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ABSTRACT

We consider the problem of valuing contingent capital in the form of debt that converts to equity when a capital
ratio falls below a threshold. With continuous monitoring of the conversion trigger and with asset value modeled as
geometric Brownian motion, the value admits a closed-form expression. Here we focus on the case of a discretely
monitored trigger and the simulation of three potential mechanisms for conversion in discrete time. We show how to
use the continuous-time formulas as control variates through exact joint simulation of the discrete- and continuous-time
processes. We then investigate continuity corrections to approximate discrete-time results using continuous-time formulas
and compare results across alternative conversion mechanisms.

1 INTRODUCTION

In a simple but fundamental model of a firm, bankruptcy occurs when the value of the firm’s assets fall below a threshold
determined by the firm’s debt. In the case of a bank, minimum capital requirements imposed by regulators are intended
to reduce the likelihood that the threshold is breached. Recent proposals to enhance the stability of the financial system
include calls for contingent capital, including debt that converts to equity as a bank reaches a critical capital ratio — a
ratio of equity to asset value. In related work, we have derived closed-form expressions for valuing such convertible
debt when asset value is modeled as geometric Brownian motion, assuming the capital ratio is monitored continuously
and the conversion process takes place continuously. In practice, the accounting information needed to monitor a capital
ratio may be available only periodically. Here we focus on the discretely monitored case for which no formulas are
available and simulation becomes an attractive option.

The process of conversion from debt to equity is driven by the evolution of the firm’s asset value — in particular,
by its running minimum. In the discrete-time setting, asset value is observed only at fixed dates. A “fair” allocation
of the firm’s equity between prior shareholders and creditors who become shareholders through the conversion of debt
to equity depends on what is assumed about the evolution of asset value between the observation dates. We examine
three rules for the allocation in discrete time.

We then investigate two ways in which the continuous-time formulas we derived in Glasserman and Nouri (2010)
can be applied to the discrete-time case. First, we show how the continuous-time case can be used as a control variate for
the discrete-time problems. This requires exact simulation of the continuous-time model together with the discrete-time
model. Perhaps surprisingly, the continuous-time case is actually easier to simulate than the discrete-time case.

Then we examine continuity corrections in order to approximate discrete-time results using continuous-time formulas.
For the running minimum, the correction of Asmussen, Glynn, and Pitman (1995) is highly effective. However, the
allocation of equity between the original and converted shareholders turns out to be a more complex process. In the
continuous-time case, we showed in Glasserman and Nouri (2010) that the allocation depends only on the running
minimum of the asset value process. But in discrete time the allocation depends on the increments of the running
minimum as well. We compare the effectiveness of continuity corrections across the three allocation rules and numerically
investigate the joint distribution of the discrete and continuous allocation fractions.

Section 2 reviews the continuous setting of Glasserman and Nouri (2010) and Section 3 presents the discrete-time
counterpart. Section 4 develops the control variate method. Section 5 introduces and tests the continuity corrections.
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2 CONTINUOUS CONVERSION

As in Glasserman and Nouri (2010), we consider contingent capital that automatically converts into common equity if
the issuer’s capital ratio (ratio of equity to assets) falls bellow a pre-specified threshold. The critical capital ratio α
(e.g., 5%) is measured in terms of the “book” or accounting value of equity, not the market value. (Flannery (2005)
and Sundaresan and Wang (2010) consider market-based triggers.) If we let Vt denote the value of the firm’s assets at
time t, Bt the remaining amount of contingent capital, and Dt the amount of regular debt, then the firm’s equity capital
is Vt−Bt−Dt . A capital requirement specifying that equity must be at least a fraction α of asset value then takes the
form

Vt −Bt −Dt ≥ αVt ,

or simply Vt ≥ (Bt + Dt)/(1−α). A loss in value Vt triggers the conversion of just enough contingent capital Bt to
maintain this bound, if posssible.

