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ABSTRACT

Realistic agent-based epidemic simulations usually involve a large scale social network containing individual
details. The co-evolution of epidemic dynamics and human behavior requires the simulation systems to
compute complex real-world interventions. Calls from public health policy makers for executing such
simulation studies during a pandemic typically have tight deadlines. It is highly desirable to implement new
interventions in existing high-performance epidemic simulations, with minimum development effort and
limited performance degradation. Indemics is a database supported high-performance epidemic simulation
framework, which enables complex intervention studies to be designed and executed within a short time.
Unlike earlier approaches that implement new interventions inside the simulation engine, Indemics utilizes
DBMS and reduces implementation effort from weeks to days. In this paper, we propose a methodology
for modeling and predicting performance of Indemics-supported intervention studies. We demonstrate our
methodology with experimental results.

1 INTRODUCTION

Recently, high-performance agent-based epidemic simulations have been applied to study disease dynamicsin
large scale populations and to evaluate the effectiveness of various intervention strategies (Ferguson et al. 2006,
Parker 2007, Barrett et al. 2008, Chao et al. 2010). For example, during the recent HIN1 pandemic, we
executed several case studies, sponsored by U.S. federal agencies like CDC, DHS, DoD, and DHHS,
using EpiFast (Bisset et al. 2009) and Indemics (Bisset et al. 2010) simulation systems. These case studies
demonstrated the criticality of determining how effective human interventions are during an on-going
epidemic. Such human interventions are often evaluated using simulations to study their effects on epi-
demic propagation before being applied in the real world. Unfortunately, intervention strategies are often
unknown to the simulation software developers until the request for the case study comes. Furthermore,
these case study simulations typically demand simulation results within a short period of time. In a real
world scenario, the execution of strategy simulations must be accomplished within a short window, or the
results will be obsolete. Due to these factors, there are unique challenges posed on how to efficiently
implement interventions in epidemic simulations. Some of these challenges include reducing the human
effort involved in implementing new types of interventions, in addition to optimizing the running time of
the simulation.
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1.1 Background

Large scale agent-based epidemic simulations. Realistic simulations of disease propagation in social
contact networks usually involve city, state, or even national level populations. These networks often
consist of millions, sometimes billions, of agents, and hundreds of millions of inter-agent connections.
For example, the New York City contact network used in our simulations for the 2009 H1N1 pandemic
has 18 million nodes and almost 1 billion edges. To generate realistic results and to provide meaningful
and implementable mitigation strategies for public health policy makers, individual level heterogeneous
details, including demographic data, activity schedule, health state, as well as behavioral response to the
ongoing epidemic, are considered and computed in these simulations. Furthermore, epidemic simulations
are often applied to explore a large space of possible intervention policies and have factorial experiment
designs. Sometimes, the simulations are re-run repeatedly to adapt to the surveillance data. Achieving
good performance of the simulation tool for large problem size is a major challenge.

Complex interventions. Following are some examples of epidemic interventions:

Vaccinate randomly chosen people.

Vaccinate people (nodes) with high degrees in the contact network.

Keep all school age children home for 2 weeks.

Each county decides to close its schools if the number of diagnosed students in the county exceeds
its preset threshold. Students from closed schools will stay home.

5. Same as the last intervention, plus an additional constraint that for each student that stays home,
if the student’s age is less than 12, then there must be a guardian staying at home too.

NS

Real-world interventions can be even more complicated than these examples. Oftentimes the interventions
are unknown until the diffusion process of the simulation has begun. Many existing simulation tools can
handle only the first two examples cited above. To implement a completely new intervention type, significant
changes have to be made in the simulation engine code, which is time consuming and requires expertise in
high performance computing (HPC). Our experience in implementing different types of interventions has
shown that modeling the intervention strategies by coding them completely within the simulation engine like
EpiFast (Bisset et al. 2009) may be possible, but this approach does not scale well. This motivated us to
develop a platform called Indemics (Bisset et al. 2010), that supports quick re-deployment of interventions,
reduces cumulative complexity and risk of errors in the intervention codes and potentially handles limitless
intervention types. Our experiences with Indemics are discussed in Section 1.2.

