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ABSTRACT 

An ad hoc distributed simulation is a collection of online simulators embedded in a sensor network that 
communicate and synchronize among themselves. Each simulator is driven by sensor data and state pre-
dictions from other simulators. Previous work has examined this approach in transportation systems and 
queueing networks. Ad hoc distributed simulations have the potential to offer greater resilience to fail-
ures, but also raise a variety of statistical issues including: (a) rapid and effective estimation of the input 
processes at modeling boundaries; (b) estimation of system-wide performance measures from individual 
simulator outputs; and (c) correction mechanisms responding to unexpected events or inaccuracies of the 
model itself. This paper formalizes these problems and discusses relevant statistical methodologies that 
allow ad hoc distributed simulations to realize their full potential. To illustrate one aspect of these meth-
odologies, an example concerning rollback threshold parameter selection is presented in the context of 
managing surface transportation systems. 

1 INTRODUCTION 

Uses of online simulations are emerging as the needs for solving problems in operational systems in real-
time become more and more common. Many real-world problems are sufficiently complex that analytical 
solutions may not exist or may be too complicated to be solved efficiently. Simulations offer an alternate 
approach where a model that mimics the underlying physical system is created and driven by sensor data 
and problem-specific configurations. A successful online simulation solution must satisfy real-time-
related constraints and be equipped with the ability to capture the dynamics of the physical system. 

Online simulations are also referred to as dynamic data-driven application systems (DDDAS), symbi-
otic simulations (Fujimoto et al. 2002), and cyber-physical systems in the literature. They have been 
widely studied and applied to various science and engineering disciplines for a diverse collection of pur-
poses (Davis 1998). A typical application is to optimize the operation of a physical system. For example, 
in an emergency situation alternate evacuation scenarios may be modeled and evaluated in order to mini-
mize evacuation time. The evacuation plan may need to adapt as the evacuation evolves with new unfore-
seen events arising. Other online simulation applications include path planning for unmanned aerial vehi-
cles (Kamrani and Ayani 2007), parameter tuning for computer networks (Ye et al. 2008), management of 
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semiconductor manufacturing systems (Low et al. 2005), and optimization of surface transportation sys-
tems (Hunter et al. 2009a; Hunter et al. 2009b). Online simulations are also used to better understand and 
gain insights into the physical systems that are difficult or impossible to observe. Example applications 
include identifying an accident using cell phone data (Madey, Szabo, and Barabási 2006; Madey et al. 
2007) and determining the boundary conditions of fluid-thermal systems (Knight, Rossman, and Jaluria 
2006; Knight et al. 2007). 

Many existing approaches to online simulations are centralized: sensor data are transmitted to a spe-
cific location and the simulation results (instructions or stimuli) are used to optimize the physical system. 
Communication can be problematic in so far as they consume energy and may incur large delays. For 
some sensor nodes the ratio of power consumption for communication compared to computation can be 
up to 10,000 to 1 (Zhao and Guibas 2004). Also communication failures may impact the effectiveness of 
online simulations; they must be expected in sensor networks especially under critical environmental 
conditions (e.g., inclement weather resulting in battery fail and radio interference). Scalability is another 
concern. In the centralized paradigm, modeling an enlarged physical system requires more computing re-
sources and communication bandwidth in order to produce results in a timely fashion. These observations 
motivate replacing the centralized method by embedding simulations within the sensor network itself. 

Ad hoc distributed simulations are an approach to real-time system monitoring, analysis, and opera-
tion optimization that involves embedding online simulations into the sensor network covering the physi-
cal system of interest. An ad hoc distributed simulation contains a collection of autonomous simulators 
(or logical processes in distributed simulation terminology), each modeling a portion of the physical sys-
tem, referred to here as coverage or modeling area. The coverage areas can overlap. The simulation is 
constructed in a bottom-up fashion, as opposed to the top-down approach used by traditional distributed 
simulations where the physical system is partitioned into non-overlapping segments. Instead, in an ad hoc 
distributed simulation each logical process (LP) selects the modeling area based on its local objectives 
while collectively the LPs model the entire physical system. An optimistic, i.e., rollback-based synchroni-
zation approach is used where the simulation allows the LPs to advance ahead of other LPs. Figure 1 de-
picts an ad hoc distributed simulation. The grid represents the physical system; the LPs are co-located 
with the sensors, and the modeling areas are the regions shown on the grid. This figure also serves as an 
illustrative example for the following where the features of ad hoc distributed simulations are discussed. 