We apply a conversion ratio of q in terms of book values, meaning that one dollar of debt converts into q dollars
of equity as soon as the trigger is tripped. This would imply that if q > 1 there is a transfer of wealth from equity
holders to debt holders at conversion which is achieved by the number of shares the debt holders receive. We will
suppose that the convertible debt has principal value B and coupon rate c1, and the regular debt has principal value D
and coupon rate c2. In addition we assume that both the convertible debt and the regular debt have maturity T , sell at
par at issuance time and their corresponding coupon rates are such that they have constant book value.

In Glasserman and Nouri (2010), we assume that the conversion trigger is monitored continuously. We denote the
firm’s asset value by V and model its risk-neutral dynamics as a geometric Brownian motion,

dVt

Vt
= (r−δ )dt +σdWt

where r is the risk-free rate of interest, δ is the constant fraction of value paid out to security holders and Wt is a
standard Brownian motion. The conversion process depends on two boundaries

a =
B+D
1−α

, b =
D

1−α
;

conversion begins when Vt reaches a, and the convertible debt is exhausted when Vt reaches b. The amount of debt
converted up to time t is (1−α)Lt , where

Lt = min

{(
a− min

0≤s≤t
Vs

)+

, a−b

}
(1)

is a function of the running minimum of V .
A critical step in valuing the contingent capital is determining the fraction of equity held by the original shareholders,

as opposed to the investors who became shareholders as a result of the conversion of debt to equity. In Glasserman
and Nouri (2010), we show that the proportion of the equity at time t which belongs to the initial equity holders is

πt =

(
a−Lt

a

)(q 1−α
α )

. (2)

In particular, the allocation is a function of the running minimum of the asset value process.
Defining µ ≡ r−δ −σ2/2, we have

Vt = V0 exp{µt +σWt} .

If we set

W̃t ≡ log
(

Vt
V0

)
= µt +σWt , m̃t ≡ min

0≤u≤t
W̃t

then W̃t has a N
(
µt,σ2t

)
distribution and (W̃t , m̃t) has joint density

fW̃t ,m̃t
(w,m) =

2(w−2m)

σ3
√

2πt3
exp

{
1

σ2

(
µw− 1

2
µ2t− (w−2m)2

2t

)}
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for m ≤ 0 and w ≥ m. Conditional on the value of W̃t we have a Brownian bridge connecting point zero to W̃t . The
conditional density of the minimum on this path is obtained by dividing the above joint density by the marginal density
of W̃t , which after integrating results in the well-known result that

P

(
m̃t ≤ m|W̃t = w

)
= exp

{
2m(w−m)

tσ2

}
.

As observed by Asmussen et al. (1995), this distribution is readily inverted and allows exact sampling from the joint
distribution of the terminal value of the Brownian motion and its minimum on an interval. In our setting, this yields
the following algorithm for simulating the continuous process.

Algorithm 1 Joint simulation of (Vt , min0≤s≤t Vs)

1: Generate z∼ N(0,1) and u∼Uni f orm(0,1)
2: Set w← µt +σ

√
tz ,

m← 1
2

(
w−

√
w2−2tσ2 log(u)

)
(V0ew,V0em)

Given the terminal asset value and its minimum along the path, we can evaluate Lt and πt through equations (1)
and (2). Thus one can jointly simulate terminal value of the assets, the amount of debt converted into equity and the
proportion of equity belonging to the initial stock owners in an efficient manner, without having to approximate the
continuous-time process through a sequence of small time increments. In addition, the occurrence of a bankruptcy
event defined as the assets’ value hitting some constant value, i.e., 1{min0≤s≤t Vs ≤ b}, is a by-product of simulating
min0≤s≤t Vs.

