
Proceedings of the 2011 Winter Simulation Conference 

S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds. 

 

 

 

OPTIMIZING SURGERY START TIMES FOR A SINGLE OPERATING ROOM VIA 

SIMULATION 

 

 

Yang Sun Xueping Li 

  

College of Business Administration Department of Industrial & Information Engineering 

The University of Tennessee California State University, Sacramento 

6000 J Street 408 East Stadium Hall 

Sacramento, CA 95819-6088, USA Knoxville, TN 37996-0700, USA 

  

 

 

ABSTRACT 

Operating room scheduling is often done in steps. First, surgeries are assigned to an operating room’s 

time blocks. Assigned surgeries are then sequenced. Idle time is often reserved at the end of the time 

block in order to buffer against possible overtime. This research focuses on the next step of determining 

the amount of time reserved for each of the pre-sequenced surgeries so that surgical teams know their ex-

act start times. In this way the buffer time is redistributed to each of the surgeries in order to minimize to-

tal overtime and idling costs. The problem is modeled as a special periodic review inventory model and a 

simulation-based response surface method is used to optimize surgery start times for a single operating 

room with stochastic operation durations represented by an infinite set of stochastic scenarios. This pur-

posed method does not require extensive computational effort and is easy for practitioners to implement. 

1 INTRODUCTION 

Operating rooms (ORs) are often considered among the most critical resources in a hospital, and OR 

scheduling is important for improving operations efficiency as well as service quality. OR scheduling is 

often determined in steps. First, surgeries are assigned to an operating room’s time blocks. Assigned sur-

geries are then sequenced with the consideration of resource-related constraints and specifications (Jebali, 

Alouane and Ladet 2006). In practice, buffer time is often inserted at the end of the time block in order to 

buffer against possible overtime.  

While overtime staffing is costly for hospitals, it is also desirable that a surgery can finish before the 

next surgery’s scheduled start time in order not to keep the next surgical team waiting. (While in practice 

two consecutive surgeries can be performed by the same surgical team, it is still desirable that the first 

surgery can be completed on time so that the second patient can get into the OR as scheduled.) Such wait-

ing times may lead to higher operations cost and surgical team fatigue (Denton, Viapiano and Vogl 2007). 

Lately some teaching hospitals have started to broadcast surgeries on the internet and interact with au-

diences on social networking sites (Cohen 2009), and on-time starts of surgeries are essential. A more im-

portant surgery may incur a heavier overtime penalty for the previous surgery that uses the same OR. 

Therefore it is necessary to redistribute the butter time into each of the sequenced surgeries. On the other 

hand, OR idling before the next surgery reduces OR utilization and incurs an opportunity cost. It is impor-

tant to schedule the exact start times for surgeries in order to minimize both expected overtime and idling 

costs.  

Assume that a surgery starts at time zero and needs to finish by time r. For a single surgery the prob-

lem is equivalent to a newsvendor problem of reserving a certain amount of time r in the OR in order to 

minimize total expected cost of overstocking and understocking.  
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Assume that the actual surgery duration time is a random variable t with pdf f(t) and cdf F(t). If t > r, 

a per time unit overtime penalty cost C
o
 incurs. On the other hand, if t < r, OR idling incurs an overstock 

(earliness penalty) cost at C
e
 per time unit. C

e
 can be considered a per time unit reservation cost. That is, 

if the surgery finished early and one less time unit were reserved, a cost C
e
 would have been saved. How-

ever, the cost C
e
t for using the OR in a duration t is a sunk cost and should not be considered in the deci-

sion problem. The objective function is  

 

It is straightforward to show that the optimal solution has 

 

Erdogan and Denton (2010) provide a comprehensive literature review on single OR surgery schedul-

ing. Weiss (1990) studies a case in which there are n = 2 surgeries and C2

o
 = 0 for the surgery that is sche-

duled to be second. That is, there is no overtime penalty for the second surgery. In general the more im-

portant surgery should be scheduled to be first in order to have a lower C1

o
 that incurs from keeping the 

second surgical team waiting. Assume that the first surgery starts at time zero. The scheduling problem of 

determining the start time s2 for the second surgery is equivalent to the above single surgery problem of 

determining r1 for the first surgery and time reservation for the second surgery does not matter. However, 

if a positive overtime cost C2

o
 exists and a convex ordering exists between surgery duration times, the 

smaller surgery should be scheduled first (Denton, Viapiano and Vogl 2007).  

The single OR scheduling problem with n > 2 is computationally challenging when combining both 

sequencing and start time problems. Denton, Viapiano and Vogl (2007) propose a two-stage strategy un-

der which the sequence of surgeries is determined using heuristics. Start times for pre-sequenced surge-

ries are solved using stochastic programming where random surgery durations are represented by a finite 

set of stochastic scenarios. A set of artificial constraints are used in the stochastic programming model to 

balance overtime and idling.  