 

 

Figure 1: Illustration of an ad hoc distributed simulation 

The designation of the area(s) modeled by each LP can be arbitrary. In some cases, an LP may select 
its modeling area in order to perform some local monitoring tasks such as predicting the travel time for a 
particular vehicle in a transportation network. Our previous work serves as an example where the LPs re-
side in vehicles while the sensors may be co-located with road-side cabinets or traffic signals (Hunter et 
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al. 2009a; Hunter et al. 2009b). In other cases, the model may simply predict future states of the area cov-
ered by a sensor. In Figure 1 each LP models the designated rectangular region covered by the corre-
sponding sensor. This approach distributes the computational load and potentially reduces data transmis-
sion costs. It may lead to situations where some parts of the physical system are modeled by multiple LPs 
(e.g., aV  in Figure 1) while others are left uncovered (e.g., bV  in Figure 1). The former case introduces 
redundancy, offering the potential for greater robustness (resilience to failures), which differentiates the 
ad hoc approach from traditional distributed simulations where the system is perfectly partitioned so that 
each segment is modeled by exactly one LP. This may also increase prediction accuracy because multiple 
LPs will be used to provide state predictions. In addition, widely varying predictions by different LPs 
may be indicative of a malfunctioning LP (e.g., caused by incorrect model assumption or inaccurate sen-
sor data) or an LP that has detected changes in system behavior in advance of other LPs. 

LPs in an ad hoc distributed simulation may change their modeling areas as the simulation progresses, 
as might be the case for applications involving mobile components. For example, LPs monitoring a sur-
face transportation system may be deployed in vehicles or handheld computing devices (e.g., GPS devices 
or smart phones). An LP might adjust its modeling area based on vehicle movements and driver’s desires 
to receive predictions concerning the remainder of the planned route. 

Current and future state predictions are shared among LPs via a construct called space time memory 
(STM; see Figure 1). The STM holds time-stamped system state updates from different LPs; the time in-
terval associated with an update specifies when the update is valid. Other LPs may then read a system 
state by specifying the name of the desired variable and a timestamp. For example both 1LP  and 2LP  in 

Figure 1 update aV  while 3LP  reads aV . This approach is different from that used in traditional distribut-
ed simulations where the LPs are notified by events exchanged via messages. The STM aggregates state 
updates for the same variable produced by different LPs. Realization of the STM depends on the physical 
system in which the ad hoc distributed simulation executes. Ideally, the STM should be implemented in a 
distributed fashion over the simulation infrastructure, but could, in principle, be implemented centrally. 

The optimistic synchronization method used in ad hoc distributed simulations allows LPs to predict 
future system states without necessarily waiting for other LPs. If certain desired state information is not 
available upon request, LPs may approximate the missing state information based on past state infor-
mation or similar variables/objects. The approximation could be inaccurate and hence LPs rely on the 
rollback mechanism to detect disagreement between the used data and the predictions later produces by 
other LPs or the field data from sensors. Similarly, if the data previously received by an LP is determined 
to be in error, the rollback mechanism may be utilized to correct the erroneous data. The rollback mecha-
nism, which is not unlike that used in Time Warp, rewinds the LP back to a time prior to when it started 
using the invalid data. It restores the previous system state and restarts the simulation with the “correct” 
data according to the currently available updates. Furthermore, the predictions produced by the LP prior 
to this rollback might be contaminated by the invalid input data; they should be revoked, resulting in re-
computing the projections for the affected system states. Cascaded rollbacks are possible. 

In this paper, we explore several open research issues that arise in ad hoc distributed simulations. The 
discussion is organized around the life cycle of a modeling and simulation study. Then, the remainder of 
the paper examines one specific issue, namely the design of the rollback triggering mechanism in the con-
text of online management of traffic networks. Section 2 presents the analysis issues, Section 3 focuses on 
a transportation example, and Section 4 ends with concluding remarks. 