3 DISCRETE CONVERSION

Now suppose that the capital ratio is monitored only at times i∆t, i = 0,1, ...,n, where ∆t = T/n. We write V̂k for Vk∆t ,
the assets’ value at k∆t. The firm’s book value of equity at the k’th monitoring time is V̂k− (B− (1−α)L̂k +D), where
L̂k is the discrete version of Lt defined by

L̂k = min

{(
a− min

0≤i≤k
V̂i

)+

, a−b

}
(3)

such that (1−α)L̂k is the amount of convertible debt needed to be converted into equity in order to maintain the capital
requirement at the monitoring points i∆t, i = 0,1, ...,k.

The other important quantity is π̂k, the fraction of equity belonging to the initial equity holders at the k’th monitoring
time. The dynamics of π̂k depend on how the conversion mechanism is defined when asset value is observed periodically.
We consider three possible mechanisms.

3.1 Pure Discrete Conversion

If between time k∆t and (k +1)∆t there is a loss in the firm’s assets, equity holders pay for this loss (i.e. the equity of
the firm loses value). If the loss is large enough to trigger conversion, then an amount (1−α)∆L̂k of convertible debt
(if available) converts to equity and boosts total equity to its minimum admissible level, (i.e., to a fraction α of total
assets). If the required capital is more than the available convertible debt, all the available convertible debt becomes
equity, but, since the capital ratio remains under the threshold, the firm goes bankrupt and equity holders are wiped out.

Assuming sufficient contingent capital is available, a conversion ratio of q requires a transfer of (q−1)(1−α)∆L̂k

dollars of value (in terms of book value) from stock owners to debt owners carried out through the number of new
shares issued. If one dollar of debt is exchanged for q dollars of equity, the difference would be a loss of (q−1) dollars
to the stock owners. Consequently, if there is conversion at (k +1)∆t, we would have

π̂k+1 = π̂k×max





equity at k∆t - loss in assets
︷ ︸︸ ︷
V̂k− (B− (1−α)L̂k +D)+∆V̂k−

transfer of wealth︷ ︸︸ ︷
(q−1)(1−α)∆L̂k , 0





/ equity at (k +1)∆t
︷ ︸︸ ︷
α(V̂k +∆V̂k)

The expression in the denominator in this equation is a valid assertion only if the loss in the assets does not wipe out
the cushion provided by contingent capital. When equity is wiped out, the numerator becomes zero and the expression
in the numerator remains valid.
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Figure 1: Discretely Computed π̂n versus Continuous LT

If there is a conversion at time k∆t then V̂k = min0≤i≤k V̂i. This together with equation (3) allows us to derive from
the above equation for π̂k that

π̂k+1 =
k

∏
i=1

(
1−min

{
q

1−α
α

(
∆L̂i

a− L̂i+1

)
,1

})
(4)

This conversion mechanism is, in a sense, the most natural one in discrete time. It determines the amount of debt
converted (and the resulting allocation of equity) based on the total change in asset value over the interval ∆t. However,
there is also a sense in which this mechanism is unfair. In implicitly assuming that the loss in asset value occurs all at
once, it allocates a higher fraction of equity to converted shareholders because the prior shareholders bear the full cost
of a sudden loss in asset value.

In the continuous case, we were able to express the amount of debt converted into equity based solely on the
minimum value obtained by the asset value process between the issuance of debt and its maturity; conditional on
the minimum value other properties of the path were irrelevant. Moreover, πT could be expressed as a deterministic
function of the amount of debt converted into equity. However, when the capital ratio is monitored periodically, there is
no deterministic relationship between π̂n and the amount of debt converted into equity (or equivalently Lt ). Figure (1),
shows the joint distribution of π̂n and Lt for different monitoring frequencies. Each point in the plots corresponds to
a sample path of asset value with discrete computation of π̂n. The solid line represents the functional relationship
between πT and LT in the continuous case (equation (2)). Increasing the monitoring frequency pushes the dots closer
to the solid line, but the dots are widely dispersed at lower frequencies.

