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ABSTRACT

The Boltzmann model for the random generation of “decomposable” combinatorial structures is a set of
techniques that allows for efficient random sampling algorithms for a large class of families of discrete
objects. The usual requirement of sampling uniformly from the set of objects of a given size is somehow
relaxed, though uniformity among objects of each size is still ensured. Generating functions, rather than
the enumeration sequences they are based on, are the crucial ingredient.

We give a brief description of the general theory, as well as a number of newer developments.

1 INTRODUCTION

1.1 Random Generation of Combinatorial Structures: a Quick Overview

Random generation is often used as a tool for exploration (“what do large objects of this type look like?”),
or to provide large datasets for software and algorithm testing.

Usually, one defines a combinatorial class as a finite or countable family C of discrete “objects”,
equipped with a “size” function from C to the natural numbers, such that for each natural number n,
the subset Cn of all objects with size n is finite. A uniform random generator for the class C is then a
randomized algorithm that takes as input an integer n, and outputs an element randomly selected uniformly
from Cn. The efficiency of the generator is typically measured in terms of its expected time and space
complexities, expressed as a function of the size n.

Random generation methods tend to fall into one of a small number of classes. Ad hoc methods
rely on precise combinatorial properties of the considered class; a fine example is provided by Rémy’s
algorithm (Rémy 1985) for the random generation of plane binary trees. Markov chain methods rely on the
simulation of a Markov chain whose states are the objects one wants to sample from, and that converges
to the uniform (or another suitably chosen) distribution; careful analysis of the convergence speed makes
it possible to run the chain for a fixed number of steps and obtain an almost-uniform generator, or more
sophisticated techniques such as Coupling from the Past (Propp and Wilson 1998) can be used for exact
sampling from the stationary distribution.

Decomposition methods apply for classes where objects are, informally, “made up” of smaller objects,
be they from the same or another class that is itself decomposable. A prime example is that of plane binary
trees, that is, rooted trees where each internal node has exactly two children, one of which is distinguished
as the left child while the other is the right child. In this case, a plane binary tree is either made up of a
single root-leaf, or of a root and left and right subtrees, both of which can be any plane binary trees.

The first systematic example of a decomposition method for random generation is the so-called
recursive method (Flajolet, Zimmermann, and Van Cutsem 1994), where decompositions are used to obtain
recurrences satisfied by the counting sequences. These counting sequences are then used, together with the
decomposition rules themselves, to guide the random generation algorithm. In the above example of plane
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binary trees, the counting sequence (the well-known Catalan numbers) is used to determine the probability
pn,k that a uniform random tree with n internal nodes has a left subtree with k internal nodes, and to sample
K from this distribution; then the random generator is recursively called with sizes K and n− 1−K to
obtain the left and right subtrees (which are independent conditioned on their respective sizes); the resulting
tree is then uniform.

1.2 The Boltzmann Method

The Boltzmann method, as introduced in Duchon et al. (2002) and Duchon et al. (2004), is another
decomposition-based method that can be applied to roughly the same combinatorial classes as the recursive
method. We will give a precise description of the method in the next section. For this introduction, we
will simply describe the crucial ingredients.

Where the recursive method uses counting sequences for the random generation algorithms, and
generating functions are mostly a tool to compute the counting sequences, the Boltzmann method uses the
generating functions, viewed as analytic functions of a real variable (and, in practice, the values of the
generating functions) in the random generation algorithms – thus reducing the need for precomputation to a
small number of real constants. The idea is to “relax” the requirement for a uniform sampler (which outputs
a uniform random structure among those of the target size n) into allowing structures of all sizes, while
keeping uniformity among all objects of each individual size. By choosing the “right” distribution on sizes,
independence among substructures is introduced, which results in very simple and efficient algorithms.

1.3 Outline of the Paper

Sections 2-4 make up the bulk of what can be termed the “Boltzmann method”. Section 2 gives a general
description of the Boltzmann method. Section 3 lists a number of constructions which can be used to define
specifications of combinatorial classes for which Boltzmann samplers can be automatically compiled from
the specification. Section 4 sums up various results on the complexities of the random sampling algorithms.
Section 5 describes how Boltzmann samplers can be used to get closer to the classical model of uniform,
fixed-size random generation.

