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ABSTRACT

In order to tackle the growth of air travelers in airports worldwide, it is important to simulate and understand
passenger flows to predict future capacity constraints and levels of service. We discuss the ability of agent-
based models to understand complicated pedestrian movement in built environments. In this paper we
propose advanced passenger traits to enable more detailed modeling of behaviors in terminal buildings,
particularly in the departure hall around the check-in facilities. To demonstrate the concepts, we perform
a series of passenger agent simulations in a virtual airport terminal. In doing so, we generate a spatial
distribution of passengers within the departure hall to ancillary facilities such as cafes, information kiosks
and phone booths as well as common check-in facilities, and observe the effects this has on passenger
check-in and departure hall dwell times, and facility utilization.

1 INTRODUCTION

The world-wide air industry has grown rapidly in the last two decades, especially in the Asia-Pacific area,
where growth per year is above 5% annually (International Air Transport Association 2005). Large growth
of air travel forces many airports to increase their capacity and optimize their processes. Increasing the
efficiency of existing airport facilities requires a thorough understanding of passenger flows in airport
terminals. This is further complicated by the fact that different stakeholders have different needs: airport
operators want to distribute passengers evenly, airlines want to ensure that all passengers are at the correct
gate on time to board the aircraft, and shop owners may want the system to re-route their specific focus
groups towards their particular store to maximize revenues.

People movement is a highly complicated and even chaotic phenomenon. Passenger flow in airport
terminal buildings outside of the mandatory processing steps is particularly hard to predict. Thanks to the
advance of computer technology and the maturation of object-oriented programming, individuals can be
treated as objects whose behavior and actions can be explicitly modeled. Moreover, the development of
complexity theory provides a solid theoretical foundation for modeling individual behaviors.

Previous studies of passenger flows in airport systems mainly use macroscopic simulation tools (Ray and
Claramunt 2003; Roanes-Lozano et al. 2004; Curcio et al. 2007), seldom addressing passengers’ behavior at
a microscopic level. Furthermore, these studies have only addressed evaluation of the mandatory passenger
processing steps, lacking the capability to forecast and optimize individual passenger movement, particularly
in regards to discretionary activities such as duty-free shopping or using the bathroom.

Agent-based models (ABM) are a useful tool in the exploration of space-time dynamics. In particular,
agent-based modeling methods have the potential to detail individual passenger’s behaviors and study
emergent behaviors when large populations of passengers interact with each other. A major shortfall of
previous applications of agent-based models to airport passenger simulation is the fact that only limited
support is provided for discretionary activities. These activities can make up a considerable amount of the
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time spent in an airport (Takakuwa and Oyama 2003), with an important side effect being a reduced level
of stress and increased comfort (Richter and Voss 2011). It is therefore becoming important to create more
realistic passenger flow simulations through the inclusion of discretionary activities. This comes with the
added complexity of mimicking human behaviors and decision making in these areas more accurately.
In this paper, we first demonstrate a lack of advanced passenger behavior in the airport terminal in
previous airport simulation studies (Section 2), and argue the need for advanced passenger characteristics.
In Section 3 we propose a simplified model of passenger characteristics which might dictate behavior in and
around the check-in area of the terminal. In Section 4, we develop a simple case study which demonstrates
the use of these passenger characteristics in passenger decision modeling, and perform simulations to see
the added benefits this could have for analysis of existing airport systems. In Section 5, we summarize our
conclusions and propose some future areas of research based on this advanced set of passenger characteristics.

2 AGENT-BASED MODEL APPLICATION TO AIRPORT PASSENGER SIMULATION

Agent-based models are flexible and able to capture emergent phenomena, and most importantly can
provide a natural description of a system (Bonabeau 2002). Generally speaking, the computational agents
in agent-based models can have a direct correspondence with real-world actors (in this case passengers).
Agents themselves are not identical in most perspectives, standing for different actors in the world. They
behave according to their own preferences or even according to their own rules of action.

Although interactions between agents can be complicated, ABM is able to simulate them. In the
airport environment, these interactions include physical aspects (e.g., physical barriers to avoid, and route
instructions to follow such as moving from security to immigration), the effects of other agents in the
surrounding locality, and also the influence of factors such as queuing and crowding.

