
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

BROWNIAN BRIDGE HYPOTHESIS TESTING FOR THE INITIAL TRANSIENT PROBLEM

Peter W. Glynn

Management Science and Engineering
Stanford University

Stanford, CA 94305 USA

Eunji Lim

Industrial Engineering
University of Miami

Coral Gables, FL 33124 USA

ABSTRACT

This paper models the detection of the initial transient in a steady-state simulation problem as a change
point hypothesis testing problem. We introduce two new hypothesis tests for the initial transient, each of
which is based on the Brownian bridge process and each of which is a composite test that involves testing
against infinitely many alternatives (that depend on the duration of the transient period). One of our two
procedures is closely related to the class of tests proposed by Schruben, Singh, and Tierney (1983).

1 INTRODUCTION

Let X = (X(t) : t ≥ 0) be a real–valued stochastic process representing the output of a simulation. We
assume that there exists a (deterministic) constant α for which

X(t) =
1
t

∫ t

0
X(s)ds⇒ α (1)

as t→ ∞ (where ⇒ denotes weak convergence).
The steady–state simulation problem is concerned with the estimation of the steady–state mean α . In

the typical systems simulation context, the simulation of X is initialized with an initial distribution that
is atypical of equilibrium behavior, thereby inducing a so–called initial transient period during which the
system “warms up” until its dynamics are typical of steady–state. In this paper, our goal is to identify
the presence of a statistically significant initial transient via use of a suitably defined hypothesis testing
procedure. In particular, we view the presence of an initial transient as one in which a change point,
associated with a change in the mean, is present. As noted by Schruben, Singh, and Tierney (1983), the
Brownian bridge process arises naturally in this setting. Consequently, the tests arise in connection with
change point problems associated with the Brownian bridge process. In contrast to Schruben et al. (1983),
our tests are composite tests that test simultaneously against all possible times for the change point (thereby
modeling our uncertainty in the duration of the initial transient).

This paper is organized as follows. In Section 2, we review the basis change point problem and point
out its connection to the initial transient detection problem. Section 3 introduces our two new tests, both
involving the Brownian bridge, while Section 4 makes the connection to the work of Schruben et al. (1983).
Section 5 provides some concluding comments.

2 VIEWING THE INITIAL TRANSIENT DETECTION PROBLEM AS A CHANGE POINT
PROBLEM

In order that X satisfy the law of large numbers (1) (so that the steady–state simulation problem is well–
defined), X must typically “mix”, so that observations collected at times that are widely separated are
effectively independent of one another. When processes mix, it is generally the case that X also satisfies
a functional central limit theorem (FCLT) version of (1), so that there exists a (deterministic) positive
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constant σ for which

Zt ⇒ σB (2)

as t→ ∞ in D[0,∞), where B = (B(r) : r ≥ 0) is a standard Brownian motion and

Zt(r) = t−1/2
(∫ rt

0
X(s)ds− rtα

)
.

The notion of weak convergence in D[0,∞) is discussed in Ethier and Kurtz (1986), as are various limit
theorems supporting (2).

In this paper, we take the view that there is an interval [0, t0] over which

EX(s) = α +δ

for 0≤ s≤ t0, after which the process X is in stationarity, so that

EX(s) = α.

for s≥ t0. In view of (2), this leads us to approximate X via∫ r

0
X(s)ds

D
≈ αt +δ (r∧ t0)+σB(r), (3)

where
D
≈ denotes “has approximately the same distribution as” (and has no rigorous meaning, other than

that imposed by (2)), and a∧ b , min(a,b) for a,b ≥ 0. The statistical model (3) is one in which the
Brownian motion exhibits a change point at time t0, at which time its drift changes from α + δ to α .
The Neyman–Pearson lemma states that the most powerful test for such a Brownian change point problem
involves rejecting the hypothesis of stationarity over [0, t] in favor of an initial transient of magnitude δ

over [0, t0] (followed by stationarity over [t0, t]) whenever

δ

σ2

(∫ t0

0
X(s)ds−αt0

)
− δ 2t0

2σ2

exceeds some critical value. Since t0 is unknown, it seems statistically reasonable to reject the hypothesis
of stationarity whenever

max
0≤s≤t

[
δ

σ2

(∫ s

0
X(u)du−αs

)
− δ 2s

2σ2

]
(4)

exceeds some appropriately determined value, and to estimate the end of the initial transient period t0 as
the maximizer ŝ of (4). Of course, if one’s intuition is that the initial transient terminated sometime prior
to β (with β unknown), one would modify the above change point test statistic to

max
0≤s≤β

[
δ

σ2

(∫ s

0
X(u)du−αs

)
− δ 2s

2σ2

]
.

