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ABSTRACT 

Millions of people have been infected and died as results of influenza pandemics in human history. In or-
der to prepare for these disasters, it is important to know how the disease spreads. Further, intervention 
strategies should be implemented during the pandemics to mitigate their ill effects. Knowledge of how 
these interventions will affect the pandemic course is paramount for decision makers. This paper develops 
an agent-based simulation model of a pandemic within a generic US metropolitan area, along with the ef-
fects associated with mitigation strategies involving home confinement and school closure. Also, a com-
parison of the two strategies and their variants is presented. 

1 INTRODUCTION 

Three kinds of influenza virus have been found so far, influenza A, B, and C. Influenza A is the most 
dangerous one among them. It has caused three major pandemic influenzas during the 20th century. The 
first one, Spanish flu, occurred in 1918-1920 and killed 40 million people worldwide (Gatherer 2009). 
The second one called Asian flu occurred in 1957-1958 and caused 68,900 mortalities in the United 
States. Finally the third one, Hong Kong flu, occurred in 1968-1969 and 33,800 individuals died as a re-
sult of this disease in the United States. The economic costs of  the Hong Kong flu was approximately 3.9 
billion dollars in the US (Hilleman 2002). The amount of damage caused by the influenza virus made it 
the most dangerous pandemic disease threat to human kind (Gatherer 2009). The world witnessed another 
pandemic in 2009 which was not as severe as the three mentioned above, but the threat of this disease still 
exists.  

Large scale fatalities and economic losses of influenza pandemics highlight the importance of emer-
gency preparedness for handling the consequences of these disasters. It is important for the authorities to 
employ the best intervention strategies such as school closure to mitigate the ill effects of a pandemic and 
also effectively plan for resource allocation (Ferguson et al. 2006). 

One way to evaluate intervention strategies is to simulate the course of the pandemic and analyze the 
effects of the strategies. Researchers have addressed the problem of simulating the behavior of influenza 
pandemic by two main approaches, namely differential equation simulation models and agent-based 
simulation models. In the first approach, a compartmental Susceptible, Infective, Recovered (SIR) model 
or one of its variants are developed which divides the population into three groups - people susceptible to 
the virus, infectious people, and individuals who recover from the disease. Following this, differential 
equation based relations between the number of people in these three groups through time is developed 
and used to calculate the number of infections. Towers and Feng (2009) use a deterministic SIR model to 
predict the course of pandemic H1N1 2009 flu during fall of 2009 using the data on the number of infec-
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tions in summer 2009. They also evaluate the effectiveness of a vaccination program planned for autumn 
of that year. Extensions of the SIR model have been used in other studies. For example, Dushoff et al. 
(2004) develop an SIR-Susceptible (SIRS) model which lets the recovered person become susceptible 
again. Due to the possibility of the virus mutation during the pandemic an SIRS system is capable of  
modeling these situations. In another study, Araz et al. (2010) use differential equations to simulate the 
spread of the avian influenza (H5N1) in the counties of Arizona. The model predicts the number of in-
fected and dead people in different age groups over time during a pandemic influenza. Differential equa-
tion simulation models are insightful and relatively fast tools for simulating pandemics, but they have 
some major pitfalls. In order to evaluate the effectiveness of intervention strategies, it is important to as-
sess their effects on different age groups, communities or even some special individuals. Also, the trans-
mission rate of the disease between individuals and progress of the disease within the body have probabil-
istic natures that should be considered. Differential equation simulation models are not the best tools to 
address these requirements. 

Another approach to simulate the pandemic influenza spread which does not have the drawbacks of 
mathematical based models is agent-based modeling simulation (ABMS). Each individual is considered 
as an agent in this modeling approach and interactions of the people are modeled in different locations 
such as households, schools, work places. Having each individual as an independent agent in the simula-
tion  gives a high level of flexibility to the model. Elveback et al. (1976) is one of the first studies that us-
es ABMS to predict the course of a pandemic and evaluates the effectiveness of school closure and vac-
cination mitigation strategies. Longini et al. (2004) simulate the spread of influenza A within a US 
community with 2000 people. The population is divided into four neighborhoods with two elementary 
schools, one middle school, and one high school. The work by Longini et al. (2004) has many similarities 
to Elveback et al. (1976), but it is a step forward and considers more details. In another study, Shi et al. 
(2010) develop an agent-based simulation model to evaluate the effects of seasonal changes of virus char-
acteristics on the pandemic course. Aleman, Wibisono, and Schwartz (2009) consider the Greater Toronto 
Area in Canada as the target population and develop an agent-based model. This model evaluates the ef-
fects of a home confinement strategy on the number of infected and dead people during a pandemic. 