Efficient implementation. The simulation tool users that need to implement new interventions are often
domain experts with limited knowledge of HPC systems. Hence expert programmers are needed to make
changes to the simulation engine code, based on the requirements specified by the epidemiologists. This
introduces communication delays along with an extended software development life cycle, which is a flip
side of implementing interventions inside the HPC-based simulation engine. On the other hand however,
interventions implemented inside the simulation engine typically run faster. This presents a trade-off between
performance and capability. In this paper, we study the performance of Indemics (Bisset et al. 2010) and
compare the performance of implementing interventions using Indemics to that of implementing interventions
within EpiFast simulation engine. To the best of our knowledge, the other existing simulation systems
do not handle all intervention types exhaustively. The capability of Indemics mainly comes from using a
DBMS to compute interventions for the HPC-based simulation engine. We propose a model for analyzing
performance of the database queries related to computing interventions and a methodology for predicting
the running time of any given intervention case study.
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1.2 Motivation

Scenario 1. EpiFastisafastagent-based epidemic simulation tool developed in our group (Bisset et al. 2009).
After its initial release in 2008, users found that while it could handle these interventions: (a) antiviral
prophylaxis to randomly chosen people and (b) keep all primary school students home (school closure
version 1); it could not handle the more realistic versions: (a’) antiviral treatment to currently sick people
and (b’) keep all primary school students home and for each of them let a guardian stay home too (school
closure version 2). The intervention (a’) could be implemented only after months of code development
within EpiFast, and became available over a year later. We have not yet implemented (b’) in EpiFast due
to its complicated character and estimated coding effort. After we developed the Indemics system in 2009,
however, it took only a few hours to implement either (a’) or (b’) with Indemics scripts. These scripts
were written in Indemics intervention language, a controlled natural language that is easy to master even
without any programming experience. The experience with interventions (a’) and (b") convinced us about
the wide applicability of Indemics for applying realistic interventions, which was earlier very difficult or
almost infeasible using EpiFast.

The Indemics framework incurs limited performance overhead in executing some intervention strategies
as described in (Bisset et al. 2010). The small overhead incurred in simulation running time, however, is
easily offset by the huge savings of human effort in implementing new types of interventions.

Scenario 2. After the recent HIN1 pandemic, our group was requested to run a case study with a large
factorial experiment design and involving several new types of interventions. The simulation results were
to be presented in a CDC conference within two weeks. We decided to use Indemics to run the study.
After the epidemiologist in our group specified the study design details, we examined the intervention
scripts and based on our prediction model, inferred that if the current scripts were used, the design would
take far more than two weeks to complete. The epidemiologist modified the study design himself and
the new enhanced script was estimated to be finished in about one week. Our prediction was accurate
and so the epidemiologist was able to complete the study execution in one week, with a few days left for
analyzing simulation output and preparing the conference presentation. Thus, the prediction mechanism
for estimating running time of the case study helped us keep the tight deadline of the case study simulation.

In this paper, we propose a formal model for Indemics performance analysis and present a methodology
for predicting performance of Indemics in running given case studies. We will support our performance
predicting methodology by presenting a comparison of the predicted running time and actual running time
of a realistic intervention case study.

1.3 Major Contributions

In this paper we focus on performance of intervention implementation for epidemic simulations. Our major
contributions are:

e We present our observations on the performance gain/loss in using Indemics to simulate epidemic
interventions instead of computing everything within the simulation engine.

e We address the issue of reducing development time for new intervention strategies. With Indemics in-
terventions are composed in an easy-to-learn controlled natural language (CNL) (Bisset et al. 2010).
We demonstrate how this improves the productivity of simulation users.

e We introduce a detailed methodology for performance modeling and prediction of running inter-
vention case studies using Indemics. Using this prediction model, the simulation designers can
estimate the overall running time of the simulations before actually executing them. This gives the
user reasonable confidence of completing the simulation studies in time.
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2 INTERVENTION IMPLEMENTATION AND PERFORMANCE

We have two ways to simulate epidemic interventions: within the high-performance epidemic simulation
engine or using external database management systems to compute interventions and apply them to the
epidemic simulation engine. In what follows, we use EpiFast (Bisset et al. 2009) to represent the former
and the Indemics framework (Bisset et al. 2010) to represent the latter. Also, we assume that the simulation
engine used in the Indemics framework is EpiFast. The main factor for users to choose one execution
method over the other should be the ability to complete end to end implementation and obtain simulation
results within the time constraint of the case study. This puts a priority on short development time supported
by efficient implementation, as well as reduced running time of intervention simulations. In this section
we compare the efficiency and performance of different ways of implementing epidemic interventions.