People’s behavior are also guided by socio-economic factors and by short-term or long-term goals, for
example buying a coffee or a bottle of water because of hunger or thirst or in preparation for boarding a
flight that does not have in-flight service (e.g., on a low-cost carrier). People also have the ability to move
and perceive different factors within the environment which will shape their future actions.

ABM are also able to simulate learning, both in individual agents and at the population level. For
example, humans have cognitive ability. Through reading route instructions at various points in the airport
terminal, humans can make an informed choice to go directly to the destination they desire. In general,
learning can be modeled in any or all of three ways: as individual learning in which agents learn from their
own experience; as evolutionary learning, in which the population of agents learn because some agents
“perish” and are replaced by better agents, leading to improvements in the population average; and social
learning, in which some agents imitate or are taught by other agents, leading to the sharing of experience
gathered individually but distributed over the whole population (Gilbert 2008). All three learning models
are likely to be applicable in the airport environment, but that is outside the scope of this paper.

Agent-based pedestrian models can be categorized into three levels: macroscopic, mesoscopic and
microscopic. Macroscopic and mesoscopic simulations are commonly used in transportation modeling
(Turner and Penn 2002). Microsimulation has to date focused mainly on granular-physics models; for
example the crowding simulation performed by Helbing and Molnar (1997) using predetermined directional
paths. These have led to observations of lifelike emergent phenomena based on simple rules such as lane
forming simply by a predisposition to move left or right avoiding oncoming traffic (Helbing et al. 2001).

To date there have been few studies using microscopic simulation of passengers’ movement in airport
terminals, and have therefore not made full use of the capabilities of agent-based models. There have
however been quite a few macroscopic simulations of passenger flow at airports to help identify key factors
that affect passenger flow within airport terminals.

Ray and Claramunt (2003) did a case study of a transportation application by Atlas to simulate and
analyze different passenger transportation schemes between different halls of an airport terminal. Roanes-
Lozano, Laita, and Roanes-Macias (2004) simulated departing passenger flows, which can provide the
number of passengers waiting in queue at any time. However, it lacks the study of instantaneous space
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occupancy at different sections of the airport terminal. Curcio et al. (2007) made a simulation model to
investigate passengers’ average waiting time before reaching the boarding gate area. It did not cater for
other important outcomes such as passengers’ queuing issues and space occupancy related problems.

Due to the macroscopic nature of these studies, it has not been necessary to have complex models of
passenger behaviors. This is appropriate, since passenger behavior is very limited within the processing
areas of check-in, security, immigration, and boarding. For example, once passengers enter a check-in
queue, all they have to do is slowly move forward following the passengers in front until they reach the
head of the queue. Once at the head of the queue, they proceed to a counter when it becomes available, and
complete the formalities. Consequently, there is no need to consider any complex behaviors as queuing
theory (as introduced by Lee (1966) for check-in processes) adequately describes this movement.

Unfortunately, the bulk of the passenger’s time spent in the airport falls outside these mandatory
processing areas (Takakuwa and Oyama 2003). Once passengers leave the compulsory processing areas,
there is a myriad of activities that passengers can undertake, and a correspondingly large number of potential
routes through the airport space can be pursued as depicted in Fig.1. Accordingly, passenger behavior
becomes much more complicated and hard to predict. As such, it could be described that between processing
points, passengers have full autonomy and we require a complex decision model to accurately describe
their behavior. This is further complicated by the fact that the entire airport experience (at least in the
departure path) is limited by time, which will also influence passenger behavior.

Activities
such as
buying a

Check-in|
counters| ——xs

\Wait for
boarding

securit

Activities
such as
buying
a

Figure 1: Whole-of-airport model showing complicated behaviors outside the mandatory processes.

The goal of this paper is to use microscopic simulation to extend airport passenger flow simulations to
include the full range of activities. In Section 3, we propose an extension to basic passenger characteristics
linked to flight schedules and class of travel in order to provide a platform upon which these complex
decisions and agent learning can be incorporated into agent-based models. In this way, we can assume
that no activity that passengers can undertake within the airport is excluded (as long as the decision model
supports it).
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3 ADVANCED PASSENGER CHARACTERISTICS FOR CHECK-IN

In order to enable more complicated passenger decision models to make passenger simulations in the
airport more realistic, it is important to give a detailed set of characteristics to each agent. In this section
we present a subset of the types of factors we see as important in guiding passenger behavior within the
airport, particularly in regards to the check-in area. These characteristics not only influence the decision
model, but also potentially the instantaneous walking speeds of each agent.