2 ANALYSIS ISSUES 

Ad hoc distributed simulations introduce a number of analysis issues. A typical simulation study includes 
the following steps: (1) problem formulation, (2) conceptual model development/validation and data col-
lection, (3) simulation program development, verification, and validation, (4) experimental design and 
execution, (5) output analysis, and (6) result documentation (Law 2007). Here, we are primarily con-
cerned with steps 2, 4, and 5 where the choice of simulation analysis methodology influences the design. 
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The issues regarding input data analysis (data collection and data model construction) are discussed in 
Section 2.1. Section 2.2 explores experiment design, Section 2.3 considers model execution and adapta-
tion, and Section 2.4 focuses on output analysis. 

2.1 Input Data Analysis 

Each LP in an ad hoc distributed simulation is essentially a conventional sequential simulation, but its in-
put processes must be estimated using real-time data and it is subject to rollbacks. In particular, the input 
data that are used to construct appropriate input process models are generated by other LPs and/or sen-
sors. A central problem concerns the definitions of these input processes. The data may have not only 
complex autocorrelation structures but also cross-dependencies due to the overlapping nature of the vari-
ous LPs. 

One possible approach for input approximation in an ad hoc distributed simulation was applied in 
transportation systems (Fujimoto et al. 2007; Hunter et al. 2009a; Hunter et al. 2009b). These papers 
listed three possible data sources for input process estimation: (1) projected state information from other 
LPs, (2) real-time traffic sensor data, and (3) historical traffic behavior patterns. In those experiments, 
boundary input rates of LPs were estimated based on the aggregated traffic flow rate predictions within 
rolling time windows. 

The operations research literature contains several state-of-the-art methods for estimating dependent 
input processes (Biller and Ghosh 2006, Chick 2006) as well as methods for generating sample paths 
from such processes (Devroye 2006, Leemis 2006). These methods are typically time-consuming and are 
not designed for data sets that are generated from statistically dependent simulations. Therefore, their ap-
plicability in the dynamic setting of ad hoc distributed simulations is challenging, if not prohibitive. 

Huang et al. (2010, 2011) adopted the paradigm of Whitt (1982, 1983) to model open queueing net-
works with independent routings. The arrival processes of the links between LPs’ modeling areas are ap-
proximated by renewal processes with gamma-distributed interarrival times; the distribution parameters 
are estimated based on the data observed within rolling time windows. This approach is limited to open 
queueing networks, and its applicability to closed queueing systems, queueing networks with state-
dependent routings, and transportation systems is currently under investigation. 

Another issue concerning input approximation relates to the sampling mechanisms and sizes of the 
pertinent real-time data sets. If the constituent simulations are in steady state, extending the sampling pe-
riod allows for improved input estimates. However, long sampling periods introduce challenges, includ-
ing (1) higher computational requirements to perform input data analysis and (2) slower response to sys-
tem transitions from stable conditions. The latter is a consequence of LPs modeling only portions of the 
entire physical system: changes to a specific part of the system would not be revealed to other LPs until 
the corresponding LPs share the information. This slow transient tracking may be undesirable and error-
prone especially for the applications intended to capture changes in system behavior or anomalous events. 

A method for obtaining more observations within a fixed sampling period is by deploying multiple 
LPs to model the overlapping area. The data grow in proportion to the number of LPs, allowing state var-
iables to be estimated from an aggregation of the data from multiple LPs. However, the potential overlaps 
between the LPs’ coverage areas result in correlated data streams; such correlations must be handled with 
care. Simple aggregation methods based on the mean or median are not suitable in general. In addition, 
regardless of the underlying aggregation method, the predictions from various LPs may be weighted dif-
ferently. Greater weight could be given to the LPs projecting with higher fidelity, which is affected by the 
sensor capability, the computational power, or the modeling level of detail, to mention a few. 