2.1 Efficient Epidemic Intervention Implementation

A typical epidemic simulation consists of two co-evolving parts: disease diffusion and human intervention.
Correspondingly, an epidemic simulation system usually includes diffusion code and intervention code.
E.g.

EpiFast = diffusion code (C++)+intervention code (C++)
Indemics EpiFast diffusion code (C++)+ framework code (Java) + DBMS + intervention script (CNL)

where CNL means a controlled natural language.

Computation of most interventions requires both dynamic data generated within the diffusion computation (e.g.
current diagnosed cases) and data not directly relevant to disease diffusion (e.g. household income). Some examples
of interventions include:

e Triggered intervention: In this intervention type, a threshold is evaluated every day. When it is exceeded,
then the predefined actions are taken. e.g. when fraction of diagnosed school-age children exceeds 20%,
close all schools.

e Targeted intervention: In this type, intervention action is applied to people in a certain health state i.e. a
target population. e.g. administer antiviral on diagnosed school-age children.

e Local triggered intervention. In this intervention type, many subpopulations are predefined and when any
subpopulation incurs a local outbreak the intervention action is applied to the whole subpopulation, e.g.
close any school where more than 5% students show symptoms (called “school intervention”); vaccinate
all people in any census block group if more than 1% in that block group are diagnosed (called “block
intervention”).

The real world case studies for ongoing epidemics often come with a tight deadline on the delivery of study
results. From our experiences with various federal agencies, we were often requested to complete a study within a
few weeks, which included running a whole set of simulations for several rounds, each round having a time budget
of only a few hours.

In Table 1 we present our development experiences in implementing several interventions in EpiFast vs. in
Indemics. Clearly Indemics reduces development time by at least one order of magnitude. This can shorten the
overall study life cycle significantly. This also largely improves the productivity of the simulation tool users by
allowing them to explore larger classes of intervention strategies.

2.2 Performance Comparison

In this section, we choose a few interventions that are already implemented both for Indemics and for EpiFast, and
compare the performance of simulating them in the two systems. To make an impartial comparison, simulations
with EpiFast and with Indemics are the same, both for the diffusion part and for the intervention part, and produce
exactly the same outcome. The only difference is that the intervention is computed using C++ code in the former
solution and java plus Oracle in the latter one.
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Table 1: Development cost: implementing interventions in EpiFast vs. with Indemics scripts.

intervention !EpiFast implementation I_ndemics implementation
lines of code effort lines of script | effort

school/block 500 8 weeks < 100 8 hours
triggered 150 1 week < 100 1 hour
targeted 600 12 weeks <100 1 hour

Note that although we spent months to implement the two interventions in EpiFast, it only took us a few
hours to write Indemics scripts for them. In this experiment, however, we are mainly concerned about simulation
execution time. For EpiFast simulations we collect the total running time. For Indemics simulations we collect the
total running time as well as the execution time of database queries related to intervention computation.

Triggered intervention. In this experiment we are mainly concerned about the performance of threshold evaluation.
We plot database query time (for counting diagnosed people) and the total execution time of Indemics simulations
along with the total running time of EpiFast simulations in Figure 1. We simulate the triggered intervention on
four US urban regions: Miami, Seattle, Boston and Chicago, with increasing population sizes. Figure 1 shows that,
using Indemics, the intervention simulations incur a reasonable performance loss which is easily outweighed by the
benefits derived from ease of query composition.

Targeted intervention. The targeted intervention is simulated on the Miami population, under disease models with
different infectivities. The moderate disease model has a lower attack rate, where attack rate is the fraction of
population getting infected during the epidemic; the strong disease model has a higher attack rate. A higher attack
rate leads to larger set of people to be intervened. From Figure 2 we observe that Indemics simulations perform
better than EpiFast simulations for this targeted intervention.

