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ABSTRACT

Ranking and selection (R&S) techniques are statistical methods developed to select the best system, or
a subset of systems from among a set of alternative system designs. R&S via simulation is particularly
appealing as it combines modeling flexibility of simulation with the efficiency of statistical techniques
for effective decision making. The overwhelming majority of the R&S research, however, focuses on
the expected performance of competing designs. Alternatively, quantiles, which provide additional
information about the distribution of the performance measure of interest, may serve as better risk
measures than the usual expected value. In stochastic systems, quantiles indicate the level of system
performance that can be delivered with a specified probability. In this paper, we address the problem
of ranking and selection based on quantiles. In particular, we formulate the problem and characterize
the optimal budget allocation scheme using the large deviations theory.

1 INTRODUCTION

Ranking and selection (R&S) techniques are statistical methods developed to select the best system,
or a subset of systems from among a set of alternative system designs. R&S via simulation is
particularly appealing as it combines the modeling flexibility of simulation with the efficiency of
statistical techniques for effective decision making. Furthermore, simulation experiments also allow
for multi-stage sampling as required by some R&S methods. Due to randomness in output data,
however, comparing a number of simulated systems requires care. If the precision requirement is high
and if the total number of designs in a decision problem is large, then the total simulation cost may
be prohibitively high, limiting the utility of simulation for R&S problems. The effective deployment
of the simulation budget in R&S is therefore crucial.

The overwhelming majority of the R&S research focuses on the expected performance of competing
designs. Alternatively, quantiles, which provide additional information about the distribution of the
performance measure of interest, may serve as better risk measures than the usual expected value. In
stochastic systems, quantiles indicate the level of system performance that can be delivered with a
specified probability. For example, in the financial services industry, Value at Risk (VaR), a quantile
of a portfolio’s profit or loss over a period of time, is a standard tool to assess the risk of that portfolio.
Similarly, in the service industry (e.g., health care or telecommunications), quantiles are used as an
indicator for the quality of service. In project management, stochastic activity networks are used
to represent complex projects. In such an environment, planners may wish to compute an upper
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bound on the completion time of the project that would hold with high probability. Similarly, in
a newsvendor setting, where a procurement or production quantity must be determined before the
market uncertainties are resolved, the optimal quantity, the one that maximizes expected profit, is
given by the quantile driven by the demand-supply mismatch costs. Finally, in simulation analysis (or,
more generally, in statistics), the critical values for test statistics, confidence intervals, and sequential
sampling procedures are expressed as quantiles.

The estimation of quantiles, however, differs considerably from that of expectations. A thor-
ough review of quantile estimation for independent and identically distributed (IID) data is given
by Serfling (1980). To improve quantile estimation, authors such as Hsu and Nelson (1990) and
Hesterberg and Nelson (1998) apply control variates, while Glynn (1996) uses importance sampling,
and Avramidis and Wilson (1998) deploy correlation-induction strategies to obtain variance reduction
in simulation-based quantile estimation. Closer to our work, Jin, Fu, and Xiong (2003) provide proba-
bilistic error bounds for simulation quantile estimators using large deviations techniques. Hong (2009)
develops an estimator based on infinitesimal perturbation analysis while Liu and Hong (2007) de-
velop kernel estimators for assessing quantile sensitivities. Batur and Choobineh (2009) have recently
introduced approaches for quantile-based system selection.

In this paper, we address the problem of identifying the populations that correspond to the m
smallest quantiles by sampling independently from d populations. By using the large deviations
framework, we characterize the optimal sampling (or budget allocation) scheme that minimizes the
probability of incorrect selection given a fixed sampling budget. The remainder of the paper is
organized as follows: in the next section, we formally define the problem. We then characterize the
budget allocation scheme. As this characterization leads to a difficult, nested optimization problem,
we turn our focus to a special case, where we wish to identify those populations whose quantiles
exceed a threshold value. We conclude the paper with a number of simple illustrations.