To do this, we divide traits into two categories. Basic traits (refer to Table 1) are related to the
passenger’s booking, and other easy to quantify characteristics. These types of characteristics are typically
static for the period of time they are in the airport, and consist of characteristics which have been previously
used in macroscopic simulations to some extent. These are the traits which direct passengers to specific
check-in or immigration queues based on class of travel or nationality respectively.

Table 1: Basic factors which affect the passenger mobility and path navigation.

Detailed factors
Male

Female

<20

20-30

30-45

45-60

> 60

Influence Passenger Trait

Gender

Age

Basic mobility

Baggage

Number of bags (checked and carry-on)
Oversized/heavy bags

Travel class

Economy, Business, First

Frequency of travel in an airport (both
this particular airport, or airports in
general)

First time
A few times
Frequent flyer

Travel group size

Single traveler

A couple

More than three
Native (e.g., AUS/NZ)
Foreign

Value added mobility

Nationality

The traits also influence the walking behavior of each passenger. Although it is possible to model
all passengers to walk at the same average speed (Young 1999), there are also some important variations
which can be classified as basic or value added. Basic mobility indicates that the classifications by gender,
age and baggage are applicable to all pedestrian simulation applications; the value added mobility aspect
relates specifically to air travelers. For example, Finnis and Walton (2006) assessed walking speeds of large
numbers of passengers, and showed some important variations in walking speeds, particularly influenced
by the traits describing basic mobility in the airport environment.

Advanced traits are those which help to describe more complicated behaviors in airport terminals.
These factors ensure that a passenger is not considered as a closed loop, but as an open loop which has the
ability of perceiving and responding to their surroundings. In general, advanced traits can be used to explain
which passengers will use shops, restaurants, information kiosks, internet or other forms of entertainment,
make phone calls on in-airport telephones, or do more generic activities like using the restrooms (either
for themselves or to change a baby’s nappy) or having a nap between flights. The activities that result can
describe how much time will be consumed performing these activities.

It is well understood that passengers will carry out certain actions based on their perception and prior
knowledge (Kaplan 1983). The advanced traits we have identified for the check-in area are based on both
these characteristics, and are outlined in Table 2. In particular, it was deemed important that passengers
are: allowed to enter the terminal with a pre-conception of checking-in to their flight before doing anything
else (“desire to check-in first”); characterized by travel experience (“frequency of travel”); are willing to
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ask for assistance; are hungry; or are generally comfortable with technology. How these traits are used to
enable autonomous decision making in the passengers is described and demonstrated in the Section 4.

Table 2: Advanced passenger characteristics proposed for check-in area.

Characteristic Data type Example

Frequency of travel Integer 0,1,...., 10

Pre check-in? Boolean True

Desire to check-in first Boolean True

Need to make phone call Boolean True

Willing to ask for assistance Double 0 (not willing), 5 (very willing)
Level of hunger Double 0 (not hungry), 5 (hungry)

Level of comfort with technology Double 0 (uncomfortable), 5 (comfortable)

It should also be noted that a number of these traits are also dynamic within the time period of being
in the terminal. Take the example of a passenger who is hungry. Their hunger will mean that cafes and
restaurants will appear attractive, and increase the likelihood of the passenger buying something. Once
they have finished however, their level of hunger will be reduced, and so this should be reflected to ensure
they don’t use every food outlet in the airport!

4 CASE STUDY

In order to demonstrate how the advanced traits presented in Section 3 enable more advanced passenger
behavior in airport terminals, a hypothetical case study has been developed surrounding the flight check-in
process. The physical environment which has been used in the simulations described in Section 4.1 is shown
in Fig. 2. This scenario incorporates common check-in configurations with dedicated business and economy
class check-in desks, as well as self-service check-in kiosks (SSK) and dedicated bag drop facilities for
those checking-in prior to arrival or those who check-in using the kiosks. In addition to the check-in
facilities, three other facilities have been included to demonstrate passengers undertaking discretionary
activities; these facilities are a cafe, information booth and telephone. Whilst this set of facilities is on a
small scale, and therefore not all-inclusive, it is still sufficient for validating the proposal.

