
Proceedings of the 2011 Winter Simulation Conference

S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

OVERVIEW OF TECHNIQUES FOR MODEL-DRIVEN DEVELOPMENT OF A SIMULATION

PACKAGE

Dipl.-Inf. Pascal Weyprecht

Prof. Dr. rer. nat. Oliver Rose

Dresden University of Technology

Department for Modeling and Simulation

Dresden, Saxony, Germany

ABSTRACT

We propose model-driven development as a good choice for developing a simulator with decreased de-

velopment time and increased stability and maintainability compared to traditional development tech-

niques. Although the meta-model for the simulation model is not always known or well defined in most

commercial or academic simulation software packages, all simulators use such a meta-model throughout

different components of the simulator like the model editor or the simulation core. Model-driven devel-

opment uses a clearly defined meta-model as a basis for generating different artifacts, ranging from ex-

ecutable source code to documentation files. In this paper, we present a software architecture based on the

Eclipse Modeling Framework (EMF) in combination with the Graphical Modeling Framework (GMF) as

basic model-driven frameworks for data-layer and graphical user interface of a simulation software pack-

age.

1 INTRODUCTION

First we want provide an overview of the technologies described in this paper. The Eclipse Modelling

Framework (EMF) is only one of the exiting frameworks for model-driven development, but it is the one

used in this paper so all described technologies are related to the EMF. Of course this is not a complete

list of all technologies, tools or projects related to EMF. In this paper a very simple simulator will be de-

veloped with only four meta-model elements. It will be called SimpleSimulator and used as an example

within all following sections.

 The model-driven development process starts with a meta-model. In EMF this is defined as an Ecore

Model. To make things clear, the Ecore model is the meta-model of our simulator. A model in the context

of the simulator would be a simulation model, which can be simulated later on. In contrast, the meta-

model of Ecore is the syntax definition of Ecore itself. Figure 1 shows the relations between all of them.

There are several ways to edit the Ecore model, which will be described in the section 2 Eclipse Modeling

Framework. With the help of this model definition in Ecore one can create a Generation Model where the

parameters for the generating process are set. When this is done the model classes can be generated.

These are Java class representations of the model.

Figure 1: Ecore model vs. Simulator meta-model

1869978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Weyprecht and Rose

 In section 3 Graphical Modeling Framework a graphical editor for the simulation models will be de-

scribed. Therefore four more configuration files are needed, but the result is a fully functional graphical

editor with features like undo/redo, actions and toolbars, properties and outline view, shortcuts, validation

and more.

 As we now proposed a way to create and edit simulation models, the next step is to execute them.

One possibility is to just write code that uses the model for simulation. But since we use a Model-driven

solutions, an execution meta-model is created. This meta-model is also defined in Ecore and generated

with EMF. However, several custom operations are needed. These will be written with eJava, which is

described in the corresponding section.

 Beyond the basic components that are needed for building a simulator, there are several additional

features that would be nice to have. With the help of EMFText it is very easy to create a text editor with

features like syntax highlighting and auto completion. In section 5 EMFText a second editor for the mod-

els will be created, giving the user the freedom to choose his preferred editing method.

 Another recommendation for a simulator is documentation for the user. The task of Java Emitter

Templates is not exactly to build documentation but to generate any kind of text artifact, which can also

be used as a skeleton for documentation. Section 6 Java Emitter Templates will explain how to write a

template and what the possibilities of Java Emitter Templates are.

 This is not the first paper introducing code generating methods on developing simulation solutions. In

Vangheluwe & de Lara (2002) a similar approach is introduced relying on their own tool ATOM3. Be-

cause Model-driven development was relatively new at that time (see Poole (2001)), there did not yet ex-

ist a well-developed tool chain. Nowadays there are. One example is the Eclipse Modeling Framework

that is described in the following section.

