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ABSTRACT 

This research is motivated by a scheduling problem found in 300-mm semiconductor wafer fabrication 

facilities (wafer fabs). Front opening unified pods (FOUPs) are used to transfer wafers in wafer fabs. The 

number of FOUPs is kept limited because of the potential overload of the automated material handling 

system (AMHS). Different orders are grouped into one FOUP because orders of an individual customer 

very often fill only a portion of a FOUP. We study the case of lot processing and single item processing. 

The total weighted completion time objective is considered. In this paper, we propose a grouping genetic 

algorithm (GGA) to form the content of the FOUPs and sequence them. The GGA is hybridized with lo-

cal search. Furthermore, we also study a random key genetic algorithm (RKGA) to sequence the orders 

and assign the orders to FOUPs by a heuristic. We compare the performance of the two GAs based on 

randomly generated problem instances with simple heuristics and other GAs from the literature. It turns 

out that GGA only slightly outperforms the previous genetic GAs but it is faster when a lot processing 

environment is considered. The RKGA behaves similar to the best performing GAs described in the lite-

rature with respect to solution quality and computing time. 
 

1 INTRODUCTION 

Semiconductor manufacturing is at the heart of the electronics industry. The wafer fabrication part of 

semiconductor manufacturing is very complex, consisting of hundreds of processing steps, a diverse 

product mix, re-entrant flows, sequence dependent set-ups, and batch processing, i.e., several lots can be 

processed at the same time on the same tool, and expensive tools in parallel (Gupta et al. 2006). An in-

creased level of full-factory automation is typical for 300-mm wafer fabs. Therefore, an AMHS is very 

important for these modern wafer fabs (Agrawal and Heragu 2006 and Montoya-Torres 2006 for recent 

survey papers on AMHS in semiconductor manufacturing) mainly because it is difficult for human opera-

tors to carry the wafers with FOUPs. 

A FOUP is a standard unit of lot transfer between tools. It is a container that holds up to 25-wafer lots 

of 300-mm wafers in an inert, nitrogen atmosphere. FOUPs are expensive. More importantly, a large 

number of FOUPs can cause a congested AMHS. Therefore, the number of FOUPs is limited and is defi-

nitely a restriction. Because of the combination of decreased line width and increased area per wafer few-

er wafers are required to fill the integrated circuits (ICs) of a certain customer. Therefore, there is quite 

often a need to group orders of different customers into one FOUP. We call the resulting entity a job to be 

conform with scheduling literature. When such a grouping decision is made than the jobs have to be sche-

duled on the different tools within a wafer fab. Consequently, the resulting class of problems are called 
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multiple orders per job (MOJ) scheduling problems. Recently, problems of this type have been extensive-

ly studied by Mason and his group (cf. Mönch et al. 2009 for a survey of these problems). A static single 

machine MOJ scheduling problem with total weighted completion time (TWC) criterion is discussed by 

Mason et al. (2004). Mixed integer programming formulations and rather simple heuristics are proposed. 

Later, two genetic algorithms are suggested for the corresponding problem including ready times of the 

orders by Mason and Qu (2005). In this paper, we propose a GGA and a RKGA respectively for the prob-

lem researched by Mason et al. (2004). We show that the GGA slightly outperforms the two GAs from 

(Mason and Qu 2005), but it is much faster with respect to computing time in certain situations. The 

RKGA shows a similar behavior as the best performing GA described in the literature.  

The paper is organized as follows. The researched problem is described in Section 2. We also provide 

some structural properties of the schedules. Related literature is discussed in Section 3. In Section 4, we 

propose the GGA and the RKGA. Finally, we present the results of computational experiments in Section 

5. 

2 PROBLEM STATEMENT AND ANALYSIS 

We consider a single machine MOJ scheduling problem. We differentiate between lot and single item 

processing. Lot processing refers to the situation where the entire job, all wafers within the FOUP, will be 

processed simultaneously. The processing time is independent of the number of wafers within the FOUP. 