Finally, recall that ad hoc distributed simulations are online simulations embedded in sensor net-
works. Prediction accuracy is an objective, but speedy (faster than real-time) execution is the key to their 
applicability. The execution efficiency is controlled by many factors and the best approximation to the 
underlying data model is determined by not only the quality of the data sets but also the effectiveness of 
the input analysis methods under the computational resource constraints. 
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2.2 Experiment Design 

The first issue encountered in designing experiments using the ad hoc approach concerns the assignment 
of coverage areas to LPs. We refer to this as the system partitioning problem. One solution is to assign 
each LP the area within which sensor data are locally available. This is cost effective with respect to 
communication as sensor data are consumed locally; long-distance transmission is not required. However, 
local data alone may be insufficient for making useful predictions or recommendations. Some applica-
tions may benefit from separating the physical system based on component similarity rather than geo-
graphical location. Examples include the systems involving a high level of interactions between compo-
nents of the same category but very few across categories, e.g., modeling of computer virus spread in the 
Internet and information diffusion in social networks. A more general consideration would be the compu-
tational resource restrictions imposed by the devices where simulations are executed. The balance be-
tween the resource restrictions, the LP deployment/configuration complexities, and the desired output 
measures creates complex dependency between LPs, which is not yet completely understood. 

A related issue concerns the choice of shared information. Ideally, an LP would share as much infor-
mation as possible. However, communication and computational limitations (the simulation must execute 
faster than real-time in most applications) impede the ideal configuration. The chosen information must 
be sufficient to drive the input processes of other LPs and allow for the identification of state changes so 
that rollbacks, when necessary, may be utilized efficiently to catch up to system dynamics. 

The system coverage problem, which refers to how many LPs are required to model a segment, has a 
potentially significant influence over output measure accuracy. Intuitively, a large number of LPs are pre-
ferred as this should increase the rate at which a system transient is recognized. However, a key aspect of 
multiple LPs will be the ability to distinguish between the LPs that are indicating changes in system states 
versus “outliers,” not reflecting a true system trend. 

2.3 Model Execution and Adaptation 

Sensor networks, where ad hoc distributed simulations are most likely to be carried out, are highly con-
strained environments with significant limitations and deficiencies. Limited battery energy necessitates a 
balance between the sensing and the simulation tasks, within which both computation and communication 
compete with each other for resources such as power. The computation is demanded for real-time re-
sponse while the CPU clock speed and the memory storage may not be as powerful as in modern day 
computers. Wireless communications suffer from limited bandwidth, potential large latencies, and are er-
ror-prone. Since LP failures could be frequent, the presence of replicates is important to improve the ro-
bustness of the ad hoc approach.  

The rollback mechanism in ad hoc distributed simulations enables recovery from the usage of incor-
rect input models. Optimistic synchronization mechanisms, i.e., those based on rollback, allow LPs to ad-
vance as much as possible without being held back by slower LPs. If a requested system state (as input to 
the simulation) is unavailable, the LP may approximate the input rather than wait. Approximation can be 
based on inference from historical or real-time data that are readily available; each method has different 
influences on the accuracy of the interim system state predictions. Nevertheless, the final prediction relies 
heavily on how the invalid input models are identified and corrected by the rollback mechanism, or spe-
cifically the rollback triggering criterion. 

Good rollback triggering criterion must successfully differentiate between uses of invalid input data 
and normal statistical fluctuations. LPs do not need to be rolled back if differences between the adopted 
input model and the corresponding system state are the results of pure randomness or the expected pat-
terns of fluctuations. As a consequence, one major issue is to define the acceptable level of difference be-
tween two models. In some cases it may be useful to evaluate the sensitivity of output metrics to varia-
tions in input data. A straightforward method would be to specify a tolerance range with fixed width. 
However, the appropriate width varies across cases; there is no general guideline to follow. Setting the 
width in a relative sense is a more reliable alternative (e.g., allowing a 10% deviation). With regard to sta-
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tistical hypothesis tests, increasing the tolerance can be done by choosing a lower significance level, that 
is, lowering the probability of rejecting the null hypothesis that two models are statistically identical. 
However, this would potentially increase the type II error (i.e., failing to reject the false hypothesis of two 
models being considered identical).  

Resource constraints add complexities to designing a rollback mechanism. The rollback mechanism 
clearly impacts the amount of required computation and communication resources, or more generally the 
amount of power to be consumed. When power is a limiting factor, it must be considered how to achieve 
the best mapping of an ad hoc distributed simulation over the available computing resources. In some 
cases, restricted optimism might be a solution to sacrifice execution efficiency in order to save resources 
from being excessively consumed by rollbacks. 