While intuitive heuristics can be used to generate difference surgery sequences for comparison, in 

practice the sequencing decision should also be made by taking into account resource-related constraints 

and specifications. In this research, we assume that surgeries are already allocated to OR time blocks and 

pre-sequenced and focus on the stage of determining start times for pre-sequenced surgeries for a single 

OR. The assumption of having a finite set of stochastic scenarios is relaxed. In Section 2, the scheduling 

problem is modeled as a special periodic review inventory problem. Given the inclusion of multiple ran-

dom variables and the complexity of the problem, in Section 3 we propose a simulation-based response 

surface method to help find the optimum. The purpose is to develop a straightforward, easy-to-implement 

method for practitioners to use. Numerical experiments are presented in Section 4 to show the effects of 

the cost structure and the variability of the random duration on the redistribution of the buffer time into 

each of the surgery jobs. Conclusions are drawn in Section 5.  

2 PROBLEM FORMULATION 

Consider a set of J = {1,2,…n} pre-sequenced surgery jobs in a time block T. The time duration of job j is 

a random variable tj with pdf fj(tj) and cdf Fj(tj). The decision variable is to reserve  for job j. As-

sume that the first job starts at a1 = 0, we have the following required finish time dj for job j and sche-

duled start time sj+1 for job j+1.  

. 

 The actual start time aj+1 for job j+1 can be recursively written as aj+1 = max{aj+tj, sj+1}, which de-

pends on when job j actually finishes. A required finish time dn = T is also set for the last surgery. Assume 

that rj is reserved at a cost of C
e
 per time unit for all jobs. However, depending on job j+1, each job has a 

different overtime cost rate . (  depends on the hospital’s overstaffing cost.) The objective function is 
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The problem is, in essence, a special case of the periodic review inventory problem where the lead 

time is zero and inventory items (time units) perish in a single period. Excess inventory cannot be carried 

to the next period (i.e., used by the next surgery); however, backorders are carried throughout the entire 

planning horizon. See Nahmias (1982) for a review on inventory problems with perishable products. The 

extreme case with inventory items that perish in one period is studied by Bulinskaya (1964). The problem 

in our research is a generalized case in which understock costs ( ) are heterogeneous for different pe-

riods. (In a more generalized case, the overstock cost C
e
 can also be heterogeneous.) Moreover, the prob-

lem has a finite planning horizon and the replenishment quantity of the last decision period depends on 

the decisions made for previous periods as well as the supplier’s maximum capacity. 

3 AN OPTIMIZATION VIA SIMULATION APPROACH 

Given the inclusion of n random variables in the problem, the evaluation of the objective function is very 

challenging. In this section we propose a simulation-based approach to help optimize the cost function via 

designed simulation experiments executed under the response surface methodology (RSM). RSM fits well 

for stochastic optimization problems like ours where control variables (rj) are numeric and the objective 

function is convex. See Montgomery and Myers (1995) for details on the RSM and Kleijnen(1987) for the 

RSM in a simulation context. RSM-based optimization via simulation is generally done in two phases (Fu 

1994). We often start with a point that is remote from the optimum. First-order experimental designs are 

first used to estimate the steepest descent directions from fitted ordinary least square regression models to 

lead the control variables rapidly along a path of improvement towards the general optimum vicinity. This 

is repeated until the linear response surface has nearly zero slopes. Once the region of the optimum is 

found, a second-order polynomial model is then fitted in the second phase with a more detailed experi-

mental design to analytically determine the optimum. 

In order to demonstrate how the simulation-based response surface method works for our problem, a 

three-job case is discussed. Consider n = 3 surgery jobs that have been assigned to and sequenced in an 

OR time block with T = 240 (minutes). Denote the jobs in the given sequence as jobs 1, 2 and 3. Assume 

that random surgery durations tj follow independent log-normal distributions with the following parame-

ters. Strum et al. (2000) show that the log-normal distribution is superior to the normal distribution for 

modeling surgery duration times.  

; ;  

The parameters (µ, σ) are the mean and standard deviation of the associated normal distribution. The 

mean and standard deviation of the log-normal random variable are functions of µ and σ. With the above 

settings, we have log-normally distributed t1, t2, t3 with means 60, 60, 90 and standard deviations 5, 10, 

15, respectively. The decision variables are r1 and r2 and we automatically have r3 = T – r1 – r2. Assume 

that job 1 starts at a1 = 0. The Monte Carlo simulation is coded in the Matlab 

(http://www.mathworks.com/) computing environment and actual surgery durations tj are randomly sam-

pled from a log-normal random number generator. In the simulation we have d1 = s2 = r1, a2 = max{a1+t1, 

s2}, d2 = s3 = r1+ r2, a3 = max{a2+t2, s3}, and d3 = T. Assume C
e
 = 1, , and . The re-

sponse variable is the total cost C
T
 = . The decision is to 

find a set of rj that minimizes the expected total cost. 