2 PROBLEM DEFINITION

Suppose we have d populations from which we can independently sample. Let Xi be a random variable
sampled from population i with distribution function Fi(·). Let qi be the αi-quantile of population i;
that is

qi = inf{k : Fi(k) ≥ αi}.
Throughout we assume that (Fi(·) : i = 1, . . . ,d) and (qi : i = 1, . . . ,d) are unknown, and that

0 < αi < 1. The goal is to determine the populations that correspond to the m smallest quantiles,
where the m’th smallest quantile is different than the m+1’st smallest quantile. Hence, without loss
of generality, we suppose that

q1 ≤ q2 ≤ ·· · ≤ qm < qm+1 ≤ ·· · ≤ qd.

The simulation budget is n, p = (p1, . . . , pd) is the vector of fractional allocations, and ni = [npi] is
the sample size of population i. Let (Xi,k : k = 1, . . . ,ni) be a collection of IID random samples drawn
from Fi, and Xi,1:ni ≤ ·· · ≤ Xi,ni:ni the ordered samples of population i. The αi-quantile estimator is
Xi,⌈αini⌉:ni

, where ⌈·⌉ is the ceiling operator.
To simplify the notation define the sets A = {1, . . . ,m} and B = {m + 1, . . . ,d}. An incorrect

selection (IS) occurs when maxi∈A Xi,⌈αini⌉:ni
≥ min j∈B Xj,⌈α jn j⌉:n j

. A lower bound for P(IS) is

max
i∈A , j∈B

P(Xi,⌈αini⌉:ni
≥ Xj,⌈α jn j⌉:n j

) ≤ P(IS),
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and an upper bound for P(IS) is

P(IS) = P(∪i∈A , j∈BXi,⌈αini⌉:ni
≥ Xj,⌈α jn j⌉:n j

) ≤ |A |× |B| max
i∈A , j∈B

P(Xi,⌈αini⌉:ni
≥ Xj,⌈α jn j⌉:n j

).

Hence, if

1
n

logP(Xi,⌈αini⌉:ni
≥ Xj,⌈α jn j⌉:n j

) →−Gi, j(pi, p j)

as n → ∞ for some rate function Gi, j, we have that

1
n

logP(IS) →− min
i∈A , j∈B

Gi, j(pi, p j).

as n → ∞. The rate functions Gi, j(pi, p j) depend on the large deviations of Xi,⌈αini⌉:ni
, which are

treated next.
In preparation,

3 CONTINUOUS CASE

If Xi has density fi(·), then it can be shown (Serfling (1980), pp.85) that Xi,⌈αini⌉:ni
has the density

fi,ni(t) = ni

(

ni −1
⌈αini⌉−1

)

[Fi(t)]
⌈αini⌉−1[1−Fi(t)]

ni−⌈αini⌉ fi(t).

For −∞ < θ < ∞ and t in the support of Xi define

gi(t) = θ t +αi log

(

Fi(t)
αi

)

+(1−αi) log

(

1−Fi(t)
1−αi

)

, (1)

and

Λi,ni(θ) = logE exp(θXi,⌈αini⌉:ni
).

When gi(·) is strictly concave and twice differentiable, it has a unique global maximizer τi(θ) satisfying
g′i(t) = 0. Observe that if 0 < αi < 1 then 0 < F(τi(θ)) < 1, for otherwise g(τi(θ)) = −∞ and we
know that gi(qi) = θqi is feasible and greater than −∞. Let

Λi(θ) = gi(τi(θ)). (2)

Proposition 1. If population i has a density fi(t) with bounded first derivative and the function gi(·)
is twice differentiable with supg′′(t) < 0, then

lim
ni→∞

1
ni

Λi,ni(niθ) = Λi(θ).
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Proof. From the definition of fi,ni we have

Λi,ni(niθ) (3)

= log

(

ni

(

ni −1
⌈αini⌉−1

))

+ log
∫

exp(niθ t)[Fi(t)]
⌈αini⌉−1[1−Fi(t)]

ni−⌈αini⌉ fi(t)dt

= log

(

ni

(

ni −1
⌈αini⌉−1

))