Infectious people might show symptoms of disease or be asymptomatic (Wu et al. 2006). In addition, 
the relative infectious rate is different for symptomatic people than asymptomatic ones. A 63 percent 
probability of being symptomatic (PBS) is considered in the literature (Elveback et al. 1976). A change in 
the value of this parameter can highly effect the number of infected people during a pandemic and change 
the effectiveness levels of intervention strategies. 

In this paper, an agent-based simulation model is developed to predict the course of a pandemic over 
time. Home confinement and school closing intervention strategies are presented and their effects on the 
number of infections are assessed. They are also compared with each other and a sensitivity analysis on 
the probability of being symptomatic and its impact on the number of infections is conducted.  

This paper is organized as follows: Section 2 presents the developed agent-based simulation model; 
Section 3 explains the details of proposed home confinement and school closing strategies. Section 4 pre-
sents the results of the simulation models with three scenarios, namely baseline scenario without interven-
tions, home confinement and school closure. Section 5 depicts the sensitivity analysis of the simulation 
model on the probability of being symptomatic and finally Section 6 concludes the paper and makes sug-
gestions for future research. 

2 AN AGENT-BASED SIMULATION MODEL OF PANDEMIC SPREAD 

An influenza outbreak is simulated in a US metropolitan area. Data on the influenza A (H2N2) pandemic 
in 1957-58 are used for the disease characteristics’ related aspects of the model according to Haber et al. 
(2007). The population structure of the model is based on the data from 2000 US Census. The model con-
sists of three main sub-routines - the structure of the population which includes the mixing and age 
groups, disease characteristics and progress of the disease within the body, and transmission of the dis-
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ease between people. These three aspects of the simulation model are explained in more detail in this sec-
tion. 

2.1 Population Structure 

People belong to one of four age groups; preschool children (less than or equal to 4 years old), school 
children (5 to 18 years old), adults (19 to 64 years old), and seniors (65 years old or older). There are five 
categories of  mixing groups labeled households, daycare centers, schools, work places, and community. 
People interact with others in these groups. Disease is transmitted from an infectious person to a suscepti-
ble one during these contacts in the mixing groups. Each person belongs to a household and preschool in-
dividuals, students, and adults go to daycare centers, schools, work places, respectively. All the people are 
involved in the daily activities in the community (i.e., visiting stores, theaters and churches) as a whole. 
Table 1 illustrates the mixing and age groups considered in the model (Haber et al. 2007). 

Table 1: Mixing and age group matrix 

 Mixing Group 

Age  
Group 

 Household Daycare center School Workplace Community 
<1-4 + +   + 
5-18 +  +  + 

19-64 +   + + 
>= 65 +    + 

2.2 Virus Characteristics and Disease Progress within the Body 

A susceptible person becomes infected as a result of having contact with an infectious person. After that, 
the disease progresses as illustrated in Figure 1. At the beginning of the process a patient passes through 
an incubation period which lasts 1.9 days on average. Then, he or she becomes infectious which lasts 4.1 
days on average. An individual might be symptomatic or asymptomatic. A symptomatic patient might be-
come hospitalized and even die. After the infectious period, the patient becomes immune to the disease if 
he or she does not die. For more information, see Longini et al. (2004). 

Susceptible

Infectious

Incubation

Symptomatic

Asymptomatic

Hospitalized

Die

Become 
immune 

Figure 1: Progression of the disease in a susceptible person 

2.3 Disease Transmission Process 

Transmission of the disease to a susceptible individual depends on some parameters such as number and 
duration of contacts that a person has with infectious persons during daily activities and age specific 
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transmission rates of the disease from infectious individuals to him or her. Haber et al. (2007) present a 
formulation for deriving a probability of getting the disease on a day. 

 
ܲሺܣሻ ൌ 	1 െ ஻ఢ்ಲೕೖೢߎ௝ߎ௞ߎ exp൫െߣ௦௝݀௦ಲ௝௞௪ܯ஻൯       (1) 