Without losing generality, we skip the description of the phase-I simulation and directly discuss the 

development of a phase-II experimental design for fitting the second-order polynomial response surface 

around the optimum. A rotatable central composite design (CCD) is used in this phase. (See Montgomery 

and Myers (1995) for details on the CCD.) Being rotatable means that the prediction power is the same at 

all points that are the same distance from the design center. From an optimization perspective, this is ne-
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cessary since the location of the optimum is unknown and it is important to provide equal precision of es-

timation in all directions. Design points for simulation experiments are listed in Table 1.  

Table 1:  CCD of Simulation Experiments 

Factor A: r1 B: r2 

Factorial Points Level (-1) = 55 minutes Level (-1) = 60 minutes 

Level (1) = 75 minutes Level (-1) = 60 minutes 

Level (-1) = 55 minutes Level (1) = 80 minutes 

Level (1) = 75 minutes Level (1) = 80 minutes 

Axial Points Level (-1.4) = 51 minutes Level (0) = 70 minutes 

Level (1.41) = 79 minutes  Level (0) = 70 minutes 

Level (0) = 65 minutes Level (-1.41) = 56 minutes 

Level (0) = 65 minutes Level (1.41) = 84 minutes 

Center Point Level (0) = 65 minutes Level (0) = 70 minutes 

 

 For each of the factorial and axial points, 100 simulation replicates are executed. For the center point, 

500 simulation replicates are executed. There are 1,300 simulation replicates in total. A statistical analysis 

on simulation results using Design-Expert 8.0 (http://www.statease.com/) leads to the following Analysis 

of Variance (ANOVA) output (Figure 1). 

 

Response: Total Cost 
    

Transform: Natural Log 
     

ANOVA for Response Surface Quadratic Model 
  

 
Sum of 

 
Mean F p-value 

 Source Squares df Square Ratio Prob > F  

Model 31.92458 5 6.384915 36.42696 < 0.0001 significant 

A-r1 0.569885 1 0.569885 3.251286 0.0716 
 

B-r2 4.551929 1 4.551929 25.96948 < 0.0001 
 

AB 3.548465 1 3.548465 20.24456 < 0.0001 
 

A^2 19.36257 1 19.36257 110.4665 < 0.0001 
 

B^2 6.400279 1 6.400279 36.51461 < 0.0001 
 

Residual 226.8123 1294 0.17528 
   

Lack of Fit 0.510044 3 0.170015 0.969893 0.4061 not significant 

Pure Error 226.3022 1291 0.175292 
   

Total 258.7368 1299 
    

Figure 1: ANOVA for simulation outputs 

A natural log transformation on the response variable is used in order to obtain normally distributed 

residuals. Figure 2 graphically shows the fitted quadratic response surface model 

. This model follows the hierarchical principle. 

If a higher order term is significant, all lower order terms that compose it are also included in the model to 

provide internal consistency. With an F-Ratio of 36.4, the chance that a model F-Ratio this large could 

occur due to noise is less than 0.01%. The Lack of Fit F-Ratio of 0.97 implies that the Lack of Fit is not 

significant relative to the pure error. In other words, the model built is significant and adequately fits the 

data. An adequate precision ratio can also be calculated to measures the signal to noise ratio - a ratio 

greater than 4 is desirable. The above study has an adequate precision ratio of 16.14 that indicates an ade-
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quate signal. The model built can be used to navigate the design space. The optimum is found at r1 = 65 

and r2 = 74 with an expected total cost of 36. (r3 = 240 – 65 – 74 = 101.) 

  

 

Figure 2: Fitted response surface 

From an implementation perspective, RSM-based optimization via simulation is generally a very 

quick method since data are only collected at design points. (With manual transposing of data from Mat-

lab to Design-Expert on a regular PC laptop, it takes the authors less than 2 minutes to conclude the pro-

cedure. Due to the nature of Monte Carlo simulation and RSM-based methods, this will not be a lot long-

er for n > 3 cases or longer time blocks.) In order to verify our method, the same simulation model is also 

built in the Arena environment and OptQuest (http://www.arenasimulation.com/Products_OptQuest.aspx) 

is used to search for the optimum. OptQuest combines several metaheuristics into a single search algo-

rithm; however the exact algorithm is unknown. For the above case, it takes OptQuest approximately 2 

minutes to get to the optimum vicinity with a replication setting of 50 and a random start point, but over 

1.5 hours to converge at the optimum {r1,r2}= {65,74} on a high-end server.  