2.4 Output Analysis 

Statistical analysis of output data from ad hoc distributed simulations introduces several challenges not 
present in conventional simulations. First, the overall predictions from an ad hoc distributed simulation 
are tightly coupled with the complex mechanisms involved in input process approximations as well as the 
rollback mechanism. While the simulation literature contains methods for adjusting point estimates and 
confidence intervals for the performance measures from conventional simulations to account for uncer-
tainties in input parameters (Chick 2006, Zouaoui and Wilson 2004), these procedures are not suitable for 
the dynamic nature of ad hoc distributed simulations. 

In steady-state simulations, removal of the initial transient effects is complicated by the rollback 
mechanism. In conventional simulations, this problem can be addressed by batching (Alexopoulos and 
Goldsman 2004). The batch means method is not directly applicable in ad hoc distributed simulations be-
cause the output processes can exhibit temporary departures from stationary state (e.g., due to communi-
cation failures or incident-driven changes to the field data). 

Estimation of metrics spanning multiple LPs is also challenging. For example, estimating the distribu-
tions of travel times in an ad hoc traffic or queueing network simulation involves various complications. 
Consider the estimation of the mean travel time of a unit across a route, a rather trivial problem for con-
ventional simulations. In an ad hoc distributed simulation, a route may cross areas covered by different 
(potentially overlapping) LPs. If the route is acyclic one can form an optimal linear combination of the es-
timators from corresponding LPs. If units can follow cyclic routes, as in queueing networks with proba-
bilistic routing mechanisms, this estimation problem becomes even more difficult. 

3 AD HOC TRANSPORTATION SIMULATIONS 

As pointed out in Sections 2.2 and 2.3, rollback threshold selection is complicated by the tradeoffs among 
simulation objectives, rollback mechanism designs, and computing constraints. Selected threshold 
measures need to be sensitive to state changes so that rollbacks can be triggered to capture system dynam-
ics, but not so sensitive as to result in a large number of unnecessary rollbacks. This section explores the 
performance of different rollback threshold selections under various traffic conditions. 

3.1 Previous Work 

Our initial experiments were conducted on a notional intersection arterial model (Fujimoto et al. 2007; 
Hunter et al. 2009a; Hunter et al. 2009b). In these experiments, three stationary configurations with con-
stant arrival rates were tested along with a configuration where the arrival rate was significantly raised 
over time. Initial results from these experiments demonstrated the positive potential of ad hoc distributed 
simulations with regard to predictions in transportation systems. While the previous experiments focused 
on overall performance of the ad hoc approach in different traffic conditions with the predetermined pa-
rameter setup, here we delve more deeply into the parameter selection, evaluating the performance of the 
ad hoc approach with different rollback threshold configurations under various traffic conditions. The 
goal of this sensitivity analysis is to give greater insight into the ad hoc approach. 
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3.2 Experimental Environment and Traffic Network 

VISSIM, a widely used off-the-shelf traffic simulation program, is utilized for this study. VISSIM is a 
discrete, stochastic, time-stepped microscopic simulation software package that models a wide range of 
traffic systems including freeways, arterials, and public transit operations (PTV 2009).  The experiments 
are performed over a set of heterogeneous personal computers connected through a local area wireless 
network. In total, 11 machines are utilized: one for the STM and each of the remaining ten assigned one 
LP. Each machine is a laptop computer with a 2.2 GHz dual-core CPU and 2 GB RAM. 

Figure 2 illustrates the modeled traffic network. This Manhattan-style 3-by-6 grid network consists of 
a two-way, 8-lane road (Fifth Street) with all other roads being two-way, 4-lane facilities. Each LP mod-
els a 3-by-3 grid network. Five LPs (LPs 1–5) simulate the 3-by-3 grid network covering the western half 
of the network (white box in Figure 2), and the remaining five (LPs 6–10) model the eastern half of the 
network (grey box in Figure 2). It is assumed that LPs 1–5 are preconfigured to model the designated sce-
nario area at the start of a run. LPs 6–10 may experience a rollback when the currently used boundary link 
flow rate and the average of corresponding predictions provided by LPs 1–5 differ by a preset threshold. 
The duration of each experiment is 90 minutes in simulation time, including a 30-minute warm-up to al-
low the system to reach steady state; the data from the warm-up period are ignored. 