+ log
∫

exp(ni(gi(t)+αi log(αi)+(1−αi) log(1−αi)))Ri(t) fi(t)dt,

where Ri(t) = [Fi(t)]⌈αini⌉−αini−1[1−Fi(t)]niαi−⌈αini⌉. Since gi(t) is twice differentiable everywhere,
Taylor’s Theorem (see Serfling (1980)) for gi(t) around its global minimum τi(θ) yields

gi(t) = gi(τi(θ))+
(t − τi(θ))2

2
g′′i (ξ ), (4)

where ξ lies between τi(θ) and t. Plugging (4) in (3) and dividing through by ni, we have

1
ni

Λi,ni(niθ) =
1
ni

log

(

ni

(

ni −1
⌈αini⌉−1

))

+gi(τi(θ))+αi log(αi)+(1−αi) log(1−αi)+

1
ni

log
∫

exp
(ni

2
(t − τi(θ))2g′′(ξ )

)

Ri(t) fi(t)dt. (5)

The binomial term on the right-hand side of (5) becomes

ni

(

ni −1
⌈αini⌉−1

)

=
ni!

(ni −⌈αini⌉)!(⌈αini⌉−1)!
,

and Stirling’s formula leads to

lim
ni→∞

1
ni

log

(

ni!
(ni −⌈αini⌉)!(⌈αini⌉−1)!

)

= −(1−αi) log(1−αi)−αi log(αi). (6)

Changing variables yields

1
ni

log
∫

exp
(ni

2
(t − τi(θ))2g′′(ξ )

)

R(t) fi(t)dt =
1

n3/2
i

log
∫

exp

(

t2

2
g′′(ξ )

)

R(τi(θ)+tn−1/2) fi(τi(θ)+tn−1/2)d

Expanding R(·) and fi(·) about τi(θ) results in

R(τi(θ)+ tn−1/2) = R(τi(θ))+
t√
n

R′(η1) (7)

and

fi(τi(θ)+ tn−1/2) = fi(τi(θ))+
t√
n

f ′i (η2),

for η1 and η2 between τi(θ) and τi(θ)+ tn−1/2.

We saw earlier that 0 < F(τi(θ)) < 1, which results in R(τi(θ)) and R′(τi(θ)) finite in (7). The
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two assumptions then lead to

1

n3/2
i

log
∫

exp

(

t2

2
g′′(ξ )

)

R(τi(θ)+ tn−1/2) fi(τi(θ)+ tn−1/2)dt

=
1

n3/2
i

log
∫

exp

(

t2

2
g′′(ξ )

)

(

R(τi(θ)) fi(τi(θ))+O

(

t

n1/2
i

))

dt

→ 0, (8)

as ni → ∞.
We conclude from (5), (6), and (8) that limn→∞ n−1

i Λi,ni(niθ) = Λi(θ).

4 DISCRETE CASE

Towards stating an analogous result for the discrete case, let us use a narrower definition of a quantile.
Let qi be the αi-quantile of population i, meaning that

Fi(qi) = αi.

Suppose Xi is supported on the countable set L . Then (ignoring issues due to non-integral niαi),
it is seen that Xi,⌈αini⌉:ni

has the probability mass function

Pr{Xi,⌈αini⌉:ni
= t} =

(

ni

⌈αini⌉

)

([Fi(t)]
⌈αini⌉ − [Fi(t

−)]⌈αini⌉)[1−Fi(t)]
ni−⌈αini⌉, t ∈ L

where Fi(t−) = Pr{Xi < t}.
Before we state the main result for the discrete context, we note the following simple proposition

without proof.

Proposition 2. Let {a1,n},{a2,n}, . . . be a finite number of positive-valued sequences with

lim
n→∞

1
n

loga j,n = a j.

Then,

lim
n→∞

1
n

log

(

∑
j

a j,n

)

= Max j{a j}.

We are now ready to state the main result in the discrete context.