3.2 Continuous Path Conversion

A simple alternative to assuming that the loss in asset value occurs all at once would be to interpolate between V̂k and
V̂k+1 and then compute π̂k+1/π̂k assuming that the conversion took place continuously along this path. Conditional on
the end point values of a Brownian motion the most likely path would be a straight line, which suggests an exponential
path for the geometric Brownian motion. Or, one could simply use linear interpolation between V̂k and V̂k+1.

It may initially seem that to the number of possible paths connecting V̂k and V̂k+1, one can get different values for
π̂k+1/π̂k. But there are a large class of such paths that all yield the same allocation. Those are the interpolations that
connect V̂k to V̂k+1 through a continuous path above min{V̂k,V̂k+1}. For example, this includes linear or exponential
interpolation. For all such paths, the continuous formula for conversion (equation (2)) yields

π̂k+1/π̂k =

(
a−L(k+1)∆t

a−Lk∆t

)(q 1−α
α )

where Lk∆t is computed based on the hypothetical path. However the fact that for k∆t ≤ t ≤ (k+1)∆t, Vt is interpolated
to some value above min{V̂k,V̂k+1} implies that Lk∆t is equal to L̂k. It follows that based on any such conversion
mechanism

π̂k =

(
a− L̂k

a

)(q 1−α
α )

(5)
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Table 1: Variance reduction obtained by using the continuous case as control variate

var(π̂n) var(π̂n−b∗(πT −E[πT ])) Ratio var(L̂n) var(L̂n−b∗(LT −E[LT ])) Ratio
Quarterly 0.14592 0.04356 3 166.49 19.47 9
Monthly 0.10768 0.01656 7 145.67 6.353 23
Weekly 0.07837 0.00463 17 128.52 1.405 92
Daily 0.06531 0.00085 77 119.58 0.283 422

3.3 Midpoint Conversion

Alternatively, as an intermediate case between the previous two extremes of a single jump in asset value or a continuous
decline, it is reasonable to consider a rule based on assuming that half the decline in asset value occurred midway
through the interval and the remaining loss occurred at the end of the interval. Considering the interval [k∆t,(k+1)∆t],
(1−α)∆L̂k is the required conversion at the k +1 monitoring point. Breaking ∆L̂k in half, and applying equation (4)
we have

π̂k+1/π̂k =

(
1−min

{
q

1−α
α

(
∆L̂k/2

a− L̂k+1 +∆L̂k/2

)
,1

})(
1−min

{
q

1−α
α

(
∆L̂k/2

a− L̂k+1

)
,1

})
.

The simulation algorithm for all three discrete-time rules is detailed in Algorithm 2.

4 USING THE CONTINUOUS CASE AS A CONTROL VARIATES

The expected values of πT and LT can be computed in closed form, which makes these potentially attractive control
variates for their discrete counterparts. However, to use them as controls, we need to generate the continuous minimum
together with the discrete minimum. We cannot use Algorithm 1 for this purpose, because that algorithm ignores the
intermediate values generated by Algorithm 2. Instead, over each step of the discrete path, we need to generate the
conditional minimum given the endpoints of the interval; the minimum over the path is then the minimum over these
intervals.

The steps are detailed in Algorithm 3. Using Algorithms 2 and 3 together, we can jointly simulate (πT ,LT ) and
(π̂n, L̂n). The resulting π̂n is highly correlated with πT . Similarly L̂n and LT have a high correlation. Table (1) reports the
resulting variance reduction. The values are reported for both π̂n and L̂n based on 106 generated sample paths and pure
discrete conversion mechanism. The parameters used are total assets V0 = 100, convertible debt B = 30, regular debt
D = 60, capital requirement ratio α = 0.08, risk-free interest rate r = 0.02, volatility of assets σ = 0.36, debt maturity
T = 2 and fractional payoff of the assets δ = 0.03. The value b∗ for each calculation is set to maximize variance
reduction. The results suggest that substantial variance reductions can be achieved. Moreover for higher monitoring
frequencies the variance reduction is more effective which results from higher correlation between continuous and
discrete quantities for smaller values of ∆t.