Section 6 deals with the question of how one can effectively obtain the real constants used in Boltzmann
samplers, and Section 7 describes results that draw on the principles of the method without exactly fitting
in it.

The list of references does not attempt to give a complete list of articles using the ideas exposed here.
The interested reader will find more examples in the bibliography of Bodini (2010), even though it is not
limited to references about the Boltzmann method.

All proofs and most technical details have been purposefully omitted; the algorithms in Section 3 have
been included mostly to demonstrate their simplicity. We have made the choice of not detailing any of the
many examples that could be given; the interested reader will find many such examples, including pictures
of large random structures, in the original papers.

2 THE BOLTZMANN METHOD: GENERAL DESCRIPTION

The Boltzmann method can be used in two flavors, the ordinary (or unlabeled) and exponential (labeled)
variants.

Throughout the paper, we use the word structure (or C -structure) to indicate an element of a combinatorial
class C . No particular assumption is ever made on the nature of such structures, though classical examples
tend to come from discrete mathematics or theoretical computer science: words over some finite alphabet,
sequences, various flavors of trees, etc.
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2.1 Combinatorial Classes and Products

Let C be some combinatorial class. The size of an object c ∈ C will be noted |c|. For any integer n, let cn
denote the number of objects in C with size n. The ordinary (resp. exponential) generating function for
C is

C(z) = ∑
n

cnzn, resp. C̃(z) = ∑
n

cn
zn

n!
;

it is always assumed that the considered generating function has positive radius of convergence ρ , i.e. that
limc1/n

n < ∞ (resp., lim(cn/n!)1/n < ∞).
For 0 < x < ρ , the (normal, resp. exponential) Boltzmann distribution over C for parameter x is the

probability distribution defined, for any c ∈ C , by

Px(c) =
x|c|

C(x)
, resp. Px(c) =

x|c|

n!C̃(x)
.

These distributions give positive probability to all objects in the class, with the property that two objects
with the same size have the same probability. They are, of course, not the only probability distributions
with this property; their interest lies mostly in their relationship with two common constructions in the
combinatorial world: the normal and labeled products.

Given two classes A and B, their normal product is just their Cartesian product C = A ×B, with
size defined additively by |(a,b)|= |a|+ |b| for (a,b) ∈A ×B.

To define the labeled product, one has to assume that structures are made up of both an unlabeled
structure c and a “labeling”, a permutation on a set whose is that of c. Think of a structure c as being
formed of |c| basic “atoms”, each of which receives a distinct label from [[1, |c|]] = {i ∈ Z : 1≤ i≤ |c|}.
By a slight abuse of notation, we identify these atoms with the integers 1 to |c|, so that the labelings are
just permutations σ ∈S|c|. For each unlabeled structure c, the set of admissible permutations may be a
strict subset of S|c|.

Then, the labeled product of two labeled structures (a,σa) and (b,σb) is defined as (a,b), with admissible
labelings obtained by taking all partitions of [[1, |a|+ |b|]] into two parts A and B of respective sizes |a|
and |b|, and, for each partition, taking the one permutation σ ∈S|a|+|b| where all entries in A are in the
same respective order as that of σa, and all entries in B are in the same respective order as that of σb (that
is, if (x,y) ∈ A2, then σa(x)< σb(y) iff σ(x)< σ(y), and similarly for B). As a result, (a,σa) and (b,σb)

have
(|a|+|b|
|a|
)

different structures in their labeled product. The labeled product of two classes is defined as
the set of all labeled products of structures in the two original classes, with size again defined additively.

The first important property is as follows: if two unlabeled (resp., labeled) classes A and B have
generating functions A(z) and B(z) (resp., exponential generating functions Ã(z) and B̃(z)), then their normal
(resp. labeled) product has generating function C(z) = A(z)B(z) (resp., C̃(z) = Ã(z)B̃(z)).

An immediate, and most useful, consequence, valid under both models, is this: if C = A ×B,
then taking the product of two independent A -structure and B-structure, each following the Boltzmann
distribution with parameter x, results in a C -structure under the Boltzmann distribution with parameter x.
For labeled structures, it is implied that one selects a uniform random set to define the permutation in the
product.