Bus. Economy Bagdrop To Security

Terminal Entry

Figure 2: Spatial layout for hypothetical check-in case study.
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Four main decision points have been created to demonstrate the necessity for both physical and non-
physical passenger characteristics. A flow chart which describes the possible decisions that can be made
at each of the points A, B, C and D is shown in Fig. 3.

Use Phone

e i
Information

Enquire for

*

Business Class

Information i
— ‘ Check-in
Terminal
ermina Economy Class

Check-In

s e

Bag Drop

Go Straight
to Check-in

Self-Service
Check-in

Figure 3: Decision flow chart to demonstrate the use of advanced passenger characteristics.

Decision point A represents a choice by which passengers can utilize any (or all) of the discretionary
facilities, or proceed to check-in. This decision is related to the fact that some (arguably most) passengers
will want to check-in prior to doing anything else to ensure that they have a boarding pass. Other passengers
who arrive with lots of time to spare before boarding may make use of other facilities first, for instance to
grab some lunch before flying. Passengers who have never traveled to the airport may decide to use the
information booth first in order to find out where they need to go to check-in.

Decision point B is the point where passengers proceed to either the business or economy class check-in
point, go straight to bag drop if they have checked in prior to arrival at the terminal, or to the SSK. Such
a decision is based partly on passenger type (business versus economy) and also the passenger’s level of
comfort or familiarity with the SSK technology and also their individual frequency of travel.

Decision point C is included to ensure that passengers who use SSK are able to use the bag drop
facilities (if necessary) or are able to clear the check-in process and proceed with their next action.

Decision point D dictates the next passenger movement. Having checked-in, passengers have the option
of moving directly to security, or alternatively may proceed to any of the ancillary facilities. For instance,
passengers with lots of spare time until boarding may choose to go to the cafe to have a coffee, or to
phone a relative to let them know they made it to the airport and are departing on time. If the passenger
is running short for time, they are then most likely to proceed directly to security. Details of how each of
these decisions are simulated is discussed in Section 4.2.

4.1 Simulation

The physical environment has been set up as described in the previous section. In particular, there is one
queue for each of the check-in areas, with single service counters for business class and bag drop, and two
counters for economy and two self-service check-in kiosks.

The nine passenger characteristics described in Table 2 have been modeled for this case study. Only
one flight has been modeled (i.e., all passengers have the same flight), however the time of this flight is
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used to determine the passenger’s time to board. Passengers arrive at the terminal up to 3 hours before the
flight is scheduled to board, through to 45 minutes prior.
Distribution of the passenger characteristics are as follows:

Prob(“Business”) = 0.1

Prob(“Already checked in”) = 0.25

Prob(“Need to check-in first”) = 0.8

Prob(“Phone call”) = 0.05

Distribution of travel frequency = Triangular(0, 10, 1.5)

Distribution of number of bags = Uniform(0, 2)

Distributions of {willingness to seek assistance, level of hunger, level of comfort with technology }
= Uniform(0, 5)

To demonstrate the use of advanced passenger characteristics, passenger decisions at the four points
have been determined based on membership functions. At point A, passengers are able to either use the
ancillary facilities or proceed directly to check-in (decision point B); 80% of passengers will proceed
directly to check-in, whilst other passengers will use the phone (in 5% of cases). All remaining passengers
will use the cafe or information booth based on the relationships shown in Fig. 4. In particular, passengers
who are “hungry” and have sufficient time to board (t; = 45mins) will use the cafe (where ) =2 and
h, = 3), and passengers who are inexperienced at this particular airport (f; =2 and f, = 5) and are willing
to ask for assistance (w; = 2.5 and wp = 4) will use the information booth.

Very hungry,h Very willing A Very comfortable,
] / o /
= / = 0o y £z
3 / AW =
. Q -—
Sohe g S5 =
—= e c w = c szf
T | £ x EG -
& M S 8w S -
— ; © \\\
Cy—— B
Not hungry | f f t Not willing l } t Not comfortable | }
90 60t 30 $ f, A f, f,
Time to board (mins) Frequency of travel (times) Frequency of travel (times)

Figure 4: Membership functions used in simulations.