5 CONTINUITY CORRECTION

Recall that in the discrete case, the capital ratio is monitored only at time points i∆t, i = 0,1, ...,n, where ∆t = T/n.
Define Ŵk as the log of asset value divided by V0 at the i’th monitoring time, i.e. log(V̂k/V0), or equivalently Ŵk ≡ W̃k∆t .
Thus, the ∆Ŵi’s are i.i.d with a normal distribution. In other words Ŵi is a random walk with normal increments.
The running minimum and hitting probabilities of such random walk can be approximated by their counterparts in the
underlying continuous diffusion process, i.e. the running minimum and hitting probabilities of W̃t . Moreover one can
apply a correction for the leading error term to get better estimates. More specifically define the running minimum
of the random walk as m̂n ≡min0≤i≤n Ŵi. Based on Asmussen et al. (1995) and consistent with the Siegmund (1985)
corrected diffusion approximation for random walks, we have

E[em̂n ] = eβσ
√

∆tE[em̃T ]+o(1/
√

n)

where

β = lim
n→∞

√
nE[m̃T − m̂n]

σ
√

T
≈ 0.5826

and m̃t is the running minimum of the diffusion process, defined as min0≤u≤t W̃t .
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Table 2: Continuity correction on Lt

E[LT (a,b)] eβσ
√

∆tE[LT (â, b̂)] E[L̂n(a,b)] Relative error (%)
(1) (2) (3) (3-1) (3-2)

Quarterly 24.67 20.69 20.79 18.68 -0.47
Monthly 24.67 22.37 22.41 10.12 -0.17
Weekly 24.67 23.57 23.58 4.65 -0.05
Daily 24.67 24.17 24.18 2.05 -0.02

This result can be applied to approximate the expected value of L̂k based on its continuous counterpart, Lt . Recall
that L̂k is defined as (a−min0≤i≤k V̂i)

+∧ (a−b). We have

E[L̂n] = E[(a−V0em̂n)+∧ (a−b)]

≈ E[(a−V0em̃T +βσ
√

∆t)+∧ (a−b)]

= eβσ
√

∆tE

[(
â− min

0≤u≤T
Vu

)+

∧ (â− b̂)

]
= eβσ

√
∆tE[LT (â, b̂)]

where â and b̂ have replaced ae−βσ
√

∆t and be−βσ
√

∆t . This result is helpful as we have derived a closed-form expression
for E[LT ].

Table (2) provides an example of the performance of this type of approximation. We consider different values of
∆T , namely quarter, month, week and day. The last two columns of the table show the relative error of the continuous
formula and the corrected formula in percent with respect to the true discretely computed value.

Continuity correction for π̂k is more subtle as it involves both the conversion mechanism and the difference between
discretely observed values and their continuous counterparts. As a crude correction, one may just plug in the corrected
Lt into equation (2). Based on the results for continuity correction of Lt , we expect that this modification for π would
be a fairly good correction when the conversion method is based on hypothetical continuous paths as described in
Section 3.2. More specifically if π̂n is as defined in equation (5) then

E[π̂n] = E
[(

(a− L̂n)/a
)(q 1−α

α )
]

= E
[(

(a− (a−V0em̂n)+∧ (a−b))/a
)(q 1−α

α )
]

≈ E
[(

(a− (a−V0em̃T +βσ
√

∆t)+∧ (a−b))/a
)(q 1−α

α )
]

= E
[(

(â−LT (â, b̂)/â
)(q 1−α

α )
]

To study how the continuously computed πT and discretely computed π̂n are related and how much the above
continuity correction helps we apply the following algorithms. Algorithm (2) simulates a path step by step at each
monitoring time point and computes π̂k and L̂k for k = 0,1, · · · ,n. Based on the choice of conversion method the
corresponding updating formula in step (5) should be applied.