This “independence under substructures” property, in turn, has interesting practical consequences, in
that it makes it possible to describe, for a number of classical combinatorial constructions, systematic
ways to produce efficient algorithms to sample from the Boltzmann distribution for classes that are entirely
described (possibly in a recursive way) with them. This is the topic of Section 3.
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2.2 The Boltzmann Method

By a Boltzmann sampler for a combinatorial class C , we mean a randomized algorithm ΓC that takes as
input a real parameter x and outputs a random C -structure under the Boltzmann distribution with parameter
x. Our overall goal is to create efficient Boltzmann samplers for as many combinatorial classes as possible.

Given a description of a combinatorial class C from which we would like to obtain “large random
structures” (of size n, ideally), the Boltzmann method can be summarized as follows:

1. Find out if our class can be specified (up to a reasonably simple size-preserving bijection) from the
constructions in Section 3. If not, try to extend the expressive power of the method by adding new
constructions. If this does not work, maybe the Boltzmann method is not the best choice after all.

2. Use the techniques of the Purple Book (Flajolet and Sedgewick 2009) to locate the “dominant”
singularities (those of smallest modulus, which govern the asymptotics of the counting coefficients;
since the generating functions have nonnegative coefficients, at least one such singularity lies on
the positive real axis) of the generating functions in our specification, and possibly an estimate of
the value we should give parameter x to give expected size n to C -structures under the Boltzmann
distribution.

3. Compute approximations (to roughly Θ(logn) digits) of the values at x of all involved generating
functions, possibly using the combinatorial oracle of Section 6.

4. Use the patterns in Section 3, together with our specification, to write a Boltzmann sampling
program.

5. Optionally, add a rejection scheme to obtain samples with size in [(1− ε)n,(1+ ε)n], or even of
exact size n (more costly).

Alternatively, step 2 can be replaced by experimentation using the other steps.

2.3 Choosing the Parameter and Tuning for Size

As said above, the Boltzmann model uses a real parameter that may be chosen arbitrarily inside the radius
of convergence of the generating function for the class under consideration. This parameter x governs
the distribution of sizes of the random structures. In typical applications, one would like to obtain large
structures, that is, there is an ideal value n for sizes. We now briefly turn to the question of picking an
appropriate value of x for a target n.

For a given x, the probability that a Boltzmann-distributed A -structure will have size n is given by

pn = pn(x) =
anxn

A(x)
;

multiplying by n, and summing over all values of n, we obtain the expected size

N = NA (x) =
xA′(x)
A(x)

,

where A′ is just the derivative of the generating function A (which can be formally defined as A′(x) =
∑n nanxn−1; this corresponds to the usual derivative inside the radius of convergence of A).

Except in degenerate cases, NA is a strictly increasing and convex function on the interval [0,ρ), and
the equation N(x) = n has at most one solution; if, as is often the case, A′(x) goes to infinity as x goes to
ρ , the equation has a unique solution xn for each integer n. Setting x to this value xn in the Boltzmann
samplers from the previous section results in a sampling algorithm that produces structures of expected
size n. Interestingly enough, the same equation also describes the value of x that maximizes the probability
pn that the output structure will have size n.

When the generating function is known exactly, one can solve for the exact value of xn. In many
situations of interest, the generating function is known only through an equation that it satisfies (this is
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typically the case when the class is defined recursively, as described in the next section). In this case, it
is often possible to use the techniques of analytic combinatorics (Flajolet and Sedgewick 2009) to derive
precise asymptotic information about the generating function and obtain a precise estimate of xn.

In some cases, an attractive alternative is to use the singularity x = ρ; although it often implies an
infinite expected size, a simple adaptation of the sampling algorithms makes this a very viable choice. This
will be described in more detail in Section 5.

3 BASIC CONSTRUCTIONS AND BOLTZMANN SAMPLERS

In this section, we describe a number of constructions that can be used to describe more complex classes
from simpler ones, and, for each construction, the corresponding combination algorithm that allows one
to build a Boltzmann sampler for the new class using Boltzmann samplers for the classes involved in the
description. The constructions described here allow one to describe combinatorial classes that are close to
those of the theory of combinatorial species (Bergeron, Labelle, and Leroux 1998).

When nothing is specified, these constructions apply to both labeled and unlabeled structures; in the
labeled case, it is silently assumed that one performs a label redistribution as in the case of the labeled
product.