The difficulty with this change point statistic is that the steady–state mean is assumed to be known to the
simulationist (as is the time–average variance constant (TAVC) σ2). Note that σ2 can always be computed
exactly (with probability one) from the quadratic variation of the Brownian path. Thus, the key assumption
underlying this Brownian formulation of the change point problem is that the drift of the Brownian motion
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is known either prior or subsequent to the change point; see Page (1954) and Pollak and Siegmund (1985)
for two representative papers that discuss this particular formulation of the change point problem.

Note that the natural estimator for α is X(t), thereby leading to consideration of a test statistic based
on

δ

σ2

(∫ s

0
X(u)du− sX(t)

)
=

δ

σ2

(∫ s

0
X(u)du− s

t

∫ t

0
X(u)du

)
D
≈ δ

σ2 (σB(s)− sσ(B(t)/t))

=
δ

σ2 (σB(rt)− rσB(t)) (r = s/t)

D
=
√

t(δ/σ)(B(r)− rB(1)) ,

where D
= denotes equality in distribution, and the scaling self–similarity relationship B(· t) D

= t1/2B(·) has
been used for the last equality. This leads to consideration of change point tests based on the so–called
(standard) Brownian bridge process B0 = (B0(t) : 0≤ t ≤ 1) defined by

B0(t) = B(t)− tB(1).

In the next section, we discuss change point tests that are based on a Brownian bridge formulation.

3 HYPOTHESIS TESTING BASED ON THE BROWNIAN BRIDGE

The connection between the Brownian bridge process and hypothesis testing for the initial transient problem
was first made by Schruben, Singh, and Tierney (1983). We discuss their proposed test in detail in Section
4. To derive appropriate hypothesis tests in this setting, note first that if X is in equilibrium over the entire
simulated time horizon [0, t], then∫ t0

0
X(u)du− t0X(t)

=
(t− t0)

t

∫ t0

0
X(u)du− t0

t

∫ t

t0
X(u)du

D
≈ (t− t0)

t
σB(t0)−

t0
t

σ (B(t)−B(t0))

D
=

√
(1− t0/t)t0σN(0,1),

where N(0,1) is a standard normal random variable having mean 0 and variance 1. On the other hand, if
X exhibits a change point from mean α +δ over [0, t0] to α over [t0, t], then∫ t0

0
X(u)du− t0X(t)

D
≈ δ t0(1− t0/t)+

√
(1− t0/t)t0σN(0,1).

As a consequence, the ratio of the likelihood of the data under a change point at t0 from mean α +δ to
mean α relative to the likelihood of no change point (i.e. no statistically significant initial transient) over
[0, t] is approximately

exp
(

δ

σ2

(∫ t0

0
X(u)du− t0X(t)

)
− δ 2

2σ2 t0(1− t0/t)
)
. (5)
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Thus, the Neyman–Pearson lemma asserts that an approximately optimal hypothesis test takes the form:
Reject the hypothesis of stationarity over [0, t] (in favor of a change point at t0) if

δ

σ2

(∫ t0

0
X(u)du− t0X(t)

)
− δ 2

2σ2 t0(1− t0/t) > z̃, (6)

where ẑ is chosen so that under the assumption of stationarity (the so–called “null–hypothesis” in this
setting), the Type 1 error is no more than (say) γ . Given the FCLT (2), this amounts to choosing ẑ so that

P

(δ t1/2

σ

)
B0(r)−

1
2

(
δ t1/2

σ

)2

r(1− r)> z̃

= γ,

where r = t0/t. This formula makes clear that a key test parameter is δ t1/2/σ . In particular, the power
of the test is largely determined by δ t1/2/σ , so that the larger this quantity, the greater the power of the
test to accurately detect the presence of the alternative hypothesis (i.e. the presence of an initial transient
ending at t0). As a consequence, δ can be chosen in proportion to σ/t1/2 without affecting the power of the
test. It should further be noted that the test based on (6) is uniformly most powerful given all alternatives
satisfying δ ′ ≥ δ .

As in Section 2, the time t0 of the change point is unknown. If one’s intuition is that the initial transient
must terminate prior to deterministic time β ≤ t, this suggests consideration of the test statistic

max
0≤s≤β

[
δ

σ2

(∫ s

0
X(u)du− sX(t)

)
− δ 2s

2σ2 (1− s/t)
]
. (7)

The obvious two–sided alternative (testing for initial transients of magnitude δ both above and below
α) is then

max
0≤s≤β

[∣∣∣∣ δ

σ2

(∫ s

0
X(u)du− sX(t)

)∣∣∣∣− δ 2s
2σ2 (1− s/t)

]
. (8)

The above testing procedure requires specifying δ . One means of avoiding this is to consider δ as a
parameter and to estimate δ from (5) via the principle of maximum likelihood, thereby leading to the
estimator

δ̂ =

∫ t0
0 X(u)du− t0X(t)

t0(1− t0/t)
.

