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ABSTRACT 

In order to maximize asset utilization and meet customer delivery requirements manufacturing facilities 
are driven by two key metrics: utilization of production capacity and cycle time. The science of factory 
physics indicates that queuing theory algorithms relying on an understanding of factory variability at the 
equipment level can make it possible to use static calculations to estimate factory cycle times. This ap-
proach has been frequently dismissed as insufficiently accurate due to the difficulty associated with de-
termining the required variability factors. This paper outlines a method using queuing theory equations 
together with targeted historical data to estimate total cycle times. Initial validation results indicate that 
the approach can provide sufficiently accurate results to be useful in manufacturing decision making. 
Equations, data requirements, and validation results are presented. Opportunities for improvement of the 
methodology as well as further refinement of the equations for calculating equipment specific variability 
factors are also discussed. 

1 INTRODUCTION 

With the ever present focus on maximizing asset utilization as well as meeting customer on-time delivery 
requirements manufacturing facilities are driven by two key metrics: utilization of production capacity 
and cycle time. Companies in the analog semiconductor business face a unique challenge due to a high 
number of different products produced simultaneously and shrinking product life cycles in markets such 
as consumer products. The increased level of complexity together with downward price pressure necessi-
tates a scientific approach with pragmatic results toward balancing these key performance metrics.  

Wafer start requirements in combination with required process step routings and planned equipment 
performance parameters provide the basis for typical factory capacity modeling used to predict factory 
utilization. Given the increased computing power in today’s desktop computers this can be accomplished 
with a sufficiently high degree of accuracy through relatively straight forward spreadsheet calculations. 
While these spreadsheet models have been and continue to be used extensively to estimate factory utiliza-
tion, in the past it has been mostly left up to dynamic factory simulation models to provide cycle time 
predictions. 

The science of manufacturing as put forth by Hopp and Spearman (2001) indicates that queuing theo-
ry algorithms relying on an understanding of factory variability at the equipment set level can make it 
possible to use static calculations to estimate factory cycle times. This approach to estimating cycle time 
has been frequently dismissed as insufficiently accurate due to the difficulty associated with determining 
the required variability factors. This paper outlines a historical data driven approach utilizing the general 
multi-machine Kingman equation to calculate the requisite operation specific queue times. The G/G/m 
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model is used as a starting point to evaluate the feasibility of the approach. Work is under way to investi-
gate whether other more detailed models such as those proposed by Whitt (1993) will produce even better 
results. 

While the use of historical data to estimate factory variability was initially chosen merely as a starting 
point, it was found to be an appropriate choice since inter-arrival variability will always have to be an ap-
proximation that is best founded in historical data as long as it is available.  

Comparison of initial validation results against actual factory cycle time performance of a complex 
wafer fabrication facility indicate that the current approach can provide sufficiently accurate results to be 
useful in manufacturing decision making.  

Equations, associated data requirements, and validation results are presented. Opportunities for im-
provement of the current methodology employed as well as plans for further refinement of the equations 
used to calculate equipment specific variability factors, as also suggested by previous research, are dis-
cussed. 

2 METHODS  FOR CALCULATING CYCLE TIME  

Several different approaches for calculating estimated cycle times in manufacturing systems have been 
developed over the years. It is beyond the scope of this paper to present a comprehensive list; however, a 
brief review of the key methodologies is appropriate.  

Chuang and Huang (2002) classify the approaches to cycle time estimation into four major categories: 
analytical, simulation, statistical analysis, and hybrid methods. The first two have historically been those 
mostly used to help predict cycle time in semiconductor manufacturing. While the latter two appear to 
provide viable alternative solutions they were only briefly reviewed as part of this work and are therefore 
not discussed here. For a more thorough review of all four cycle time estimating methods including statis-
tical analysis and hybrid methods see Pearn, Tai, and Lee (2009) as well as Shanthikumar, Ding, and 
Zhang (2007).  

Simulation has been the de facto standard for cycle time estimation for many years. It has been used 
primarily in the area of dispatch and scheduling research. Due to the inherent ability in the simulation ap-
proach to build a detailed model that very closely represents the complexity of an actual factory, simula-
tion models can produce very accurate cycle time predictions. Simulation success though can only be 
guaranteed as long as the proper level of resources is applied to ensure model validity. The proper re-
source commitment has to be made both to build the model as well as to maintain the model at the proper 
level of detail required to deliver the desired level of accuracy. There appears to be general consensus 
within the modeling and simulation community that for truly meaningful results the level of effort re-
quired is non-trivial. 