The initial constructions were described in (Duchon et al. 2004); later additions are credited individually.
In all cases, the construction is translated into an expression for the generating function of the new

class in terms of the previous one; this in turns gives a simple construction for the sampling algorithm,
where “substructures” are independent. Many algorithms can be expressed in the form “Draw integer k
from discrete distribution µ(x), then let γ receive the concatenation of k independent calls to generator
ΓA (x)”; we abbreviate this as

γ ← [Γµ(x) =⇒ ΓA (x)] .

We also use samplers for a few standard distributions: Bernoulli with success probability x (Bern(x)),
geometric (with support N) with parameter x (Geom(x)), and Poisson with rate x (Poiss(x)). A subscript
condition on these samplers means a conditioning on the output, which can be achieved by rejecting outputs
until the condition is met.

3.1 Finite Sets

Finite (typically small) sets do not require an elaborate theory to produce sampling algorithms, and are
included to serve as elementary bricks for more complex constructions.

One typically defines an “empty structure” class E , containing a single structure of size zero that we
denote as 1, and an “atom” class Z , containing a single structure Z of size 1. Occasionally, one may use
a number of different atom “types”, which will then be written Za,Zb, and so on.

3.2 Disjoint Union

The most basic construction is that of disjoint union: if A and B are disjoint classes, then their union
C =A ∪B (with size inherited from the original class) is a new class, whose generating function is simply
C(z) = A(z)+B(z).

Algorithm Γ[A ∪B]
if Bern(A(x)/(A(x)+B(x))) then

Return ΓA (x)
else

Return ΓB(x)
end if
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3.3 Product

The product construction, being of fundamental importance, has been described in the previous section.

Algorithm Γ[A ×B]
Return (ΓA (x),ΓB(x))

3.4 Sequence

If A is a class with no structures of size 0, C = Seq(A ) is the set of sequences (A1, . . . ,Ak), for arbitrary
k ≥ 0, with Ai ∈A , and size defined additively by

|(A1, . . . ,Ak)|= |A1|+ · · ·+ |Ak|.
The generating function for C is the pseudo-inverse of that of A ,

C(z) =
1

1−A(z)
,

and the corresponding Boltzmann sampler for C is as follows:

Algorithm ΓSeq(A )
γ ← [Geom(A(x)) =⇒ ΓA (x)]
Return γ

3.5 Cycle (labeled)

If A is a class with no structures of size 0, C = Cycle(A ) is the set of cycles of A -structures, that is,
sequences defined up to a circular permutation of the component A -structures.

Working with labeled structures means that each sequence of k structures has exactly k− 1 other
structures that correspond to the same cycle. Consequently, the generating function is

C̃(z) = ∑
k≥1

Ãk(z)
k

=− log(1− Ã(z)),

and the corresponding Boltzmann sampler uses the “logarithmic” distribution µx(k) = xk

k| log(1−x)| (k ≥ 1),
provided by sampler Loga():

Algorithm ΓCycle(A )
γ ←

[
Loga(Ã(x)) =⇒ ΓA (x)

]
Return γ

3.6 Set

If A is a labeled class with no structures of size 0, C = Set(A ) is the class of sets of A -structures, that
is, (possibly empty) sequences up to an arbitrary permutation of component structures.

The corresponding generating function is

C̃(z) = ∑
k≥0

Ãk(z)
k!

= exp(Ã(z)),

and the distribution for the number of components is the Poisson distribution:
A set construction for unlabeled structures was introduced in (Flajolet, Fusy, and Pivoteau 2007). It is

based on the multiset construction described next, and requires more elaborate manipulations.
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Algorithm Γ[Set(A )]
γ ←

[
Poiss(Ã(x)) =⇒ ΓA (x)

]
Return γ

3.7 Multiset (unlabeled)

Boltzmann samplers for the Multiset construction were introduced in (Flajolet, Fusy, and Pivoteau 2007).
If A is an unlabeled class with no structures of size 0, C = MSet(A ) is the class of all multisets of

A -structures - sets with possible repetitions.
The corresponding generating function is

C(z) = exp

(
∑
k≥1

1
k

A(zk)

)
.