The experiment suggests that Indemics may improve performance in some cases and incur a reasonable overhead
in others. The ratio of total execution time using Indemics simulations to that using EpiFast simulations is about
2 for the trigger intervention (100% performance overhead) and about 0.5 for the targeted intervention (Indemics
improves the total running time). Even in the case of the trigger intervention, Indemics is still preferable, since
the benefits of Indemics derived from quick re-deployment of interventions, decrease in the risk of code errors and
reduction of human effort can easily outweigh reasonable performance losses.
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Figure 1: Triggered intervention: Indemics simula-
tion and EpiFast simulation.

3 PERFORMANCE MODELING

Query time in Indemics =——=—
Total running time in Indemics ——
Total running time in EpiFast only —e—
Figure 2: Targeted interventions: Indemics simula-

tion vs. EpiFast simulation.

The experiment running time of Indemics is critical for real time epidemic planning and it should be estimated during
the experiment design stage. In this section, we introduce a methodology of performance modeling and prediction
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for Indemics. Performance prediction during experiment design can guide the user to adjust the experiment design
so that the most comprehensive study can be completed within the allowable time frame.

In the Indemics framework, interventions are computed within the database. Intervention instance has two
pieces of information, intervention type and intervened subpopulation. Intervention type defines the action and
its parameters, such as vaccination with its efficacy. Intervened subpopulation defines the agents that will take
the intervention action. Computation of interventions is mainly for the selection of the intervened subpopulation,
which usually involves dynamic data from the simulation and has to be determined at run time. The selection of
intervened subpopulations is written in an Indemics script, which is then translated into database queries; at run
time these queries are executed in each time step to select the desired subpopulation; then the intervention type and
subpopulation are sent to the simulation engine for the diffusion computation in the next time step. The following
is an example of Indemics script for the school intervention. SQL statements that implement this intervention are
presented under the controlled natural language.

Initialization;

Define School _Trigger as SCHOOL_DIAGNOSED_TOTAL.persons > 0.05 =
SCHOOL_INTERVENED.schoolsize
Reset table SCHOOL_INTERVENED intervened_day = -1 :
update SCHOOL_INTERVENED set intervened_day = -1;
For Day from 1 to 300
1. Count newly diagnosed students in each school, save to SCHOOL_DIAGNOSED_TODAY :
insert into SCHOOL_DIAGNOSED_TODAY
select school, count(pid) as persons, Day as diag_time from STUDENT, DIAGNOSED
where pid = diagnosed_pid and diagnosed_time = Day;

2. Count diagnosed students in each school, save to SCHOOL_DIAGNOSED_TOTAL :
insert into SCHOOL_DIAGNOSE_TOTAL select
school, sum(persons) as persons, diag_time from SCHOOL_DIAGNOSED_TODAY where
diag_time between Day and Day - 6 group by school;

3. Set SCHOOL_INTERVENED intervened_day = Day
if school is not intervened and School_Trigger is triggered:

update SCHOOL_INTERVENED set intervened_day = Day
where SCHOOL_INTERVENED.school = SCHOOL_DIAGNOSED_TOTAL.school and diag_time = Day
and SCHOOL_DIAGNOSED_TOTAL.persons > 0.05 = SCHOOL_INTERVENED.schoolsize;

4. Apply vaccination to schools in SCHOOL_INTERVENE with intervened_day = Day:
select pid from STUDENT, SCHOOL_INTERVENED where
STUDENT .school = SCHOOL_INTERVENED.school and intervened_day = Day;

As illustrated in the Indemics script example, the query statements specify how to manipulate dynamic
data and select the intervention subpopulations from the database. The Indemics intervention script is
translated into SQL statements to query the relational DBMS. SQL statements consist of SQL atomic
statements. A legal SQL statement is either just an atomic statement or a composition of atomic statements.
Table 2 lists the atomic SQL statements supported in the Indemics intervention language. To model the
performance of a given intervention scenario, the corresponding intervention script is translated into SQL
queries and each statement is decomposed into query atoms. The performance modeling is based on these
query atoms. Typical query statements and their atoms are given in Table 3.

The selection of the intervened subpopulations during the intervention phase is data-intensive, and
the execution time of manipulating and selecting data from database is a considerable part of the whole
intervention study. It is essential for Indemics to model its performance in the intervention phase and use
this performance model to predict the execution time in the study before actually performing the study.
This is important because a case study is usually associated with a tight deadline. By using the performance
model, the study designer can estimate execution time directly from a given intervention scenario.
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Table 2: Atomic statement examples in Indemics.