Algorithm (3) takes the discretely simulated path by algorithm (2) as an input and conditional on the endpoint
values of each interval simulates the minimum over that interval. The minimum of these values corresponds to the
minimum of the entire path, and can be applied to compute continuous LT and πT .

Figures (2) and (3) show the results. The plots correspond to monthly, weekly and daily conversion and the three
different conversion methods discussed in Section 3. The y-axis is π̂n. In Figure 2 the x-axis is the continuous πT ,
whereas in Figure 3 the x-axis is the corrected πT . In addition Table 3 provides the average values of π̂n under different
conversion methods.

As can be observed from the figures, the bias and divergence from continuously computed πT is worst in the case
of pure discrete conversion. For small values of π̂n there is an over estimation by the continuous πT while the bias is
reversed for larger values. Applying the continuity correction to πT helps to have a more symmetric relationship for
larger values of π̂n but also worsens the overestimation bias for a smaller values, resulting in a bigger error in the total
average value when ∆t is small. This fact can also be observed in Table 3.

For discrete conversion based on hypothetical continuous paths, as observed in the middle row of Figure 2, πT

is always a lower bound for π̂n. This follows from the fact that in this case π̂n depend on the discretely observed
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Algorithm 2

1: Set k← 0, V̂0←V0, w0← 0, m̂0← 0, π̂0← 1
2: Generate zk+1 ∼ N(0,1)
3: Set

wk+1 ← wk + µ∆t +σ
√

∆t zk+1

m̂k+1 ← min{m̂k,wk+1}
V̂k+1 ← V0 exp(wk+1)

L̂k+1 ← (a−V0 exp(m̂k+1))
+∧ (a−b)

∆L̂k ← L̂k+1− L̂k

4: π̂k+1←





π̂k

(
1−min

{
q 1−α

α

(
∆L̂i

a−L̂i+1

)
,1
})

pure discrete conversion

π̂k

(
a−L̂k+1

a−L̂k

)(q 1−α
α )

cont. path conversion

π̂k

(
1−min

{
q 1−α

α

(
∆L̂k/2

a−L̂k+1+∆L̂k/2

)
,1
})(

1−min
{

q 1−α
α

(
∆L̂k/2

a−L̂k+1

)
,1
})

midpoint conversion

5: k← k +1
6: If k = n stop otherwise go to 3

Algorithm 3
1: Input the discretely simulated path: w0, · · · ,wn

2: Set k← 0, m0← w0

3: Generate u∼Uni f orm(0,1)
4: Set

∆wk ← wk+1−wk

m′ ← 1
2

(
∆wk−

√
∆w2

k−2∆tσ2 log(u)
)

m(k+1)∆t ← min{mk∆t , wk +m′}
5: k← k +1
6: If k = n continue otherwise go to 3 V0 exp{mT}

Table 3: Average π from different conversion methods

Quarterly Monthly Weekly Daily
π̂n pure discrete 0.204 0.151 0.123 0.122
π̂n cont. path 0.252 0.198 0.160 0.142
π̂n midpoint 0.220 0.170 0.141 0.132
πT (a,b) 0.126 0.127 0.127 0.127
πT (â, b̂) 0.236 0.189 0.156 0.140

minimum value of the path through the same functional relationship that πT has with continuously observed minimum
of the path. It is clear that the discretely observed minimum is more than the continuous one, which confirms the
observation that π̂n is larger than πT . Applying the continuity correction to πT is considerably effective in making the
distribution symmetric. In fact as shown in Table 3, πT (â, b̂) and discretely computed π̂n based on continuous paths
are very close in the mean especially for smaller values of ∆t.