The Boltzmann sampler uses a MaxIndex(A,x) subroutine, which samples from the discrete distribution
defined by

PA,x(K ≤ k) =
1

C(x) ∏
j≤k

exp
(

1
j
A(x j)

)
.

The Boltzmann sampler itself is then as follows:

Algorithm ΓMSet(A )
γ ← /0
k←MaxIndex(A,x)
for j from 1 to k−1 do

γ ← γ ∪
[
Poiss(A(x j)/ j) =⇒ j copies of ΓA (x j)

]
end for
γ ← γ ∪

[
Poiss≥1(A(xk)/k) =⇒ k copies of ΓA (xk)

]
.

Return γ

(It should be noted that k in the above algorithm is not the maximum number of repetitions of a structure
in the output, but only a lower bound: all calls to the sampler ΓA are independent, so that a structure may
be output more than once and obtain larger multiplicity.)

Note that, in contrast to the previous constructions, the value C(z) is expressed not in terms of the
value A(z), but of the values of A for a whole geometric sequence of values.

3.8 Recursive Constructions

All of the above constructions can be used recursively, i.e. a class C can be defined using one of these
constructions on a class that is itself (ultimately) defined in terms of C itself. Some care must be taken to
avoid circular definitions: recursive specifications define structures from smaller structures, possibly of the
same type, but not from themselves. Thus, one can define a class P by P = Z ×Seq(P) (this defines
plane trees: a plane tree is composed of a root having an ordered sequence (possibly empty) of children,
each the root of a plane tree), but a specification such as P =A ×P would be invalid if class A contains
structures of size 0 (it would then attempt to create an infinite number of P-structures of size 0).

Subject to this “well-foundedness” condition, all the previous constructions can be used recursively -
and indeed, in most applications of interest recursivity is used. Whenever it is the case, the Boltzmann
samplers derived from the previous subsections become recursive algorithms, for which termination can
only be guaranteed with probability 1 (and in finite expected time; see Section 4).

An effective characterization of this “well-foundedness” condition is given in (Pivoteau, Salvy, and
Soria 2008), for specifications that outright forbid structures of size 0.

126



Duchon

3.9 Ordered Structures and Differential Operators (labeled)

The constructions described in this subsection appear in (Roussel and Soria 2009, Bodini, Roussel, and
Soria 2011).

The derivative α ′ of a labeled combinatorial structure α is obtained by replacing the atom in α having
the largest label with a “hole” - this hole holds the place of an atom, but does not contribute to size and
does not get a label. Thus, the derivative of a structure of size n has size n− 1. The derivative of a
combinatorial class A is, of course, the class C = A ′ = {α ′ : α ∈A } of all derivatives of A -structures.
The corresponding (exponential) generating functions are related by

C̃(z) = Ã′(z),

Ã(z) = a0 +
∫ z

0
C̃(z)dz,

where a0 is the number of A -structures of size 0.
Derivative classes can be used in recursive constructions, under suitable “well-foundedness” conditions

(see (Bodini 2010, Bodini, Roussel, and Soria 2011) for details), to define a class as the solution to a
symbolic differential equation. In very rough terms, this corresponds to imposing order conditions on
labels. A simple example is provided by the class T of decreasing (labeled) binary trees, that is, labeled
binary plane trees where each node (atom) is required to have a larger label than each of its children: the
equation reads

T ′ = ε ∪T ×T

T0 = /0.

and should be understood as this: the largest label in a decreasing binary tree has to be at the root, so
its derivative will either be a unique object of size zero or equivalent (after relabeling) to a pair of binary
trees, each of which has to be decreasing.

Bodini, Roussel, and Soria (2011) describes a generic Boltzmann sampler for a class defined by a
first-order differential operator A ′ = F (Z ,A ), provided one has a Boltzmann sampler for the class
F (Z ,A ) (that is, F is defined in terms of other classical constructions, and the whole sampler will
necessarily be recursive). Like the sampler for multisets, it requires a change of the parameter - here, a
random change - for each recursive call.

Given the generating function A and a parameter 0 < x0 < ρA, one defines a probability density on the
interval [0,1] by

hx0,A(u) =
x0A′(ux0)

A(x0)−A(0)
;

if U is a random variable following this distribution, Ux0 can be interpreted as the result of picking a
random point (according to Lebesgue measure) in the domain 0 < y < A(x),0 < x < x0, and keeping the
abscissa x.