Atom Symbol | Algebra | SQL Example
Projection p paR select pid from persons
Predicate q a=»>b age = 18
Selection s SqR select from persons where age = 10
Natural Join | > Pral select from persons P, infections | where P.pid = I.pid
Insert f fsR Insert into S from R
Update m Ma—xR update R set a =x
Group By S SaR group by a
Index Y YaR create index on R(a)
Table 3: SQL statement examples in Indemics.
Statement Algebra
Insert new infection cases R into table INFECTION | finrECTIONR
Update status to x for schools in R Mstatus—xR
Search household with infections Phid (HOUSEHOLD <pig INFECTION)
Count new infection cases in each census block Polock count (pid) Sblock BLOCK >xipig INFECTION

We model Indemics performance based on query statement atoms. Given the script in Indemics language
for a case study, we decompose the query statements in the script into atoms, and estimate the configurations
of these atoms. The atom configuration includes the size of queried table, the size of query results and other
parameters about the query. In order to predict the data query performance, we profile the performance of
query atoms in the database employed by Indemics in advance. This database profile forms a performance
lookup library which collects the performance of each statement atom under different configurations in the
database system. The performance of query atoms can be referred to from this performance lookup library.

Definition 1 The predicted running time of a query atom a is AP(a). The value of AP(a) under different
configurations can be found in the performance lookup library.

Since each query statement consists of query atoms and the composite query executes its atomic queries
sequentially, the predicted performance of a given query can be calculated by summing up the performance
of its atomic queries.

Definition 2 The predicted running time QP(Q) for a query statement Q is given by:

QP(Q) =AP(a;) +AP(az) +... + AP(ay)

where Q can be decomposed into AP(a;),AP(az),...,AP(ay).

The Indemics intervention script specifies the data manipulation and subpopulation selection on each
simulation day, therefore, the predicted running time of the script is the total of the predicted running time
of all query statements on each day.

Definition 3 The predicted running time SP(S) of a script S implementing the intervention study is given
by:

SP(S) = Say_0QP(Q1™) + QP(Q5¥) + ... + QP(Q}™).

where on each simulation “day”, the queries Q%, Q5% ...,Q" are executed.

In order to predict the performance of a case study, we use the atomic query performance lookup library
to calculate SP() as the predicted performance for the study.
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4 PERFORMANCE PREDICTION

In this section, we introduce our performance prediction method for Indemics. This prediction method is
based on the performance model in Section 3. Intervention computation time is predicted by analyzing
query atoms in the intervention scenario. The School Intervention is used as an example to demonstrate
our prediction method.

The query execution time varies remarkably on different database management systems. It is necessary
to first collect query performance data for the specific DBMS under the specific machine configuration.
For example, we have collected the performance profiles of each query atom relevant to Indemics on
our database management system, Oracle 10g, under typical query configurations, and have organized the
performance profiles as a lookup library. This library is as comprehensive as possible to cover all relevant
configurations. But due to space limit, we only show a segment of the library in Table 4.

Table 4: A segment of performance lookup library. Table 5: Table statistics for the performance

Statement | Algebra | Configuration | Time prediction experiments.
(seconds) - -
- Table Region | Size
Insert 1SR 51K 0.005 STUDENT Chicago | 2.2M
Insert R S: 100K 0.1
) STUDENT Boston | 0.9M
Update ms.a—xR | R: 1K 0.002
. STUDENT Seattle 0.7M
Update ms.a—xR | R: 5K 0.01 o
Select sR | R 10K 0.001 STUDENT Miami | 0.5M
Select qu R S.Y R : 2M 062 SCHOOL_INTERVENED | Chicago | 8K
Nature ioin Piqf PQO%M. Ob6 SCHOOL_INTERVENED | Boston 6K
! 1K ' SCHOOL _INTERVENED | Seattle | 3K
. . SCHOOL_INTERVENED | Miami 2K
Nature join | Peal IP_' 1062';2 05 PERSON_BLOCK Chicago | 9M
Group by S.R R 10K 03 PERSON_BLOCK Miami 2M

To predict the performance of an intervention scenario never studied before, its performance is estimated
by analyzing the corresponding Indemics scripts and computing SP(s) as in Definition 3. Now we demonstrate
how to analyze an Indemics script and calculate SP(s) with a concrete case study.

