs while transported by a conveyer system in its attached 
process plan. By processing the process plans of jobs, the currently used resource can be determined. 
With this information the current content state of a conveyor can be calculated. This kind of modeling 
could also be used for buffers.  

While the suggested extensions using properties are designed to increase the accuracy of initializing 
simulation models, a backward compatibility is maintained, as initialization routines not capable of han-
dling a certain property will still be able to perform basic initialization, even if it is at a lower degree of 
accuracy. 

5 TEST IMPLEMENTATION  

Our pilot implementation is built on an existing CSMD based model generator created in previous re-
search work by Bergmann, Fiedler, and Strassburger (2010). 

For our test environment (Figure 5) we have designed the information flow as closely as possible to 
real world scenarios. We assume that all information which is required to describe the system and its state 
is captured in the relevant manufacturing applications (e.g., Enterprise Resource Planning Systems (ERP) 
and Manufacturing Execution System (MES)). 
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We emulate that process by creating a valid CSMD description of the system. In our prototype, the 

CMSD XML files are generated by a web based frontend. In reality, these files would be extracted from 
the manufacturing applications. 

Our model generation and initialization approach supports incremental model generation, i.e., static 
components described in CMSD only need to be generated once, while initialization can be performed 
multiple times as required.  

The generated CSMD description contains every information which is necessary to generate the simu-
lation model of the physical system and initialize it with its current state. This information package is sent 
to our CMSD based model generator. 

 

 

Figure 5: Prototype for automatic generation and initialization of simulation models 

The model generator itself serves as a transformation layer between CMSD and the used simulation 
environment. It processes the information contained in the CMSD description and maps it to internal 
structures and components of the simulation environment. The challenge is to ensure that the simulation 
system is actually capable of representing the physical system and allowing its initialization. 

From the large number of commercial simulation packages available not every simulation environ-
ment can fulfill these requirements. For our implementation we have used Plant Simulation (Siemens 
2011) as simulation environment which matches these requirements (Figure 6). 

Figure 6: Plant Simulation prototype for CMSD based initialization 
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The test scenario depicts a typical job-shop production, with 5 machines and 5 job types. The details 

are shown in Tables 3 and 4. Each machine has an input buffer with unlimited capacity. For simplicity, 
the processing strategy of the buffer is in the order of the storage (first in first out - FIFO).  

Table 3: Scenario job matrix 

Job type Machine order Processing time 
 (in minutes) 

A M1, M2, M3, M4, M5 3, 5, 6, 4, 2 
B M2, M3, M1, M4 2, 5, 4, 3 
C M2, M1, M4, M5, M3 3, 4, 5, 1, 4 
D M1, M2, M3, M4 2, 3, 5, 3 
E M2, M3, M5 2, 4, 6 

Table 4: Scenario setup matrix (left) and machine parameters (right) 

Job type A B C D E  Machine MTBF MTTR 
A 0 1 2 1 3  M1 15 2 
B 1 0 3 1 1  M2 15 5 
C 2 3 0 2 2  M3 20 5 
D 1 1 2 0 1  M4 25 2 
E 3 1 2 1 0  M5 15 5 

 
For the described model we derived several test cases with information for various states. For every 

case we investigate the result of the model generation process for completeness concerning information 
mapping, generating correct simulation models and accuracy of the model behavior. We also investigated 
the performance of the model generator, especially the time to build and initialize simulation models from 
scratch. We could determine that the speed of the model generation process depends highly on the XML 
processing time, which directly depends on the size of the CMSD description. 

In summary, our model generator is able to generate simulation models and initialize them with the 
initialization data specified in Section 4.2. It is also capable of performing initialization without rebuild-
ing the model from scratch. In this case the XML processing time is significantly decreased. 

6 CONCLUSION AND FUTURE WORK 

The goal of our work was to investigate requirements and solutions for simulation model initialization in 
the context of online- and symbiotic simulation in the domain of manufacturing simulation. In these types 
of simulations, the simulation model typically serves as an operational decision support tool. The accurate 
capturing of initial conditions is therefore fundamental for the quality of the model based predictions.  

Our work investigated systematically which data from the physical system is needed for initialization 
focusing on the domain of manufacturing simulation. Based on these findings we have investigated the 
CMSD standard for its capabilities to carry model initialization information. While CMSD has been 
shown to be generally capable of carrying basic initialization information, extensions will be needed for 
more specific initialization tasks. We have further shown how the CMSD property concept can be used to 
implement these extensions. 

We have further demonstrated a prototypical implementation of a CMSD based model generator ca-
pable of generating and initializing a simulation model in Plant Simulation. We are convinced that the re-
sults of our research represent a viable approach for model initialization that can be used to improve ap-
plications where a large amount of simulation experimentation has to be performed, like symbiotic 
simulation, simulation based early warning systems or model predictive control. Due to the generic design 
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of the model generator we are able to support cyclic model generation which facilitates the adaption of 
the entire simulation model when the real system changes. 

Future work will involve the testing of the approach in larger industrial test scenarios. Potential direc-
tions of future work include the topic of providing simulation (including model generation and initializa-
tion) as a service and offering the large amount of scenarios to be analyzed in the context of symbiotic 
simulation as cloud-based simulation services.  
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