With this definition, the Boltzmann sampler is as follows:

3.10 Multivariate Models

So far, we have only considered generating functions with a single variable, which “counts” for the size of
the structures; that is, each structure γ in the class contributes a single term z|γ| or z|γ|/γ! to the generating
function.

Given a combinatorial class C , one can define an arbitrary number of statistics si : C →N (1≤ i≤ k),
and the corresponding multivariate generating function C(z,u1, . . . ,uk) (first as a multivariate formal power
series, then as an analytic function) by changing the contribution of each structure c ∈ C to z|c|∏1≤i≤k usi(c)

i
(for the rest of this subsection, we assume unlabeled structures), and consequently, a Boltzmann distribution
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Algorithm ΓA from ΓA ′, A ′ = F (Z ,A )
if Bern(A(0)/A(x)) then

Return a uniform object from A0
else

Draw U ∈ [0,1] following density hx,A

f ← ΓF [Z ,A ](Ux)
Return object (Z, f ) with atom Z having the largest label

end if

for any tuple (x,u1, . . . ,uk) of positive real variables lying inside the convergence domain of the generating
function.

When the considered statistics are transmitted additively under the constructions described in this
section (say, if there are several types of “atoms”, and statistic si counts the number of atoms of type i),
the Boltzmann samplers can be adapted to this generalized model.

This area has not been explored as extensively as others, probably because a general theory would
involve additional technical details. Bodini and Ponty (2010) use it to sample from context-free languages
with a nonuniform distribution where the frequency of letters is artificially skewed, with an application to
“Tetris tessellations” (perfect tilings of a rectangular region with pentominoes) where each piece has the
same frequency.

4 ALGORITHM COMPLEXITIES

Each of the individual algorithms in Section 3 has low overhead complexity, but they tend to make possibly
unbounded numbers of calls to other algorithms. The general theorem below is a compilation of results
from Duchon et al. (2004) and other papers that extend the expressive power of “specifiable” classes.
Theorem 1 Let C denote a (labeled or unlabeled) class that can be entirely specified, in a possibly
recursive way, with the constructions of Section 3, and let 0 < x < ρ be any positive real lying inside the
convergence domain for the generating function of C . Then, assuming an oracle that provides values of
the relevant generating functions at real values, the algorithm ΓC compiled from the specification by the
patterns of Section 3 terminates with probability 1 and in finite expected time, outputs a random C -structure
under the Boltzmann distribution with parameter x, and uses a number of real arithmetic operations that
is linear in the size of the output.

5 APPROXIMATE AND EXACT SIZE SAMPLERS

The user of random generation algorithm is often used to exact random samplers (algorithms that take n
as input, and output a uniform random element of the subclass Cn), or perhaps approximate-size samplers
(algorithms that take two integers n < N as input, and output a random element with size in [n,N] with
equal probability for any two elements with the same size). Both types can be obtained by adding a
rejection mechanism to Boltzmann samplers, at overall costs that depend on the distribution of sizes under
the Boltzmann model.

We denote µ1(x) for the expected size, µ2(x) for the expected squared size, and σ(x) for the standard
deviation on size, all as functions of parameter x; analytically,

µ1(x) =
xC′(x)
C(x)

µ2(x) =
xC′(x)+ x2C′′(x)

C(x)

σ(x) =
√

µ2(x)−µ2
1 (x)
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5.1 Approximate Size Samplers

Assume we are given a target size n, some tolerance ε > 0, and the value xn of the parameter that ensures
that the expected size of structures is n. We obtain an approximate size sampler with acceptable sizes
in I = I(n,ε) = ((1− ε)n,(1+ ε)n) by repeatedly using the Boltzmann sampler ΓC (xn), until a structure
whose size lies in I appears.

Since the cost of each call to the Boltzmann sampler is linear in the size of the output by Theorem 1,
the expected cost of this approximate size sampler is asymptotic to n times the expected number of calls
to the Boltzmann sampler.