 
In equation (1), ܣ is a susceptible individual in age group ݏ஺ and ܲሺܣሻ is the probability of individual 

 on a day (which ܣ becoming infected on a day. ஺ܶ௝௞௪ denotes the individuals who have contacts with ܣ
might be a week day where 0 = ݓ or a weekend day where 1 = ݓ) and are in mixing group ݇ and age 
group ݆. The rate of transmission per minute of contact from an infectious person in age group ݆ to indi-
vidual ܣ is ߣ௦௝ and duration of contact between person ܣ and a person in age group ݆ in mixing group ݇ 
on a day of type ݓ is ݀௦ಲ௝௞௪ minutes. If individual ܤ is infectious, then ܯ஻ is equal to one. Otherwise it 
is equal to zero. As shown in equation (1), the transmission rate of the disease changes when there is a 
change in the age group of infectious or susceptible persons. Also, contact durations depend on the mix-
ing and age groups of the infectious and susceptible individuals and whether the contact happens on a 
week day or a weekend.  
     A numerical example of this formula is explained for a sample adult. There are two school students, 
one pre-school child, and one adult in his or her household. One of the school students is infectious and 
asymptomatic and the other family members are not infectious. There are nine co-workers in his or her 
workplace group from which one is infectious and symptomatic, one is infectious and asymptomatic, and 
the remaining co-workers are susceptible. The probability of this individual being infected during this day 
is calculated as follows.  
     There is one student in his household, who is infectious.  The transmission rate of the disease from the 
school student to the adult is 0.00033 and the contact duration is 120 minutes. Also, an asymptomatic per-
son is 50% less infectious than a symptomatic one. So, the probability of not being infected in household 
is ߙ ൌ exp	ሺെ0.00033 ∗ 120 ∗ 0.5ሻ. The transmission rate of the disease from an adult to another one is 
0.00032 and the contact duration in the work place is 120 minutes. So, the probability of not being infect-
ed at workplace is ߚ ൌ expሺെ0.00032 ∗ 120 ∗ 0.5ሻ ∗ exp	ሺെ0.00032 ∗ 120ሻ. 
    Among the people in the community with whom this person has contacts, only one senior is infectious 
and asymptomatic and the remaining are not infectious. The transmission rate of the disease from a senior 
to an adult is 0.00029 and the contact duration in community between these two is 60 minutes. So, the 
probability of not being infected in the community is ߛ ൌ expሺെ0.00029 ∗ 60 ∗ 0.5ሻ. Finally, the proba-
bility of being infected for this adult during this weekday is ௜ܲ௡௙௘௖௧௜௢௡ ൌ 1 െ ߙ	 ∗ ߚ ∗ ߛ ൌ 1 െ
0.917502 ൌ 0.082498. 

2.4 Simulation Process 

A simulation program is developed in the JAVA programming environment and a high level flowchart of 
the simulation model is shown in Figure 2. The simulation begins with the generation of the individuals 
(i.e., agents). Agents are assigned to age groups and their disease characteristics are randomly determined. 
In addition, people are allocated to their mixing groups with attention to their age groups. The simulation 
is run for 35 weeks (245 days). In each day, people make contacts with the other individuals and at the 
end of each day the number of infected people is calculated. Then the simulation parameters are updated 
with the information from the current day and the model is run for the next day. At the end of the simula-
tion run, the number of infected people is reported. 

3 INTERVENTION STRATEGIES 

Home confinement and school closure are intervention strategies examined in this paper with the aim of 
mitigation of the number of infected individuals during a pandemic outbreak. 
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Figure 2: Structure and logic of the agent-based simulation model  

3.1 Home Confinement 

According to this strategy, a symptomatic infectious person stays home during the infectious period and 
only make contacts with his or her household members. Home confinement starts one day after a symp-
tom appears and finishes one day after the illness ends. Duration of contacts between the confined person 
and other household members who continue to go to work or school do not change. Duration of contacts 
with susceptible household members who stay home is considered to be equal to the weekend values of 
contacts. It is reasonable to assume that only a fraction of the people comply with the confinement rules. 
The simulation is run for three compliance rates - 30%, 40%, and 50% (Haber et al. 2007). 

3.2 School Closing  

Based on the school closing strategy, a school is closed for a certain period of time (i.e., one, two, or three 
weeks) when 5% of the students in that school show symptoms of disease. During school closure, house-
hold and community contact durations of the students whose schools are closed are considered to be equal 
to their weekend values. However, household contact durations between these students and their house-
hold members who continue to go to work or school do not change. 

4 COMPUTATIONAL RESULTS 

There are 50 replications for each of the scenarios. Figures 3, 4, and 5 illustrate the number of weekly in-
fections during the pandemic course for baseline (without intervention), home confinement, and school 
closure strategies, respectively. 
 The attack rate (AR) of the disease is the percentage of infected people during the pandemic. In order 
to calculate the effectiveness of each strategy, formula (2) is used. Table 2 shows the effectiveness and at-
tack rate of the pandemic for each of the scenarios. 