At decision point B, passengers will either choose to enter a check-in desk queue (or bag drop), or
use the self-service kiosk. The willingness to use the self-service kiosk is based on the third membership
function in Fig. 4; in particular, passengers who have traveled a sufficient amount (f; =3, f> = 8) and are
comfortable with technology (c¢; = 1.5, ¢, = 3.5) will choose to use the self-service (N.B. once they have
checked in, they will proceed to the bag drop counter if they still have bags to check-in at decision point
C). Passengers who have already checked-in but still have bags will proceed to the bag-drop queue, whilst
the remaining passengers will choose the appropriate check-in queue based on their class of travel.

For simplicity, the final decision point (D) follows the same fuzzy rules as at point A with respect to
using the ancillary facilities, or proceeding directly to security.

Using this configuration, three experiments were devised, each with 5 simulation runs over which the
results are averaged in Section 4.2. Scenario 1 simulated the case where passengers have no interaction at
all with the ancillary facilities, thereby replicating what most airport passenger simulations currently do.
In this instance, there is also no self-service kiosk utilization - all passengers proceed to either the business
class, economy class or bag drop counter based on their pre-check-in status and class of travel.

Scenario 2 introduces some of the more advance passenger characteristics (namely comfort with
technology) to demonstrate the choice to use self-service check-in. Again, no ancillary facilities are used,
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and passengers proceed directly to security once they have checked-in. Scenario 3 introduces all of the
fuzzy sets to enable passengers to utilize any (or all) of the ancillary facilities either pre- or post-check-in.

In all of the simulations, a constant arrival schedule has been used for consistency (refer to Fig. 5).
Only a single flight has been simulated to demonstrate the concepts without the complexity of having
multiple departing flights with overlapping arrival of passengers. During each of the simulations, statistics
related to utilization of service facilities and time-spent within each service were collected. Analysis on
each of these metrics for the three scenarios is presented in Section 4.2.

12 4
10 4

8

Number of PAX
(<]

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 123 131
Time of Arrival in Departure Hall (minutes)

Figure 5: Departing passenger arrival schedule for a single flight.

4.2 Analysis

To verify the behavior of the simulation in the case of Scenario 3, Fig. 6 shows the average instantaneous
utilization of each of the facilities in the case study departure hall. It can be observed that the utilization
of the cafe is higher than either check-in option, and also that the information and phone booths do attract
passengers (even if in very small numbers). This demonstrates that more passengers are concurrently in
the departure hall, but are spread between a range of facilities, not just check-in as might be the case in
traditional departure simulations.

===Check-in

SSK

=Cafe

===Information booth

Phone booth

Number of PAX in facility

P -V, -, P
40 60 80
Time (minutes)

—_ o __

20 100 1

Figure 6: Utilization of check-in, SSK, cafe, phone booth and information desk.

Figure 7(a) demonstrates the utilization of the departure hall space by time. It is a representation of the
number of passengers present in the departure hall at 2 minute sampling intervals. The peak utilization of

1790



Ma, Kleinschmidt, Fookes, and Yarlagadda

the departure hall in Scenario 3 is approximately two times greater than those in the other two scenarios
which do not include discretionary activities. Since passengers now have advanced traits which dictate their
preferences to use the various ancillary facilities, they will spend significantly more time in the departure
hall (particularly those enjoying a coffee and some food in the cafe); therefore the overall departure
hall utilization is significantly increased. This is important for designers as it provides a more accurate
description of how the entire space is being utilized, not just the space dedicated to check-in.

25 # Scenario 1
= Scenario 2

Scen3 - Non-discretionary

38
¥

~—Scenario 1 * Scen3 - Discretionary
——Scenario 2

Scenario 3

Number of PAX
Time Spend in Departure Hall (minutes)

0 20 40 60 80 100 120 140 0
0 20 40 60 80 100 120 140

Time (minutes) Time of Arrival in Departure Hall (minutes)

(a) (b)

Figure 7: Comparisons of instantaneous utilization of departure hall (a), and overall dwell time (b).