4.1 Scenario of Case Study

In the School Intervention, any school where the number of students diagnosed with flu exceeds a given
threshold (such as 5% of enrolled students), then vaccines will be offered to the whole school. The School
Intervention will be evaluated for each simulation day. It has four steps to manipulate disease diffusion
data and demographic data, and these data manipulations are abstracted into query algebra using the query
atoms. The query algebra for School Intervention is illustrated in Algorithm 1. Finally, the query algebra
is translated into an Indemics intervention script, as illustrated by the example in Section 3, to simulate
the School Intervention strategy under the Indemics framework.

4.2 Analysis of Query Atoms

Now we present the analysis of the School Intervention study in Miami. As illustrated in Algorithm 1, our
Indemics script manipulates database for School Intervention in four steps: (i) counting newly diagnosed
students today in each school, (ii) counting the total diagnosed students in each school, (iii) identifying
schools that have exceeded the intervention threshold, and (iv) applying the pharmaceutical treatment in
the identified schools. Their algebra expressions are given in Algorithm 1.
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Algorithm 1 School Intervention in Algebra

Initialization;

Reset table SCHOOL_INTERVENED intervened_day = -1 :

Mintervened day——1SCHOOL_INTERVENED,;

for simulation day a from 1 to 300 do
1. Count newly diagnosed students today in each school, save the results in
SCHOOL _DIAGNOSED_TODAY :
fSCHOOL,DIAGNOSED,TODAYpschooI,persons:count(pid),diag,timesschoolYpid STUDENT pig
Sdiagnosed_time—a DIAGNOSED;
2. Count diagnosed students in each school still in infectious state, save the results in
SCHOOL _DIAGNOSED _TOTAL.:
fSCHOOL,DIAGNOSED,TOTALpschool,persons:sum(persons),diag,time
Sschool Sa—6<diag.time<—a (SCHOOL_DIAGNOSED_TODAY);
3. Set SCHOOL_INTERVENED intervened_day = a if this school has not been intervened and
diagnosed students cross the threshold :
mintervened,day:aSpersons>0.05*schoolsize(SCHOOLJNTERVENED Dschool
Sdiag_tive—a SCHOOL_DIAGNOSED_TOTAL ),
4. Apply vaccination treatment on the target schools:
Ppid ( Sintervened day—aSCHOOL_INTERVENED p<school STUDENT);

end for

1. Thealgebraforstep (i) can be decomposed into atoms Sgyiag time—a DIAGNOSED, Y ig STUDENT g
Sdiag_timve—a DIAGNOSED , Sschoor, p and F. The estimated average daily diagnosed cases will not
exceed 1000 under the epidemic model of this experiment. Since the sizes of Y ,igSTUDENT and
Sdiag_timve—a DIAGNOSED are approximately 500K rows (Table 5) and 1K rows for Miami, from
the performance lookup library (Table 4), we know that the performance dominating atom in these
four query atoms is the join query Y pigSTUDENT ><pig Sgiag time—a DIAGNOSED; and that the
running time of this join atom and step (i) is around 0.06 second.

2. Thealgebrafor step (ii) consists of the atoms Sz g~ diag time<—a (SCHOOL_DIAGNOSED_TODAY),
S, p and F. Because of the estimation that the average daily diagnosed cases will not exceed 1000,
the size of table Sa_e-diag time<—a(SCHOOL_DIAGNOSED_TODAY) will not exceed 1k rows.
From the performance lookup library, we conclude that all the atoms in step (ii) have negligible
performance cost, so the running time are ignored in step (ii).

3. Thealgebrafor step (iii) contains the performance dominating atoms, SCHOOL _INTERVENED <ischoo
Sdiag time—a SCHOOL _DIAGNOSED_TOTAL, Spersons>0.05+schoolsize and m. The size of the table
SCHOOL_INTERVENED is only 2K rows and the number of schools tagged to be intervened
generally is within 1K, so we conclude that the atoms in step (iii) are also negligible.

4. The last step is ppid (Sintervened day—aSCHOOL_INTERVENED schoot STUDENT) and the perfor-
mance dominating atom is the join atom. The size of STUDENT is around 500K rows and the
number of schools to be intervened is 1000 at most. The execution time of this query statement is
estimated to be 0.06 seconds based on the performance lookup library.