Proposition 3. Suppose Xi has finite support L , and satisfies Pr{Xi = t} > 0 for each t ∈ L .
Furthermore, suppose that the function gi(·) has a unique maximum at τi(θ) and that gi(t) is strictly
increasing (decreasing) for t < τi(θ) (resp., t > τi(θ)). Then

lim
ni→∞

1
ni

Λi,ni(niθ) = Λi(θ).
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Proof. Denote pi(t) = Pr{Xi,⌈αini⌉:ni
= t}, tm = max{t : t ∈ L }, and L ′ = L \ {tm}. (Since

pi(tm) = 0, we see that gi(tm) = −∞ and hence τi(θ) 6= tm.) We have

lim
ni→∞

1
ni

Λi,ni(niθ) = lim
ni→∞

1
ni

log

(

∑
t∈L ′

pi(t)exp{niθ t}
)

. (9)

We will show that

lim
ni→∞

1
ni

log(pi(t)exp{niθ t}) = gi(t) ∀ t ∈ L
′. (10)

The assertion of the theorem then follows from applying Proposition 2 to (9) and (10).
To show (10), we notice that

1
ni

log(pi(t)exp{niθ t})

= θ t +
1
ni

log pi(t)

= θ t +
1
ni

log

(

ni

⌈niαi⌉

)

+
1
ni

log(Fi(t)
⌈niαi⌉ −Fi(t

−)⌈niαi⌉)+
(ni −⌈niαi⌉)

ni
log(1−Fi(t))

= θ t +
1
ni

log

(

ni

⌈niαi⌉

)

+
1
ni

logFi(t)
⌈niα⌉ +

1
ni

log(
Fi(t)⌈niαi⌉ −Fi(t−)⌈niαi⌉

Fi(t)⌈niαi⌉
)+

ni −⌈niαi⌉
ni

log(1−Fi(t)). (11)

Now, through an application of Stirling’s formula we see that the second term appearing on the
right-hand side of (11) satisfies

lim
ni→∞

1
ni

log

(

ni

⌈niαi⌉

)

= lim
ni→∞

1
ni

log

(

ni!
(ni −⌈αini⌉)!⌈αini⌉!

)

= −(1−αi) log(1−αi)−αi log(αi) = −H(αi). (12)

Next, we see that since Fi(t)⌈niαi⌉−Fi(t−)⌈niαi⌉

Fi(t)⌈niαi⌉ is arbitrarily close to 1 for large enough ni, the fourth term

appearing on the right-hand side of (11) satisfies

lim
ni→∞

1
ni

Fi(t)⌈niαi⌉ −Fi(t−)⌈niαi⌉

Fi(t)⌈niαi⌉
= 0. (13)

Finally, the third and fifth terms appearing on the right-hand side of (11) satisfy

lim
ni→∞

1
ni

logFi(t)
⌈niα⌉+ lim

ni→∞

ni −⌈niαi⌉
ni

log(1−Fi(t))= H(αi)+αi log(
Fi(t)
αi

)+(1−αi) log(
1−Fi(t)
1−αi

).

(14)
Using (12), (13), and (14) in (11), we get

lim
ni→∞

1
ni

log(pi(t)exp{niθ t}) = θ t −H(αi)+H(αi)+αi log(
Fi(t)
αi

)+(1−αi) log(
1−Fi(t)
1−αi

)

= gi(t),
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and thus (10) holds.

5 QUANTILE SELECTION

Propositions 1 and 3 can be used to obtain an expression for the exponential decay rate of the incorrect
selection probability, in terms of the sampling budget allocation. Let Ik(x) = supθ{θx−Λk(θ)} be the
rate function corresponding to population k. In the continuous setting, for x such that 0 < Fk(x) < 1,
Proposition 1 leads to

x = Λ′
k(θ)

= τk(θ)+ τ ′k(θ)

[

θ +
αk

Fk(τk(θ))
fk(τk(θ))− 1−αk

1−Fk(τk(θ))
fk(τk(θ))

]

= τk(θ),

so that

Ik(x) = αk log

(

αk

Fk(x)

)

+(1−αk) log

(

1−αk

1−Fk(x)

)

. (15)

A similar argument for the discrete case shows that Eq. (15) is valid there as well.
Let Zn = (Xi,⌈αini⌉:ni

,Xj,⌈α jn j⌉:n j
). Then, as shown in Glynn and Juneja (2004), the rate function

of (Zn : n ≥ 0) is given by piIi(xi)+ p jI j(x j), and applying the Gärtner-Ellis Theorem results in

Gi, j(pi, p j) = inf
xi≥x j

{piIi(xi)+ p jI j(x j)}.