Analytical methods developed around queuing theory equations have been widely discussed and ex-
panded over the last few years. As pointed out by Shanthikumar, Ding, and Zhang (2007), while analyti-
cal methods are significantly faster than simulation models, their accuracy has been found to be lacking 
when compared to that of simulation models. The cause for this is stated to be in part due to the fact that 
semiconductor factory behavior is too complex to be represented by one single queuing model (FabTime,  
2011). The potential of using several different queuing models to improve model accuracy will be further 
elaborated later in this paper. It has also been frequently suggested that queuing theory equations can be 
useful but only at the individual workstation and work cell level.  The work presented below has shown 
that combining basic queuing theory equations with targeted historical data can provide a way to estimate 
factory complexity and provide cycle time results at a useful level of accuracy.  
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3 THEORY OVERVIEW 

3.1 Method 

In their discussion of the roots of randomness Hopp and Spearman (2001) suggest that the nature of ran-
domness can be viewed one of two ways. The first view is that everything is deterministic, the second that 
everything actually behaves randomly. Regardless of the view adopted, whether due to lack of knowledge 
or an inability to ever get that knowledge, there is agreement that we do not have a complete scientific 
understanding of randomness. 

Hopp and Spearman (2001) conclude that the goal therefore is to find sufficiently robust policies and 
methods that will work most of the time. Accordingly the objective of this work was to arrive at a meth-
odology to predict cycle time that would work most of the time. Additionally the methodology needed to 
require a reasonable level of resources to maintain and use on an ongoing basis commensurate with the 
benefits it provides. The method found that appears to meet both of these objectives is the analytical ap-
proach of determining wait time using equations based on queuing theory. The requisite factory variabil-
ity is derived using historical factory performance data representative of the anticipated factory state. 

3.2 Equation  

The fundamental equation used is the well known Kingman equation with the underlying assumptions 
that both inter-arrival times and process times conform to a general distribution, that the machines are all 
parallel processing machines, and that the maximum number of jobs in the system is infinite. Using Ken-
dall’s notation this is also known as the G/G/m queuing system. 

The equation for the wait time in queue for this system is defined as: 
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where: 
 ca = the coefficient of variation of inter-arrival times to the equipment set 
 ce = the coefficient of variation of effective process times at an equipment set 
 m = the number of machines in the equipment set  
 u = utilization of an equipment set 
 te = effective process time. 

4 SOLVING THE VARIABILITY DILEMMA 

4.1 The Variability Challenge 

In its simplified form, the Kingman equation (1), also called the VUT equation, reads: 
 
                                                                 eq VUtCT                (2) 

 
In a predictive modeling environment the utilization component U can be calculated from modeled 

demand OEE, planned availability, planned efficiency, and planned equipment count m.  
The effective process time te by operation can be obtained from either planned or historical manufac-

turing data and is the combination of raw process time, equipment specific overhead, and move time. 
The variability component V however is more difficult to derive. The two possible approaches that 

can be used to estimate V are either a forward calculation using process times and planned or historical 
inter-arrival times, or a backward calculation using historical queue time performance representative of 
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specific factory states. Li et al (2005) suggest using the backward calculation and effectively apply it to 
generate operation curves for an assembly and test facility. Since this approach requires that sufficient 
history is available to provide data representative of the desired or anticipated factory state, it is not viable 
for green field factory planning or for factories that are only in the start-up phase. However for more ma-
ture factories it provides a practical and effective way to derive factory variability. 

4.2 Backward Calculation of V 

As suggested by Li et al (2005) the VUT equation (2) can be solved for V as follows: 
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Combined with equation (1) the resulting equation for the backward calculated variability component 

becomes: 
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We can now calculate the factory variability V since the variables in equation (3) are all known as 

long as historical data is used for CTq. To make this value useful the following consideration need to be 
observed for CTq and the other variables: 

 CTq is the historical average queue time for each equipment set during the time period chosen that 
is representative of either the desired or anticipated factory state. 

 u is the utilization for each equipment set calculated using the following: 
 demand OEE modeled using the known historical factory loading mix and volume.  
 actual availability and efficiency for each equipment set during the factory state that the vari-

ability is being calculated for. 
 m is the number of machines in each equipment set that was active during the time period that is 

representative of either the desired or anticipated factory state. 
 te is the mean effective process time for each equipment set during the time period that is repre-

sentative of either the desired or anticipated factory state. The te values typically do not vary 
much over time unless the factory experiences significant changes in loading mix. 