2 ECLIPSE MODELING FRAMEWORK

EMF is the model-driven solution developed by the Eclipse Community. It has been developed over sev-

eral years. Like in every model-driven solution, the starting point is a meta-model. This model can be

edited in several ways: via a hierarchical editor, a text editor or a graphical editor. Because the graphical

editor is close to the representation of the Unified Modeling Language (UML) it is a good starting point.

The diagrams are very similar to class diagrams in UML. See Figure 2 for the model of the SimpleSimu-

lator example. Every block represents a class which can have attributes and operations. These attributes

can have a set of primitive types like EInt, EBoolean or EString, which are mappings of the Java types int,

boolean and String. This model is based on the Ecore meta-model and can be considered as a Platform

Independent Model (PIM). When this model is defined, a Generator Model can be built, which is in con-

trast to the first Model a Platform Dependent Model (PDM) for generating Java code. In the PDM options

for the generation process like default package, source directory and several other building properties can

be set. There is only a hierarchical editor for the Generator Model (see Figure 3). When the building op-

tions are set, several artifacts can be generated. First of all the Java class representation of the defined

model, including getters and setters, and methods for loading and saving the data of the model in a XMI

file. Also a hierarchical editor can be generated for simple editing in our new domain.

 As already mentioned above, Figure 2 is a graphical representation of the SimpleSimulator model.

The top level element of the this model is the class Model. This class represents the simulation model lat-

er on. It contains three kinds of elements: Tokens, ModelElements and ModelElementLinks, which will

be explained now. A Token is the object flowing through the simulation later on. It has a name, so there

can be for example “red” and “green” Tokens. The elements these Tokens flow through are ModelEle-

ments, which can also have a name like “machine one” or “machine two”. The class ModelElement itself

is abstract, but it has four inheritors that will be introduced now. At the Source, Tokens will be created

with a given interval. It can be linked to a Token, to decide which kind of Tokens will be created. The de-

struction of the Tokens happens when they reach a Sink. The next element is a Queue, where elements

can be stored. This Queue can have a limited size, given by the attribute size. The Delay holds Tokens for

a specified period of time. All ModelElements can receive and send Tokens. The relation where the To-

1870

Weyprecht and Rose

ken goes next is defined with a ModelElmentLink. Therefore ModelElementLinks have a source and a

target ModelElement. At this point there is no logic defined, how the model will work, only which model

elements it contains and how they are connected. The logic will be defined in the section 4 eJava.

Figure 2: Graphical Representation of the SimpleSimulator Ecore Model

Figure 3: Hierarchical Representation of the SimpleSimulator Ecore Model

3 GRAPHICAL MODELING FRAMEWORK

As discussed in the previous section, defining a model and generating a Java class representation as well

as a hierarchical editor is very simple. Building a graphical editor is a little more complex. The Graphical

Modeling Framework (GMF) needs four more files, to define the editor. Figure 4 shows the dashboard

provided by GMF and thereby gives an overview of the steps necessary for the generation. The four files

required for the process will be briefly described in this section. Although it will not be a complete docu-

mentation, we will give a brief overview of the possibilities.

 The first file is an element description, where all visual elements are described. In the SimpleSimula-

tor example these are boxes for the model elements, a circle for the token, a dashed line for the connec-

tion between source and token and lines with arrow heads for the model element links.

 In the second file existing tool elements are defined. Tools in this context are the buttons that create

the elements like a Source in the graphical editor later on. These tools get a name and an image, and they

can also be grouped for improved usability. In this file entries for the Main Menu, Popup Menus and

Toolbars can be defined, but these features are not used in the SimpleSimulator example.

1871

Weyprecht and Rose

Figure 4: GMF Dashboard

 None of these files has links to the Ecore model, neither the visual elements nor the tools are already

linked to specific model elements. This is done in the mapping definition file “.gmfmap”. In this file Node

Mapping elements can be added, that map model elements from the Ecore file to Diagram Nodes from the

visual description file and Tools from the tool definition file. There can also be other mappings for con-

nections between elements and canvases, and like above that Ecore elements get mapped to visual and

tool elements.