If Fi(qm) < 1,∀i ∈ A and Fj(q1) > 0,∀ j ∈ B then the rate functions Gi, j(pi, p j) are finite for any
feasible allocation pi, p j. Furthermore, since Ik(x) is strictly decreasing for x < qk and strictly increasing
for x > qk, we must have Gi, j(pi, p j) = infx{piIi(x)+ p jI j(x)}.

An optimal allocation p maximizes mini∈A , j∈B Gi, j(pi, p j), which is the same as

maxζ

s.t.

ζ −Gi, j(pi, p j) ≤ 0, ∀i ∈ A and ∀ j ∈ B

and
d

∑
i=1

pi ≤ 1, pi ≥ 0.

The first-order conditions are necessary for optimality (same argument as in Glynn and Juneja (2004)).
They are

∑
i∈A

∂Gi, j(p∗i , p∗j)

∂ p j
λi, j = β ∀i ∈ A ,

∑
j∈B

∂Gi, j(p∗i , p∗j)

∂ pi
λi, j = β ∀ j ∈ B,
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∑
i∈A , j∈B

λi, j = 1,

and

λi, j(ζ −Gi, j(p∗i , p∗j)) = 0 ∀i ∈ A ,∀ j ∈ B

where λi, j ≥ 0 for all i ∈ A , j ∈ B, and β ≥ 0.
It can be shown that

min
j∈B

Gi, j(p∗i , p∗j) = ζ ∗ ∀i ∈ A ,

and that

min
i∈A

Gi, j(p∗i , p∗j) = ζ ∗ ∀ j ∈ B.

for some ζ ∗ > 0.

5.1 Crossing a threshold

Getting insights about the optimal allocation appears very difficult because we have a nested opti-
mization problem. It is easier, however, to characterize the allocation that minimizes the probability of
crossing a threshold c ∈ [qm,qm+1]. Let ISc be the event (∪i∈A Xi,⌈αini⌉:ni

> c)∪(∪ j∈BXj,⌈α jn j⌉:n j
< c).

Then we have

P(IS) ≤ P(ISc) ≤ ∑
i∈A

P(Xi,⌈αini⌉:ni
> c)+ ∑

j∈B

P(Xj,⌈α jn j⌉:n j
< c).

Using an argument similar to the one presented in Szechtman and Yücesan (2008), we get

1
n

log( ∑
i∈A

P(Xi,⌈αini⌉:ni
> c)+ ∑

j∈B

P(Xj,⌈α jn j⌉:n j
< c)) →−min{p1I1(c), . . . , pdId(c)}

as n → ∞. Following Szechtman and Yücesan (2008), the optimal allocations are

pk =
I−1
k (c)

∑i∈A I−1
i (c)+∑ j∈B I−1

j (c)
,

leading to

lim
n→∞

sup
1
n

logP(IS) ≤−( ∑
i∈A

I−1
i (c)+ ∑

j∈B

I−1
j (c))−1.

That is, the optimal threshold is the one that minimizes ∑i∈A I−1
i (c)+∑ j∈B I−1

j (c) over c∈ [qm,qm+1].

6 CONCLUDING REMARKS

In this paper, we addressed the problem of identifying the populations that correspond to the m smallest
quantiles by sampling independently from d populations. Using a large deviations framework, we
characterized the optimal sampling (or budget allocation) scheme that minimizes the probability of
incorrect selection given a sampling budget that grows to infinity. In particular, the optimal budget
allocation arises as the solution of a 3-layer nested optimization problem. The threshold crossing
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problem, where we wish to identify those populations whose quantiles exceed a threshold value, leads
to more tractable budget allocations.
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