4.3 Resulting Equation for Calculating CTq 

The equation for time waiting in queue using the backward calculated variability component VB can now 
be written as:   

 

                                                         e

m

Bq t
um

u
V




















)1(
CT

1)1(2

                                                     

 
where: 
 VB is the variability for each equipment set backward calculated for the time period that was cho-

sen to be representative of the factory state to be modeled 
 u is the modeled utilization for each equipment set calculated using the following: 
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 demand OEE as modeled using the planned/expected loading mix for the scenario that cycle 
time is being calculated for.  

 either planned availability and efficiency for each toolset or actual availability and efficiency 
representative of the factory state that cycle time is being calculated for. 

 m is the planned/expected number of tools in each toolset for the scenario being modeled. 
 te is the mean effective process time for each equipment set during the time period that is repre-

sentative of either the desired or anticipated factory state. 

5 IMPLEMENTATION AND CHALLENGES 

The implementation process follows the steps shown in Figure 1.  
 

Figure 1: Queuing theory cycle time implementation process flow 
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First a time period is chosen that is representative of the desired or anticipated factory state to be 

modeled. Then historical loading mix and equipment data for that time period are extracted and fed into 
the model to calculate U. Historical queue time data are extracted for the same historical time period and 
together with effective process times used to calculate the variability VB for each equipment set. These 
variability values can now be used to calculate the wait times in queue and subsequently estimate overall 
cycle times for future scenarios assuming a similar state of the factory. 

Key challenges associated with the implementation process include the following:  
The most significant element for success to make this approach work at all is access to extensive his-

torical data. Fortunately, many facilities have information and automation systems that can provide the 
relevant data to allow the necessary analyses to occur. In these factories historical queue times, historical 
equipment data, as well as factory wide effective process time components are readily available for any 
desired time period. 

The next challenge is correlating historical time periods with specific factory performance states. A 
knowledge of historical factory performance is paramount to choose the right time period in order to en-
sure that the variability calculated is as close as possible to the factory state being modeled. 

An underlying requirement is the accuracy of the capacity model which generates the utilization for 
all of the individual equipment types. Many capacity models in the industry have been built without con-
sideration for cycle time calculations and frequently do not include all or some of the metrology and elec-
trical test steps. This was indeed the case when the cycle time modeling methodology presented here was 
added to an already existing factory capacity model. Thus far the current methodology estimates the im-
pact of metrology and electrical test on cycle time as a percentage of the overall cycle time based on his-
torical data. While this has been found to be reasonably accurate it is one of several opportunities for fu-
ture refinement as discussed later. 

6 VALIDATION PROCESS AND RESULTS 

Figure 2 below outlines the validation process used. 
 

Figure 2: Queuing theory cycle time validation process flow 
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The first step in the validation process matches the implementation flow and consists of extensive da-

ta extraction. The second step requires the evaluation and possible recalculation of the backward calculat-
ed variability for each equipment type. This should not be required unless the state of the factory has been 
affected by significant changes in volume, mix, or dispatch rules, or major equipment availability issues. 
Once a variability assumed to be sufficiently representative of the time period for which the cycle time is 
being validated has been calculated, the model can be run to determine cycle times that can be compared 
against actual factory performance. 

The validation chart below shows the results for four major technology flows running through a facto-
ry with a complex mix of over fifteen different technologies. The technology flows selected are repre-
sentative of the process families that drive the majority of the factory volume and are therefore used as 
marker flows to model cycle time. In addition to the cycle times by technology a volume weighted aver-
age of these cycle times is calculated to arrive at an overall factory cycle time which is not shown below 
but correlates similarly with actual factory performance. 
 As is evident from Figure 3 below all four technology cycle times have been validating well for most 
time periods. 
 

   

Figure 3: Queuing theory cycle time validation results 

The above charts by technology show three instances where the modeled cycle time did not validate 
well against actual factory cycle time performance. During those time periods the factory was temporarily 
underutilized. This produced highly irregular fab behavior during and right after those time periods which 
violated steady-state model assumptions.  

It is interesting to note that Technology B shows a divergence between modeled and actual cycle time 
over the last three time periods. This is a result of deliberate actions taken by the manufacturing floor to 
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manage around constraints unique to this particular technology thereby again violating model assump-
tions. 

Overall validation results were highly encouraging especially given the additional opportunities for 
further refinement of the methodology employed. 

7 APPLICATIONS 

Using the above outlined methodology the calculated cycle times have been used to aid in ongoing facto-
ry performance monitoring and analysis as well as future factory performance estimation. 