If we substitute this estimator into the test procedure (6), maximize over s ∈ [0,β ], and take the square
root, we are led to consideration of the test statistic

1
σ

max
0≤s≤β

∣∣∫ s
0 X(u)du− sX(t)

∣∣√
s(1− s/t)

. (9)

Both of the test statistics (7) and (9) are considered in James, James, and Siegmund (1987), as are several
other possibilities. In view of (2), the critical values z1 and z2 corresponding to (8) and (9) are respectively
determined by the equations

P
(

max
0≤r≤β/t

(
B0(r)−

δ

2σ

√
tr(1− r)

)
>

z1σ

δ
√

t

)
= γ

and

P

(
max

0≤r≤β/t

|B0(r)|√
r(1− r)

> z2σ

)
= γ,
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for a given level γ of Type 1 error. In practice, the TAVC σ2 is unknown and must be estimated from the
observed data. So long as σ̂2

t is a consistent estimator for σ2 (i.e. σ̂2
t ⇒ σ2 as t→∞), substitution of σ̂t for

σ in our testing procedures is asymptotically permissible. The tests based on (8) and (9) are our proposed
(new) tests for detecting the presence of the initial transient. Approximations to the critical values z1 and
z2 can be found in James et al. (1987).

4 THE SCHRUBEN–SINGH–TIERNEY INITIALIZATION TEST

As noted earlier, it is natural to consider the process

Yt(s) =
∫ s

0
X(u)du− sX(t), 0≤ s≤ t

when the steady–state mean α is unknown. According to (2), when X is in stationarity over [0, t],

Yt(s)
D
≈ σB(s)− sσB(t)/t
D
= σ

√
t (B(s/t)− (s/t)B(1))

= σ
√

tB0(s/t),

so
Yt(rt)

D
≈ σ
√

tB0(r), 0≤ r ≤ 1.

In other words, under the assumption of stationarity,

Yt(rt)
σ
√

t
D
≈ B0(r), 0≤ r ≤ 1.

On the other hand, if we model the initial transient as a (possibly) non–constant drift µ(·) added to an
equilibrium version X∗ of X , then

Yt(rt)
σ
√

t
=

∫ rt
0 X∗(u)du− r

∫ t
0 X∗(u)du

σ
√

t
+

∫ rt
0 µ(u)du− r

∫ t
0 µ(u)du

σ
√

t
D
≈ B0(r)+

∫ r

0
µ̃t(v)dv

for 0≤ r ≤ 1, where

µ̃t(v) =
t1/2

σ

[
µ(vt)−

∫ 1

0
µ(st)ds

]
.

In contrast to the calculations of Section 3, Schruben et al. (1983) consider the likelihood of the entire
path of Yt(·) in developing their hypothesis test (to be contrasted against Section 3’s calculation at a given
fixed t0). Following the discrete–time approach of Schruben et al. (1983), we find that the logarithm of
the likelihood of the path under the initial transient model µ(·) to that computed under the assumption of
stationarity is∫ 1

0
µ̂t(r)

dYt(r)
σ
√

t
− 1

2

∫ 1

0
µ̂t(r)2dr

=
1

σ2

∫ 1

0

[
µ(rt)−

∫ 1

0
µ(st)ds

](
tX(rt)− tX(t)

)
dr− 1

2σ2

∫ 1

0

[
µ(rt)−

∫ 1

0
µ(st)ds

]2

tdr

=
1

σ2

∫ t

0

[
µ(v)− 1

t

∫ t

0
µ(l)dl

](
X(v)−X(t)

)
dv− 1

2σ2

∫ t

0

[
µ(v)− 1

t

∫ t

0
µ(l)dl

]2

dv.
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In particular, when we presume (as in Section 3) that µ(l) = δ for 1≤ l ≤ s and is zero for l > s, then the
log–likelihood is

δ

σ2

(∫ s

0
X(r)dr− sX(t)

)
− δ 2

2σ2 (1− s/t),

which matches (6). Maximizing over s then recovers the test (7). Thus, the first of our two hypothesis tests
(7) and (9) of Section 3 can be viewed as a composite version of the Schruben et al. (1983) test, in which
we simultaneously test against all alternatives that involve a constant drift over an interval [0,s] (s≤ β ),
followed by stationarity subsequent to time s. The second test, based on (9), is also a composite test, and
does not appear to have any direct relation to the tests proposed by Schruben et al. (1983) (other than the
fact that it is also based on a Brownian bridge analysis).

5 FURTHER WORK

One key issue that needs to be addressed is the empirical performance of our two proposed composite tests,
as compared to those introduced in Schruben et al. (1983), as well as relative to additional initial transient
tests suggested in the years since. In future work, we expect to perform such an evaluation, focusing on
settings in which the initial transient can significantly impair the performance of the steady–state estimator
X(t). In addition, we will consider additional such tests, in which the initial transient is described by a
more complex model than that of a simple change point in which the mean is constant over the initial
transient period. The intention is to develop tests that are distributionally robust, yet sensitive enough to
pick up significant departures from stationarity.
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