In favorable situations, described as “lumpy” distributions in Duchon et al. (2004) and characterized
by σ(x)/µ1(x)→ 0 as x→ ρ−, this expected number of calls goes to 1 as n (the target size) goes to
infinity – the probability that the first call will yield a structure whose size is in I is asymptotically 1.
More precise information on the distribution of sizes produced by such an approximate-size sampler can
be obtained through the asymptotics of the generating function. Typically, for “lumpy” distributions, this
size is concentrated around the expected size, and shorter intervals of length o(n) could be used without
altering the theoretical results.

In less favorable situations, this success probability goes to a finite positive constant as n goes to
infinity, so that the expected cost of the approximate size sampler is still asymptotically linear. In many
cases, a size tolerance of, say, 5% around the target size, at the cost of a constant number of rejections, is
quite acceptable.

In some even less favorable situations, it may be necessary to change the class by using “pointing” (a
combinatorial operation close to derivation, corresponding to distinguishing a single atom in the structure)
a finite number of times before one gets to the situation described above.

5.2 Exact Size Samplers

Setting ε = 1/n in the approximate size samplers of the previous subsection, results in exact size samplers.
It should be noted, however, that in most cases, the success probability (the probability, with parameter xn,
of obtaining a structure of size exactly n) is only of order Θ(1/n), which results in an expected complexity
Θ(n2) for the exact size sampler.

5.3 Singular Samplers

Whenever the generating function is finite at its dominant singularity ρ , one can define a Boltzmann
distribution for x = ρ , and the Boltzmann samplers can be used with parameter ρ . This is typically
(though not universally) true with recursive specifications, and the most frequent case is for the generating
function to have a “square root-type” singularity, i.e. C(z) has a singular expansion of the form C(z) =
C(ρ)+a(1− z/ρ)1/2 +o((1− z/ρ)1/2) as z approaches ρ .

In such cases, the expected size for the singular Boltzmann model is infinite. While this offers the best
chances of success for the approximate size samplers, it also implies that the expected cost of the same
approximate size sampler is infinite, which is unacceptable.

However, on closer examination, this infinite expectation only comes from those (rare: the probability is
Θ(1/

√
n)) runs of the sampler where the output size is much larger than the target n. A simple modification

of the Boltzmann samplers can thus avoid this higher cost, by keeping track of the number of atoms
generated so far and aborting the Boltzmann sampler as soon as the total becomes larger than n; with this
modification, expected costs for a square root singularity become Θ(n) for approximate size with finite ε ,
and Θ(n3/2) for exact size.
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6 GENERATING FUNCTION EVALUATION AND PRECISION

One of the key points of the Boltzmann method, when compared to the recursive method, is that enumeration
sequences are replaced by generating function evaluations. In many of the constructions of Section 3, each
involved generating function needs to be evaluated for the same value of its variable; in a few of them,
some have to be evaluated for a deterministic or random sequence of values.

In some cases, the generating functions have closed forms and this evaluation does not lead to special
complications, but recursive specifications lead to generating functions that are determined by equations,
and the question of determining a good approximation of the required values becomes more troublesome.

Pivoteau, Salvy, and Soria (2008) provides an efficient solution to this problem, at least for the basic
constructions of sums, products, sequences, cycles and sets. The natural idea of iterating the equations
provides only slow convergence; the preferred method is based on Newton iteration, which ensures quadratic
convergence (asymptotically, distance to the exact solution is squared by each iteration). For a given value
of the variable, the generating function equations typically have several real solutions, only one of which
corresponds to the generating function that is the “true” solution; an important result in the above-mentioned
paper is that, thanks to the existence of a combinatorial equivalent to the Newton iteration, convergence to
the “true” value is ensured.

Also, note that, when applying Newton iteration for generating function evaluation, convergence is
significantly faster the further x is from the dominant singularity ρ . While this is good for constructions
such as multisets or ordered structures that require the use of sequences of values (for sequences of values
of the variable that quickly decrease to zero), it is conversely bad news for classical applications that
require very large structures, since this means taking values of x that are very close to ρ . Nevertheless, the
experimental results reported in Pivoteau, Salvy, and Soria (2008), even for very complex specifications,
remain within reasonable bounds (the computation time for the oracles of specifications implying 500
equations, for values of the parameter leading to expected structure sizes in the tens of thousands, are of
the order of a minute).

Another question that arises naturally is that of the influence of approximations on the final distribution
of random samples. Even assuming a “perfect” source of randomness for the simulations, a small error in
a generating function value that is used repeatedly by a sampling algorithm might result in a significantly
biased distribution of the final samples.