4.3 Calculation of Predicted Performance

After the analysis of query atoms in the given Indemics script, we are able to predict its performance
SP(). We only need to consider the query atoms with significant costs. Denote the four query statements
in the School Intervention by Q1, Q2, Q3 and Q4. We can ignore QP(Q2) and QP(Qs3) in SP(), based on
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the previous analysis. Eventually, SP() is calculated as S3o)_,(QP(Q1) +QP(Q4)) = 300+ 2% 0.06 = 36
seconds.

The performance predictions for the regions other than Miami can also follow the same procedures.
From the analysis on the School Intervention script, we know that the performance dominating atoms are
the join atoms with table STUDENT, and the size of table STUDENT for Seattle is very close to Miami,
therefore the estimated execution time for Seattle is also about 36 seconds. Chicago has twice as many
students as Miami, and the School Intervention for Chicago is estimated to take 72 seconds based on the
performance lookup library for the join performance.

To validate our performance prediction model, the performance of different interventions in different
regions has be estimated by analysis and evaluated by simulations. The actual execution time and the
predicted execution time of these selected intervention studies are illustrated in Figure 3. Although the
predicted time is not so accurate, our prediction still makes sense for the study planning. It is very typical
that each intervention strategy will be simulated under tens of configurations for dozens of replicates, so
the whole study can take days or even weeks. Figure 4 shows the estimated development costs, experiment
costs, and the total times for the whole intervention studies, which have to be repeated for 50 iterations
under 20 different disease models in four regions. This figure shows that Indemics can shorten the study
periods and ensure that the study results are obtained in time.
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Figure 3: Performance by prediction and in experi-
ments. Query time is actual query time for Indemics’
database; simulation time is the actual diffusion sim-
ulation time; the predicted query time is our predicted
query time for database.

Figure 4: Comparisons of development days, exper-
iment days and whole study periods between using
simulation only and using Indemics. The experiment
days of block and school interventions without us-
ing Indemics are estimated as 1 day, since they are
difficult to implement without Indemics.

5 RELATED WORK

This paper extends our original work on the Indemics framework that seeks to build a high performance
epidemic simulation to support public health epidemiology (Bisset et al. 2010); here we focus on perfor-
mance modeling of complex interventions using DBMS. Recently there is much work on computational
models for contact network epidemiology (Ferguson et al. 2006, Barrett et al. 2008, Bisset et al. 2009,
Cauchemez et al. 2011). These high performance epidemic simulation tools allow public health policy
makers to study intervention effectiveness during emergent epidemics, such as the 2009 HIN1 pandemic.
It is still a challenge to represent complex interventions and the co-evolution of network, behavior, and epi-
demics. Indemics was inspired by the work of Gray etal. (Szalay and Blakeley 2009, Szalay and Gray 2006,
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Gray et al. 2005), which advocated the use of DBMS technology to support physical simulations. Work
reported in White et al. (2007) and Wang et al. (2010) follows this work and proposes the use of DBMS to
support games and social simulations. Our ongoing work on Indemics is most closely related in this line of
work. In contrast to the work in Wang et al. (2010) that focuses on Hadoop and the MapReduce framework,
we focus on traditional DBMS systems. We believe that Hadoop like frameworks are not suitable when
dealing with complex interventions. Other related work on use of databases in related contexts can be
found in (Christodoulakis 1984, Graefe 1993, Sevcik 1981, DeWitt and Hawthorn 1981).

6 CONCLUSION

We have described a systematic methodology to analyze and predict the performance of Indemics inter-
ventions. Our focus is on complex interventions that often arise during the course of analyzing an evolving
epidemic. Representing and implementing the interventions is often a time consuming task. Indemics is
developed to reduce the time from design to implementation of these complex interventions. The devel-
opment period can be reduced from weeks to days, making the tool useful when supporting an evolving
pandemic such as the recent HIN1 pandemic. A performance comparison between Indemics and previous
simulation methods is presented and a methodology of performance modeling and prediction is proposed
in this paper. These performance analysis and prediction results provide us with an analytical basis for
evaluating whether Indemics can be used in direct support of a quick turnaround analysis request.
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