 Like the ecore files in EMF, the description files for the graphical editor in GMF do not contain plat-

form specific information, like Java in this case. This information get added in the “.gmfgen” file. Similar

to the “.genmodel” file in EMF the platform independent meta-model, in this case the three files described

above plus the Ecore model itself, are transformed into a platform dependent meta-model. The resulting

file enables us to generate the ready to use graphical editor. For the SimpleSimulator example, this editor

can be seen in Figure 5.

Figure 5: SimpleSimulator graphical editor generated with GMF

1872

Weyprecht and Rose

4 EJAVA

The next step in the creation of a simulator is to create the simulation engine, so that the created models

with the graphical editor can be simulated. This executable code can just be written by hand, but as we

will show how to work with a model-driven approach, the EOperations of EMF will be used to model the

behavior of the simulation.

 The usual way to implement the EOperations without the help of further tools is to generate the code

and fill in the missing method bodies of the EOperation methods. This mixture of generated and hand-

written code is not recommended due to several reasons. Although the hand-written code can be protected

from being overwritten during the next code generation by adding a @generate NOT tag on top of the

method, there are still a lot of occasions where the code can became invalid.

 The problem can be solved using eJava. It allows to specify the behavior of EOperations with a tex-

tual representation of a model based on Java and Ecore. The eJava files are saved next to the Ecore mod-

el. The represented code will then be automatically put into the Generation Model, so the EMF code ge-

nerator can be used without any changes. The syntax of the eJava files looks exactly like usual Java

statements except some small changes for differentiating between them. The tag package is now called

epackage, so is the keyword class now called eclass. Another difference is that method heads do not have

parameters or return types any more, as they are already defined in the Ecore model and should not be de-

fined twice, to minimize inconsistency. Of course the eJava Editor validates not only syntax, but also ex-

isting references within the eJava and the Ecore model and marks them directly. This way hand-written

and generated code are cleanly separated, so that no compilation problems occur after the generation

process.

 For adding semantics to the SimpleSimulator example a second meta-model was created that follows

the Visitor Pattern (see Gamma, Helm, & Johnson (1994)), to separate data from algorithms. This new

meta-model is called execution model and is a simplified version of fUML (for specification see

http://www.omg.org/spec/FUML/), a standard from the Object Management Group (OMG) for an ex-

ecutable subset of UML. Figure 6 shows one source code file of the execution meta-model of the Simple-

Simulator example. There is an EClass for every meta-model element of the syntax meta-model, for ex-

ample SourceActivation for Source. Additionally there is a Clock, several Events like the one in Figure 6

and more. This paper will not go into more detail on this topic but the interested reader is referred to

fUML itself.

Figure 6: eJava example (SourceEvent.eJava)

1873

Weyprecht and Rose

5 EMFTEXT

The eJava tool shows the importance of textual representations of models. The textual editor of eJava it-

self is a very good example for generated editors. It is created with EMFText, that generates a textual edi-

tor with syntax highlighting and auto completion based on an Ecore model and a syntax definition file.

The syntax for the SimpleSimulator example can be found in Figure 7 as you can see it is quite simple

and the only file except the Ecore model itself needed for the generation process of the text editor. The

generated editor of the SimpleSimulator example is shown in Figure 8. More information about EMFText

can be found at http://www.emftext.org.

Figure 7: EMFText syntax of the SimpleSimulator example

Figure 8: SimpleSimulator text editor generated with EMFText

1874

Weyprecht and Rose

6 JAVA EMITTER TEMPLATES

The last tool that will be described here is Java Emitter Templates (JET). It is basically a generator-

generator. The workflow of JET is shown in Figure 9. The user written templates get transformed into ex-

ecutable Java code, that generates the content of the template and fills out the gaps according to the tem-

plate. This can be used in two different ways. The first way is, that both the transformation and generation

step are done during developing time. In this case the output is the artifact of interest and the Java code

does not need to be deployed. An example for this is documentation of a product. Here only the generated