To give an example, suppose a specification involves a disjoint union C = A ∪B, and each of A and
B is defined recursively using C - this is not an artificial assumption. Assume that, for the value x of the
parameter, A(x) is slightly overestimated, and B(x) is slightly underestimated. In this case, each time the
sampler for C is used, it will have a tendency to switch to A more often than it ideally should; this will
result in a distribution that is biased in favor of C -structures that often use A -structures as components.

One possible solution (explored in a work in progress by the author) to estimate, and possibly correct,
this bias, is to design Boltzmann samplers that not only output a random structure, but also, for each
real-valued constant A' A(x) used in the sampling, a “safety interval” [A−,A+], with A− < A < A+, with
a precise meaning of “if the sampler had been run with any value in [A−,A+] instead of A, the result of
the whole computation would have been the same”. This is done by studying the small number of discrete
distributions one really needs to sample from.

From such “safety interval” samplers, one can derive both a practical and a theoretical result:

• An estimate of the quality of approximation one should have on each involved constant, such that
the whole Boltzmann sampler is very unlikely to output any safety interval that does not contain
the true value of the corresponding generating function. Not surprisingly, Θ(logn) bits are enough
when the expected size is n.

• A (still hypothetical) construction for a truly exact Boltzmann sampler, if one assumes stronger
oracles than those provided by Pivoteau, Salvy, and Soria (2008). If one assumes oracles that give
both an upper an a lower bound for each involved constant, and that the oracles can be called
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repetitively to decrease the difference between these bounds (say, by a factor of 2 with every
iteration), then the “safety interval” approximate Boltzmann samplers can be modified into exact
Boltzmann samplers which will call the oracles a small (logarithmic) number of times on average.

7 NOT-QUITE BOLTZMANN SAMPLERS

Boltzmann samplers share two important and useful properties for the user interested in practical random
sampling of large structures: (1) they output structures of random size, with the guarantee that any two
structures of the same size have the same probability of being obtained, and (2) they are “stable” under
the constructions of Section 3.

While property (1) is the essential one for direct practical applications, making it possible to use, say,
rejection to transform Boltzmann samplers into exact- or approximate-size samplers, property (2) is the one
responsible for the wide applicability of the method. Nevertheless, sometimes property (1) alone can be
obtained while keeping algorithms of low complexity, typically by using a “nonstandard” final construction
using Boltzmann samplers as subroutines.

A good example of this is the Hadamard product of two combinatorial class. If A and B are two
arbitrary (unlabeled) combinatorial classes, their Hadamard product C = A �B is the subset of A ×B
that only contains pairs c = (a,b) with the same size (with |c| defined to be |a|= |b| instead of the sum for
the classical product). The corresponding generating function is none other than the Hadamard product of
generating functions,

C(z) = A�B(z) = ∑
n

anbnzn,

with radius of convergence at least the product of radii of A(z) and B(z).
A real Boltzmann sampler for C can be written easily: one simply checks that, if x = xAxB with xA < ρA

and xB < ρB, the algorithm
repeat

α ← ΓA (xA)
β ← ΓB(xB)

until |α|= |β |
Return (α,β )

terminates with probability 1 and in finite expected time, and outputs a C structure under the Boltz-
mann distribution with parameter x. It is, however, inefficient: each iteration has success probability
C(x)/(A(xA)B(xB)), which can be very small when x is close to the dominant singularity.

Bodini, Gardy, and Roussel (2010) uses the classical Birthday paradox to devise a more efficient
algorithm that preserves property (1), though not the whole Boltzmann distribution: simply alternate (either
deterministically or randomly) between ΓA (xA) and ΓB(xB), retaining only the first obtained structure of
each class and size, until a pair with the same size can be formed.

8 CONCLUSION

Boltzmann samplers are an attractive class of random generation algorithms for classes of combinatorial
structures that lend themselves to combinatorial decompositions, allowing for fast (linear-time, or quasi-
linear-time) generation of structures with size in the millions for simple classes, and well into the tens of
thousands for complex classes.

DEDICATION

This paper is dedicated to Philippe Flajolet (1948-2011) – an outstanding mathematician and computer
scientist, and a great person to work with.
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