4 NUMERICAL STUDIES 

In order to gain insights into the surgery start time problem, we focus on the n = 3 case. The purposed me-

thod can be easily implemented in n > 3 cases. Assume that n = 3 surgery jobs are allocated and pre-

sequenced for a T = 240 minutes (half day) time block of a single OR. In the first set of experiments, we 

assume that  are i.i.d. random variables following . That is, all jobs have a random 

duration time with the same mean of 75 and standard deviation of 15. If , 

then conceptually a total buffer time of  minutes is reserved at the end of the block. 

Let  be the optimal reservation found for job j and  be the percentage out of 
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the total buffer time that is allocated to job j. We start with . The effect of  is 

tested and presented in Figure 3. 

 A counter intuitive result can be seen that, when the overtime costs are equal for all jobs, the buffer 

time is not equally distributed into each of the jobs. This is in accordance with the perishable nature of the 

reserved time that overstocking of time from the first job, if any, cannot be carried and used by the second 

job and is a sunk loss. On the other hand, if the first job finishes late, there is still a chance for succeeding 

jobs to catch up with the schedule. Wang (1993) shows that, in single server scheduling, for identical jobs 

with exponentially distributed durations, the middle job should always get the largest share of time allow-

ance in order to minimize delays. Our results show that this is generally true for log-normally distributed 

durations unless the idling cost is largely higher than the overtime cost.  

 

 

Figure 3: The effect of C
e
 on the allocation of the buffer time 

 In the second set of experiments, we assume that  ; i.e., general OR utilization has been ad-

dressed by previous decisions and buffering for overtime is more important than buffering for idling when 

determining start times. Figure 4 shows the effect from increasing one of the overtime costs  (while 

remaining the other two unchanged at ) on the redistribution of the buffer time. As one of the  gets 

larger, i.e., as one of the jobs faces a more important successor, that job quickly gains a bigger share of 

the buffer time.  

 

 

Figure 4: The effect of  on the allocation of the buffer time 

 The third set of experiments assumes that . However, the variability of  

is heterogeneous for different jobs. Different levels of the standard deviation are tested for one of the   

while the standard deviations for the other two duration variables are kept at 15.  

 Interestingly, Figure 5 shows that increasing the duration variability of the last job does not affect the 

allocation of the buffer time. This is in accordance with the fact that r3 is not a decision variable. The 

middle job (job 2) always gets a larger share of the buffer for risk pooling unless its duration variability is 

very low. When the variability of t2 gets larger, a bigger share of the buffer is allocated to job 2 and is 

mostly taken from r1. Increasing the variability of t1, on the other hand, makes both r1 and r2 larger. 

0% 

20% 

40% 

60% 

80% 

100% 

0x 0.5x 1x 1.5x 2x 

d3 

d2 

d1 

0% 

20% 

40% 

60% 

80% 

100% 

1x 2x 3x 

0% 

20% 

40% 

60% 

80% 

100% 

1x 2x 3x 

0% 

20% 

40% 

60% 

80% 

100% 

1x 2x 3x 

d3 

d2 

d1 

 

Increase  Increase  Increase  

%
 o

f to
ta

l b
u

ffe
r 

b3
*
 

 

b2
*
 

 

b1
* 

%
 o

f to
ta

l b
u

ffer
 

 

b3
*
 

 
b2

*
 

 

b1
* 

  

Increase  

1335



Sun and Li 

 

 

Figure 5: The effect of duration variability on the allocation of the buffer time 

5 CONCLUSION REMARKS 

In this research, we consider the problem of determining start times for pre-sequenced surgery jobs for a 

single OR, where stochastic surgery durations are represented by an infinite set of stochastic scenarios. 

The problem is modeled as a special periodic review inventory problem where stock items (reserved time 

units) perish in a single period and the supplier’s capacity needs to be fully utilized in n periods. A simu-

lation-based response surface method is used to find the optimum of distributing the available buffer time 

into different jobs so that the time reservation, or the start time, of each job is determined. Numerical stu-

dies show that the levels of the per time unit idling cost, per time unit overtime cost, and variability of 

random duration have effects on such allotments of the buffer time.  

 Future research is suggested to address the multiple OR problem that combines surgery-to-OR alloca-

tion, sequencing and start time decisions, where not only the overtime cost varies depending on the se-

quence of surgeries but also the idling cost is unequal for different ORs and different times of the day. 

Methods should be developed to overcome the possible loss of global optimality. Sequence-dependent se-

tup times, emergency surgeries, possible surgery cancellations and non-log-normally distributed duration 

times can be considered. Since the purposed method does not require extensive computational effort and 

is very easy for practitioners to implement, similar scheduling methods can also be applied to other ser-

vices (e.g., clinical appointments).  
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