As expected, the discretely computed π̂n based on the midpoint conversion rule, compared to the other two methods,
has an intermediate joint distribution with the continuous πT . This joint distribution is shown in the last rows of Figures
2 and 3. The overestimation bias for small values and underestimation bias for larger values is still present, though it
is slightly mitigated compared to the pure discrete case. In addition the continuity correction on πT seems to be more
helpful in making the relationship more symmetric.

6 EARNED EQUITY THROUGH CONVERSION

Part of the payoff to the owners of the convertible debt, comes from the value of equity that they earn through conversion.
The discounted value of this payoff is given by

e−r(τ̂b∧n)∆t(1− π̂(τ̂b∧n))
(

V̂(τ̂b∧n)−
[
(B− (1−α)L̂(τ̂b∧n))+D

])+(
1− (1−R1)1{τ̂b≤n}

)
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Figure 2: Illustration of the joint distribution of the discretely computed π̂n and the continuous πT . The rows show
alternative conversion rules, and the columns compare monitoring frequencies.

where τ̂b is the first k that V̂k is below the bankruptcy trigger b, (V̂(τ̂b∧n)− [(B− (1−α)L̂(τ̂b∧n))+D])+ is the value of
equity at either the debt maturity time or at liquidation time, and R1 is the recovery rate on the equity in the case of
liquidation or restructuring of the firm, representing the possible losses to the stock owners.

It would be of interest to see how the different conversion methods affect the above value. Table 4 provides such a
comparison. As expected at each monitoring frequency, among discrete conversion methods, pure discrete conversion
results in the largest value of equity allocated to owners of the convertible debt. This is in line with the fact that
conversion of the debt into equity only at the end of the interval has the implicit assumption that the loss in asset value
occurs all at once, and causes the prior shareholders to bear the full cost of the sudden loss in asset value, and therefore
the converted shareholders get a higher fraction of the equity. Conversion based on continuous interpolation of asset
value mitigates this situation, while midpoint conversion rule results in intermediate values.

We can also observe from Table 4 that increasing the monitoring frequency, increases the value of equity allocated
to owners of convertible debt. This can partly be associated with the fact that monitoring capital ratio more frequently
helps to catch low asset values more efficiently, resulting in more conversion of debt into equity. While if the interval
between two monitoring times is large, the asset value can go well below the conversion threshold and then rise up
again without any conversion taking place. The highest value for the equity owned by the converted stock owners takes
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Figure 3: Illustration of the joint distribution of the discretely computed π̂n and the continuous πT with the continuity
correction. The rows show alternative conversion rules, and the columns compare monitoring frequencies.

place in the limiting situation when capital ratio is monitored continuously in time. Applying continuity correction in
this case results in values which are very close to the midpoint conversion rule in average values.

7 CONCLUSION

In comparison to the continuous case, the amount of debt converted into equity and the fraction of equity belonging
to converted shareholders is more difficult to compute when the conversion happens discretely in time. In particular,
the minimum of the asset value is no longer sufficient to determine π̂n and L̂n. However the corresponding continuous
values and equations are still useful at least in two ways. First, applying a continuity correction can help to obtain
effective approximations for the amount of debt converted into equity. In addition, (πT ,LT ) can be used as control
variates for (π̂n, L̂n). The results show that the variance reduction obtained is substantial.

In discrete conversion of debt into equity, the conversion mechanism has an important effect on the sharing of losses
between the initial shareholders and the owners of convertible debt. We compared three different potential methods that
the conversion can be defined and in particular computed the expected value of the equity that will belong to owners
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Table 4: Earned equity through conversion

Quarterly Monthly Weekly Daily
Pure discrete conversion 13.3 16.9 19.3 19.9
Continuous hypothetical path 11.5 14.8 17.6 19.0
Midpoint conversion 12.6 16.0 18.4 19.5
Continuous conversion 20.4 20.4 20.4 20.4
Continuous conversion with correction 13.0 15.9 18.2 19.4

of the convertible debt under each method. In addition, the effectiveness of the continuity correction also depends on
how the discrete conversion is defined.
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