 

 

Figure 2: Modeled traffic network 

3.3 Scenarios 

The value of rollback threshold may influence the communication overhead and the output accuracy. In-
tuitively, a smaller threshold value would improve the accuracy while introduce more rollbacks and 
communication overhead. Thirty scenarios are constructed, which involve five different threshold values, 
four different initial traffic flow rates, and four different levels of flow rate increase; details are summa-
rized in the first four columns of Table 2. For example, Scenarios 1–5 have different thresholds (60, 150, 
240, 330, and 420 veh/hr, respectively) while their traffic conditions are identical: initial flow rate 100 
veh/hr and a 400 veh/hr increase in flow rate at simulation time 20 minutes. The threshold of 60 veh/hr is 
equivalent to 2 vehicles per signal cycle length (2 minutes).  Although these scenarios cannot represent all 
possible traffic conditions, they serve as a general view on the relationship between the rollback threshold 
value and the prediction accuracy. Ten replications are performed for each scenario. The results are com-
pared with the “ground truth,” which is generated by modeling the entire network in a sequential fashion; 
similarly, 10 independent replications are executed for each corresponding traffic condition. 

3.4 Results and Discussion 

We study the influences of different rollback threshold values by evaluating the mean absolute error 
(MAE) of the flow rate estimates of Link 4. The definitions are in Equation (1) and Table 1: 
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Table 1: Measurements summary 

Notation Description 

tMAE  Mean absolute error of the flow rate estimates of Link 4 for simulation time in-
terval t 

ti,AdHocRun  Mean flow rate estimates of Link 4 for simulation time interval t, produced by 
LPs in ith ad hoc run 

thAverageGroundTrut  Mean flow rate estimates of Link 4 for simulation time interval t, averaged over 
10 sequential replicated runs 

60T  Number of simulation intervals 
 

Experiment results are shown in Table 2. In general, as the threshold value decreases (i.e., stricter 
rollback criteria), the overall output accuracy improves while more rollbacks occur. As expected, the 
smallest threshold value (60 veh/hr) provides the most accurate predictions over all tested traffic condi-
tions. However, in some cases a larger threshold results in better performance in output accuracy than 
smaller thresholds. For example, the threshold of 330 veh/hr in Scenario 4 produces higher accuracy than 
the smaller thresholds (150 veh/hr and 240 veh/hr in Scenarios 2 and 3, respectively) between 31–50 
minutes. We believe that this inconsistency is due to the fact that the difference between the initial flow 
rate and the increased flow rate is just a little larger than the selected threshold in Scenario 4. Therefore 
the LPs in Scenario 4 were able to publish their flow rate predictions with better accuracy than in Scenar-
ios 2 and 3; see Figure 3 (a). A similar phenomenon is revealed in Scenarios 8 and 17 (compared to Sce-
narios 7 and 16, respectively), where the threshold of 240 veh/hr offers higher prediction accuracy than 
the threshold of 150 veh/hr. However, it is also noted that the threshold of 330 veh/hr is unable to capture 
the traffic flow changes from 100 veh/hr to 400 veh/hr (Figure 3 (b)) and 200 veh/hr to 500 veh/hr (Figure 
3 (c)) in Scenarios 9 and 18, respectively. Since the flow rate increment (300 veh/hr) is smaller than the 
selected rollback threshold (330 veh/hr), rollbacks cannot be triggered. 

Table 2 also shows the number of rollbacks triggered in each scenario. As the threshold value in-
creases, the number of rollbacks decreases as expected. Since the communication overhead is positively 
correlated to the number of rollbacks, the tradeoff between the output accuracy and the communication 
overhead is obvious. The communication overhead could be a major issue in real-world applications of ad 
hoc distributed simulations. Although 60 veh/hr (the smallest threshold value in the experiments) pro-
vides the best accuracy, small thresholds may not be appropriate in practice. They might lead to excessive 
rollbacks, especially when the threshold values are lower than the expected variations in traffic flow con-
ditions, such as the fluctuations in flow rate due to traffic control. Recall that the objective of the rollback 
threshold is to identify changes in traffic conditions, not any slight variation. 