On the other hand, single item processing is related to the situation where the processing time of a job is 

the product of the wafer processing time and the number of wafers within the FOUP. Let 
j

p  denote the 

processing time of job j . Jobs are labelled by J,,1 K . We have F  FOUPs. We denote the size of order 

Oo ∈  by os . It is measured in number of wafers. We obtain ∑
∈

=
jo

oj
sρp , where ρ  denotes the process-

ing time of a single wafer in the single item processing case and ρp
j

=  for the lot processing environ-

ment. The set O  is the set of all orders that have to be scheduled on the machine. We simply label the or-

ders by N,,1 K . We assume that all orders have the same product type. Consequently, they can be 

grouped together. We assume that all FOUPs have the same capacity of K  wafers and that Kso ≤ . Or-

ders cannot split into suborders. Clearly, we have { }NFJ ,min≤ .  

Using the γ|β|α  notation from scheduling theory (cf. Graham et al. 1979), the two different prob-

lems can be represented as  

            ( ) ∑ ooCwlotmoj ||1         (1) 

and 

            ( ) ∑ ooCwitemmoj ||1         (2) 

respectively where we denote the completion time of order o  by oC  and the weight of the order by 
o

w . 

The latter order attribute is used to express the importance of customer orders. The objective TWC is 

given by ∑
=

N

1o

oo
Cw . Two different decisions have to be made to solve the scheduling problems (1) and (2): 

 

1. Job formation: Here the question is how to group the orders together into one job. Each single group 

corresponds to a FOUP. 

2. Job Sequencing: After job formation, an appropriate sequence of the jobs has to be determined. 

 

In order to find an optimal solution of problem (1) and (2) both decisions have to be made simultane-

ously. But because of the NP-hardness of problem (1) and (2) (see Mason and Chen 2009) often heuristics 

based on decomposition are reasonable. In the following, we assume that we are able to make the first de-
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cision. It turns out that then the second decision is straightforward. We obtain the following two proper-

ties. 

 

Property 1 When the job formation decision is made in the lot processing case, then the optimal job se-

quence can be determined by sorting the jobs with respect to non-increasing ∑
∈ jo

ow values. 

Note that this property is a direct consequence of the fact that the weighted shortest processing time 

(WSPT) dispatching rule leads to an optimal schedule for the single machine scheduling problem with 

TWC objective (cf. Pinedo 2008). However, in the lot processing case, all the processing times are identi-

cal and therefore it is enough to consider the sum of the weights of the orders that form the FOUP. 

 

Property 2 When the job formation decision is made in the item processing case, then the optimal job se-

quence can be determined by sorting the jobs with respect to non-increasing values of ∑∑
∈∈ jo

o
jo

o sw . 

The second property can be seen in a similar manner using the optimality properties of the WSPT dis-

patching rule. We will later use the two properties within our GAs.  

 

3 PREVIOUS RELATED WORK 

Heuristic approaches for solving the researched problem are described in (Mason et al. 2004). It turns out 

that two heuristics outperform the remaining ones in case of the lot processing and in case of the single 

item processing environment respectively. These heuristics are not iterative. Two different GAs are de-

scribed in (Mason and Qu 2005). These heuristics are dedicated to the case when the orders have different 

ready times. It is interesting to note that scheduling is performed in two phases. In a first phase, the orders 

are sequenced and then the jobs are formed according to simple heuristics. However, both algorithms do 

not deal with the problem as a grouping problem. 

Our research is based on the idea to treat the scheduling problem as a grouping problem. Based on 

Property 1 and 2, this is a reasonable approach, because the sequencing of the grouped entities is easy. 

Grouping problems can be solved efficiently by GGAs (Falkenauer 1998). Successful applications of 

GGA to bin packing problems (Falkenauer 1996) and pickup and delivery problems with time windows 

(Pankratz 2002) are known. To the best of our knowledge, only the paper by Singh et al. (2009) deal with 

the application of GGA type heuristics to machine scheduling problems so far. 