7.1 Tactical Factory Performance Monitoring  

The model has been used to evaluate tactical loading mix changes both for volume increases as well as 
volume decreases and their respective impacts on cycle times. The model correctly predicted technology 
specific cycle time fluctuations resulting from specific equipment set utilization changes due to shifts in 
loading mix.  

Similarly the model was used to identify what tools were no longer needed when loading temporarily 
declined. While the capacity portion of the model on its own predicted certain tool count reductions based 
purely on utilization, the cycle time portion was used to identify the resulting cycle time impacts. Based 
on this additional analytical capability it was possible to adjust tool counts to ensure the factory would 
continue to meet the desired cycle time targets. 

7.2 Strategic Factory Performance Estimation 

By using a variability that reflects optimum factory performance observed in the past it is possible to es-
timate factory performance for projected strategic factory loading or intended mix changes. The model 
has been used to gain a relative understanding of the factory performance for both short term and long 
term loading volume and mix scenarios. While the accuracy, as is the case with all models, is not ex-
pected to be very high and declines with the degree and number of differences between the modeled sce-
nario and loading producing the known historical factory states, the model cycle time results can serve as 
a good indication of what kind of factory performance can be expected based upon the variability, equip-
ment count, and other model assumptions used. 

8 OPPORTUNITIES 

While initial validation results have been very encouraging, we acknowledge that the modeling method as 
presented still has several opportunities for improvement.  

The key aspects of our current approach that are recognized to require additional work can be divided 
into three areas: Factory Definition, Forward Calculated Variability, and Enhanced Variability.  

The current model was originally designed to only address capacity calculations and as such was built 
around the premise that a small but representative number of process flows would be sufficient to proper-
ly model the factory. An increasing portfolio of process technologies has led to an attending proliferation 
of products using multiple process variants. This has produced a situation where modeling only repre-
sentative process flows can fail to capture equipment demands due to not modeling certain process flow 
variants. The missed demands may be minor or major depending on loading mix. As mix changes are 
highly unpredictable it has become necessary to increase the number of process flows being modeled to 
include as many flows as possible and ideally all those present in the factory. An initial evaluation of the 
feasibility to increase the number of process flows being modeled from dozens to hundreds has been per-
formed resulting in tens of thousands of modeled process flow operations requiring increased computing 
power. The model also did not include metrology or electrical test operations. This further exacerbates the 
problem of needing to model an increased number of process steps. Both metrology and electrical test 
have recently been included in the model and are currently undergoing validation. 
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As outlined in this paper the model currently derives the variability component of the Kingman equa-

tion by backward calculating the variability component for each equipment type from historical queue 
time data. As pointed out this is valid only as long as the key factors affecting variability in the factory are 
assumed to remain unchanged. As such there is a danger that major swings in loading and/or mix will 
render the results less accurate. A forward calculation of variability using process variability as well as 
other variability subcomponents should help mitigate this danger; however, the need to estimate the inter-
arrival time variability remains a challenge that will likely always be solved using historical data. Work is 
under way to test refinements to the G/G/m model such as those proposed by Whitt (1993). Initial results 
show that further improvement can be gained by using Erlang distributions with 2 phases for process and 
inter-arrival times. 

The third area requiring additional work that should further improve robustness of this approach is a 
refinement of the elements within the variability component equation itself. We concur here with Shan-
tikumar, Ding, and Zhang (2007)  that the accuracy of analytical models can be further improved by in-
corporating key characteristics of wafer fabrication facilities. Future efforts are intended to focus on test-
ing and developing equations that address unique equipment behavior for the following major equipment 
types: single wafer serial processing, batch serial processing, single wafer parallel/re-entrant processing, 
batch parallel/re-entrant processing. Each one of these equipment types will likely require additional 
unique variability factors to properly represent their respective operational behavior. We expect to draw 
on previous work done in this area by Akhavan-Tabatabaei and Ding (2009) and Morrison and Martin 
(2007). 

9 CONCLUSIONS 

While the methodology presented in this paper to use historical data to calculate factory variability and 
then use that variability to predict cycle time clearly has its limitations, ongoing validation and successful 
applications are proving that model results correlate well with actual performance in a factory running a 
complex mix of multiple process technology flows. Key to a successful implementation are extensive his-
torical data access and the ability to properly correlate factory performances states with historical time 
frames. Additionally the underlying capacity model that predicts equipment utilization has to be accurate 
and sufficiently detailed to allow for cycle time calculations at all requisite operational steps. 

The model in its current state has been used to predict cycle time for both tactical as well as strategic 
scenarios and has been found to predict factory behavior sufficiently well to aid significantly in opera-
tional and capital planning decision making. 
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