4 CONCLUSIONS 

The great complexity of improving operational systems in real-time motivates new techniques for online 
simulations. While traditional centralized approaches limit the interaction between the simulation and the 
physical world, ad hoc distributed simulations provide an opportunity to improve efficiency, effective-
ness, flexibility, scalability, and robustness by embedding the online simulation into the sensor network 
that monitors the physical system. In this paper, we explored analysis issues that arise in the ad hoc ap-
proach. Issues include input process estimation, rollbacks for model adaptation, and prediction measure-
ment and evaluation. Furthermore, we studied how rollback triggering criterion affect execution efficien-
cy and prediction accuracy in the online management of traffic networks. As anticipated we found that 
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more stringent criterion often resulted in better output accuracy but worse efficiency in performance. This 
study also illustrated some of the tradeoffs that arise in an ad hoc distributed simulation as functions of 
the system parameters. 

Table 2: Mean Absolute Error in flow rate of link 4 

Scenario 
ID 

Initial 
Traffic 
Flow 
Rate 

Increased 
Traffic Flow 

Rate 
(at 20  

minute) 

Rollback Threshold 

Mean Absolute Error (veh/hr) 

Number of 
Rollbacks 

Before  
Increase 

1–20 minutes

During  
Increase 
21–30 

minutes 

After  
Increase 
31–50 

minutes 

1 

100 500 

60 vph (2 veh/cycle) 7.1 22.6 26.0 203 

2 150 vph (5 veh/cycle) 7.5 24.2 41.4 100 

3 240 vph (8 veh/cycle) 9.2 35.2 61.0 50 

4 330 vph (11 veh/cycle) 7.2 38.2 29.4 50 

5 420 vph (14 veh/cycle) 11.0 67.6 323.3 0 

6 

100 400 

60 vph (2 veh/cycle) 9.2 20.0 19.9 151 

7 150 vph (5 veh/cycle) 9.0 25.1 84.3 65 

8 240 vph (8 veh/cycle) 8.6 24.6 20.2 50 

9 330 vph (11 veh/cycle) 11.6 52.4 247.6 0 

10 

100 300 

60 vph (2 veh/cycle) 6.6 22.8 20.0 109 

11 150 vph (5 veh/cycle) 6.8 26.1 19.9 50 

12 240 vph (8 veh/cycle) 5.2 48.7 163.2 0 

13 
100 200 

60 vph (2 veh/cycle) 7.3 18.9 22.0 54 

14 150 vph (5 veh/cycle) 7.0 28.6 83.7 0 

15 

200 500 

60 vph (2 veh/cycle) 10.1 20.1 31.6 135 

16 150 vph (5 veh/cycle) 10.3 26.7 60.3 65 

17 240 vph (8 veh/cycle) 9.8 35.4 33.4 50 

18 330 vph (11 veh/cycle) 11.2 50.7 239.7 5 

19 

200 400 

60 vph (2 veh/cycle) 8.8 17.5 24.4 120 

20 150 vph (5 veh/cycle) 7.1 24.0 25.1 50 

21 240 vph (8 veh/cycle) 9.5 30.7 164.8 5 

22 
200 300 

60 vph (2 veh/cycle) 11.3 26.5 25.4 90 

23 150 vph (5 veh/cycle) 14.9 34.3 83.3 0 

24 

300 500 

60 vph (2 veh/cycle) 12.6 19.6 25.7 215 

25 150 vph (5 veh/cycle) 13.4 17.8 28.8 50 

26 240 vph (8 veh/cycle) 9.7 21.6 147.6 10 

27 
300 400 

60 vph (2 veh/cycle) 9.1 19.1 27.7 75 

28 150 vph (5 veh/cycle) 19.5 27.6 82.1 5 

29 
400 500 

60 vph (2 veh/cycle) 20.5 21.6 23.5 161 

30 150 vph (5 veh/cycle) 17.3 12.6 86.7 5 
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(a) Scenarios 1–5 

 
(b) Scenarios 6–9 

 
(c) Scenarios 15–18 

Figure 3: Flow rate estimates of link 4 
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