 

ݏݏ݁݊݁ݒ݅ݐ݂݂ܿ݁ܧ ൌ
ሾሺ஻௔௦௘௟௜௡௘	௔௧௧௔௖௞	௥௔௧௘ሻି	ሺ௔௧௧௔௖௞	௥௔௧௘	௪௜௧௛	௜௡௧௘௥௩௘௡௧௜௢௡ሻሿ

ሺ஻௔௦௘௟௜௡௘	௔௧௧௔௖௞	௥௔௧௘ሻ
∗ 100%    (2) 

 
As shown in Table 2, all the intervention strategies have positive effects on the AR of the pandemic. 

A comparison of the intervention strategies’ effectiveness indicates that home confinement with 50% 
compliance rate has the biggest effect on the attack rate of the pandemic and decreases it by 39.6%, while 
the school closure for one week has the lowest effect on AR and decreases its value only by 9.8%. Fur-
ther, comparison of Figures 3, 4, and 5 indicate that the maximum number of people infected in a week 
decreases as a result of applying the strategies. The maximum infection in a week for baseline scenario is 
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5.2%, while it is 3.6% and 4.9% for home confinement with 30% compliance rate, and school closure for 
one week, respectively.  

 

 

Figure 3: Average weekly infection for baseline scenario 

 

Figure 4: Average weekly infection for home confinement scenario 

 

Figure5: Average weekly infection for school closure scenario 
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Table 2: Attack rate, and effectiveness for each of the scenarios 

Scenario Version of scenario AR (95% CI) Effectiveness (95% CI)
Baseline - - 41.6(40.7, 42.4) - 

Home confinement Rate of compliance
30 34.4 (33.6,35.2) 17.3 (15.4,19.2) 
40 30.5 (29.5,31.5) 26.6 (24.1,29.1) 
50 25.1 (23.9,26.2) 39.6 (37.0,42.3) 

School closure Weeks of closure 
1 37.5 (36.2, 38.9) 9.8 (6.4,12.9) 
2 36.6 (35.5,37.6) 12.0 (9.4,14.5) 
3 35.8 (34.7,37.0) 13.9 (11.0,16.6) 

5 SENSITIVITY ANALYSIS 

An infectious person might show disease symptoms (i.e., be symptomatic) or might not show any symp-
toms (i.e., be asymptomatic). The probability of being symptomatic (PBS) for an infectious person is con-
sidered to be equal to 67% in the literature (Haber et al. 2007; Elveback et al. 1976). The value of PBS 
can affect the effectiveness of the interventions. A sensitivity analysis is conducted on PBS when a person 
gets the disease. Here, the attack rate of the pandemic is measured for the baseline scenario, home con-
finement strategy with 50% compliance, and three week school closure strategy when PBS is equal to 
50%, 67%, and 80%. Table 3 shows the AR of the pandemic when each of these intervention strategies is 
applied.  

Table 3: Attack rate and effectiveness for each of the scenarios when PBS is 50%, 67%, or 80% 

 

Probability of being symptomatic 
50% 67% 80% 

AR 
Effectiveness 

(%) 
AR 

Effectiveness 
(%) 

AR 
Effectiveness 

(%) 
Baseline 37.6 - 41.6 - 45.1 - 

Home confinement 
 with 50% rate of compli-

ance 
21.2 43.6 25.1 39.6 30.0 33.4 

School closure for 
 three weeks 

31.6 15.9 35.8 13.9 38.9 13.7 

 
As shown in Table 3, when the probability of being symptomatic is decreased (increased) to 50% 

(80%) the attack rate for baseline scenario decreases (increases) to 37.6 (45.1) percent. Further, decreas-
ing (increasing) PBS, decreases (increases) the attack rate when intervention strategies are implemented. 
Home confinement with 50% compliance rates works better than school closure for three weeks for all 
three values of PBS. Moreover, it is shown that the effectiveness levels increase (decrease) when PBS is 
decreased (increased) for both intervention strategies. 

6 CONCLUSION AND FUTURE RESEARCH 

An agent-based simulation model is developed to investigate the effectiveness of home confinement and 
school closure intervention strategies on the progression of pandemic influenza. Results of the simula-
tions show that both intervention strategies can be helpful in the mitigation of the pandemic to some ex-
tent. A home confinement strategy with 50% compliance rate decreases the attack rate of the virus by 
39.6% and is the most effective strategy among the ones presented. Further, a sensitivity analysis is con-
ducted to measure the effects of changing the probability of being symptomatic on the effectiveness of the 
interventions. The results of the simulation show that decreasing (increasing) PBS results in an increase 
(decrease) in effectiveness of the intervention strategies and a decrease (increase) in the attack rate of the 
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pandemic. Future work will include broader versions of home confinement, school closure, and other in-
tervention strategies such as vaccination. 
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