To complement this result, and further understand how the advanced traits play a role in the overall
departure hall dwell time, the passenger dwell time against the arrival into the departure hall was also
visualized (Fig. 7(b)). For Scenario 3, we have separated passengers into two classes: one for passengers
who used airport discretionary facilities, and one for those who did not. As could be expected, the general
dwell time characteristics for check-in only passengers in Scenario 3 is very similar to that for the other
two scenarios. It should also be noted that the dwell time of passengers in Scenario I is slightly longer
than those in Scenario 2 because of the addition of self-service check-in kiosks which reduce the queuing
at the standard check-in desks.

Passengers in Scenario 3 who choose to use the discretionary facilities have a fairly uniform distribution
of dwell times within this simulation. The total dwell time typically varies from slightly longer than the
check-in only passengers, up to 20 minutes (and in some cases more).

One of the key bottlenecks in airport operations is the time passengers spend in queues. It is therefore
important to investigate the effects that adding advanced passenger traits and discretionary activities have
on queues, particularly since the discretionary activities result in more passengers within the departure hall
at the same time (as seen in Fig. 7(a)). Figure 8 shows the instantaneous utilization of the main check-in
queues. It can be seen that, because passengers engage in discretionary activities prior to check-in, that
this changes the instantaneous queue lengths. In this simulation, it is observed that these activities result
in smaller peak queue lengths than the other two scenarios which only include check-in.

In order to demonstrate the impact of changing the membership functions which result from the advanced
passenger traits, we ran a simulation based on Scenario 2, where the membership function was altered
by changing the value of ¢, which relates to the level of comfort with technology (see Fig. 4). Figure 9
shows the cumulative usage of the self-service check-in kiosks for ¢, = {2.5,3.5,4.5} which gradually
decreases the number of passengers comfortable with using self-service check-in. As can be seen, the more
passengers are comfortable with technology, the greater the utilization of the self-service kiosks. Further,
according to the results shown in Fig. 8 which showed reduced check-in times due to the inclusion of more
check-in modes. These two factors might be a driver for airlines to make the kiosks easier to use in order
to reduce the traditional check-in queues.
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Figure 8: Check-in utilization for the three simulation scenarios.

In summary, the inclusion of the advanced passenger traits has the effect of distributing passengers
within the space, resulting in greater dwell times in the departure hall, and shorter check-in queues and
queuing times. We believe that by enabling these types of interactions, passenger simulation in airports
(and other built environments) will be more realistic and reliable for use in planning exercises.

S CONCLUSION & FUTURE WORK

A number of studies have performed passenger simulations in airport terminals for the purpose of analyzing
current and future levels of service. Traditionally these studies have focused on the mandatory processing
facilities such as check-in, security, immigration, airside boarding lounge and the boarding gates themselves.
Unfortunately, passengers spend a significant portion of their time in the airport outside of these facilities,
and it is therefore imperative to include these in the simulations.

To make passenger behavior more realistic, it is necessary to embed more advanced characteristics
within the agent. Whilst it is easy to embed information related to the passenger’s boarding pass and see
how this relates to movement through the non-discretionary areas of the terminal, it is more complex to
allow for interaction with other facilities. In this paper, we propose an initial set of advanced passenger
traits which guide decisions around the utilization of discretionary facilities. We apply this to check-in,
with the case study used to demonstrate this proposal based in the area around check-in where cafes,
information booths and phone boxes may be located.

Three different scenarios were simulated to demonstrate the progression of adding in self-service
check-in use based on passenger level of comfort with technology, through to use of the cafe, information
and phone booths based on passenger hunger, travel frequency and desire to make a phone call. The
simulations demonstrated the spread of passengers in the space, and showed that peak check-in queuing
times which are produced by such simulations are reduced when distributing passengers amongst the full
range of facilities. Passengers also spend a considerable amount of time in the departure hall area, allowing
the instantaneous utilization of this space much higher than if only check-in is simulated.

Airports frequently improve passenger processing procedures through new technological or management
approaches, such as fully automated counters and separate security lines for regular travelers. The model
developed here can be used to study the benefits of new approaches. This initial set of characteristics will
be extended to capture the entire airport and will also be used to develop advanced passenger walking and
decision-making models.
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Figure 9: Demonstration of variation of comfort with technology on SSK utilization.
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