HTML files need to be shipped to the customer. The second way to use JET is to do just the transforma-

tion step during developing time and use the Java classes during runtime to generate artifacts then. A si-

mulator project can use this technique to generate textual reports after simulation runs. A more detailed

tutorial can be found at Popma (2004)

Figure 9: JET Workflow

 For the SimpleSimulator example we used the first way and generated documentation for every ele-

ment of the meta-model. Therefore two files are needed. The first one is “main.jet”, which defines the

workflow and is shown in Figure 10. Any preparations and actions on the model are placed in this file. In

the SimpleSimulator example it is an iteration over all EClasses of the model and the command to gener-

ate one output file per EClass with the template “ModelElement.html.jet”. The content of the JET file for

the model element is shown in Figure 11. It contains mainly HTML code with some commands to get

properties from the EClass and list all attributes that the EClass contains. The complexity of the template

can of course be increased and for example comments on the model can be added to the output. Or there

can be generated different files, like an “index.html” for example.

Figure 10: Content of "main.jet"

Figure 11: Content of "ModelElement.html.jet"

1875

Weyprecht and Rose

7 SUMMARY

We presented a set of tools and frameworks that support model-driven development, a technique perfectly

suited for the development of a simulator. Since the common meta-model needed for simulators is also

the focal point of model-driven development. We could demonstrate, that with the definition of only a

few files, a lot of artifacts like editors can be generated. This paper shows the workflow of model-driven

development with EMF for a simple simulator, but this is only an exemplary demonstration for the larger

projects. One of these projects is the development of a SysML based discrete-event simulator solution.

SysML is a general-purpose graphical modeling language for systems engineering applications, devel-

oped by the OMG (see http://www.sysml.org/). More information about the SysML simulator project can

be found in (Weyprecht and Rose 2011).

REFERENCES

Gamma, E., R. Helm, and R. E. Johnson. 1994. Design Patterns. Elements of Reusable Object-Oriented

Software. Addison-Wesley Longman.

OMG, 2011 "Semantics of a Foundational Subset for Executable UML Models (FUML)."

http://www.omg.org/spec/FUML/ (accessed January 2011).

—. SysML - Open Source Specification Project. 2010. http://www.sysml.org/ (accessed January 2011).

Poole, J. D., 2001. "Model-Driven Architecture: Vision, Standards And Emerging Technologies."

ECOOP 2001.

Popma, R., 2004. JET Tutorial Part 1 (Introduction to JET). http://www.eclipse.org/articles/Article-

JET/jet_tutorial1.html (accessed January 2011).

Software Technology Group, Dresden University of Technology. EMFText. 2011.

http://www.emftext.org (accessed January 2011).

Vangheluwe, H., and J. de Lara, 2002. "Meta-models are models too." Proceedings of the 2002 Winter

Simulation Conference.

Weyprecht, P., and O. Rose, 2011. "Model-driven Development of Simulation Solution based on SysML

starting with the Simulation Core." 2011 Spring Simulation Multiconference.

AUTHOR BIOGRAPHIES

PASCAL WEYPRECHT is a PhD student at the Dresden University of Technology. He is a member of

the scientific staff at the Chair for Modeling and Simulation. Before that he worked for D-SIMLAB

Technologies Pte Ltd, Singapore. He received his Diploma (similar to M.S.) in computer science from

Dresden University of Technology, Germany in 2008. His research interests are SysML as a general pur-

pose simulation language, as well as parallel and distributed simulations.

His e-mail address is pascal.weyprecht@tu-dresden.de

OLIVER ROSE holds the Chair for Modeling and Simulation at the Institute of Applied Computer

Science of the Dresden University of Technology, Germany. He received an M.S. degree in applied ma-

thematics and a Ph.D. degree in computer science from Würzburg University, Germany. His research fo-

cuses on the operational modeling, analysis and material flow control of complex manufacturing facili-

ties, in particular, semiconductor factories. He is a member of IEEE, INFORMS Simulation Society,

ASIM, and GI. He will be the General Chair of WSC 2012 in Berlin.

Web address: www.simulation-dresden.com.

1876