4 SOLUTION APPROACHES 

In this paper, two different GAs are proposed. We start with describing simple reference heuristics for 

benchmarking purposes. Then we present the GGA. Finally, we discuss the RKGA heuristic. 

4.1 Simple Heuristics 

The main idea of the heuristics proposed by Mason et al. (2004) is to decompose the scheduling problem 

into two phases. The first phase performs a sequencing of the orders. The orders are sequenced according 

to different criteria. The computational results show that the best results are obtained by the weighted 

smallest size (WSS) rule.  

The second phase consists in forming jobs from the already sequenced orders. We apply different heu-

ristics for lot and single item processing environments. In case of lot processing, the first-fit criterion 

FFD1 (cf. Mason et al. 2004) applied to the sequenced orders provides good results. This heuristic aims to 

fill the first jobs as much as possible. Thus, we obtain jobs with a large total weight. Jobs with larger 

weight correspond to smaller completion times. This results in a smaller TWC value. 
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In case of a single item processing environment, the FFD_AJS1 heuristic is applied (cf. Mason et al. 

2004). The heuristic tries to use all of the available jobs in order to balance the total size of the orders 

within the single jobs. 

The complexity of the heuristics is ( )( )FNNO +log . It is a disadvantage of these simple heuristics 

that feasible solutions are not guarantied. Therefore, the heuristics require some additional effort to repair 

infeasible solutions. 

4.2 GGA 

Since all the orders have to be distributed between a limited amount of jobs, we have to deal with a 

grouping problem. Therefore, a GGA is assumed to be an appropriate method in this case. We propose 

two variants of the algorithm for both lot and single item processing mode. In order to apply a GGA, we 

have to look for an appropriate encoding scheme of solutions and for appropriate genetic operators. We 

start with solution encoding. 

Every point of the search space of feasible solutions is represented as a sequence of jobs. Each job 

contains some subset of the orders. One order can be found only in one job. An example is shown in Fig-

ure 1. Here iF  is the i -th job in the processing sequence. 

 

 

Figure 1: GGA encoding scheme 

GGA is a population based algorithm. It requires a number of initial population elements, called ge-

nomes, that represent some part of the search space. We start with an initial population that is randomly 

generated. For genome initialization we generate an arbitrary permutation of the orders and then form the 

jobs by applying the assignment rules suggested by Mason et al. (2004). 

We continue with describing the main genetic operators. The main purpose of crossover is combining 

parts of good feasible solutions to obtain better feasible solutions. A GA discovers the most promising 

parts of the search space moving towards the global optimum. Crossover has to act in such a way that 

each offspring inherits as much valuable information from its parents as possible. Indeed, if the parents 

contain good parts then these parts have to be preserved and inherited by children. For GGAs, the cros-

sover operator has a specific form as it has to deal with entire groups rather than with separate objects. In 

our case, a set of orders from the same job are considered as one group. A specific crossover operator for 

GGA is proposed by Falkenauer (1998). Since a fixed amount of jobs can be used in the researched prob-

lem, this crossover is not appropriate for our problem because it allows a variable amount of jobs. There-

fore, we propose another variant of grouping crossover that takes into account the maximum number of 

jobs. In this case, we directly create the child with an appropriate amount of jobs. The schema is shown in 

Figure 2. Here, ijF  is the j -th job of parent 
i

G . We denote the corresponding child by .C  

 

Figure 2: Grouping crossover 

11F 12F 13F 15F 16F14F

21F 22F 23F 25F 26F24F

11F
23F 24F 15F 16F
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2G

C
12F

1 25
8

7
9

3
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n

1F 2F 3F FF
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The crossover algorithm consists of the following steps: 

1. Select randomly two crossing sites, delimiting the crossing section in each parent. 

2. Replace the crossing section of parent 1G  with the crossing section of parent 2G . 

3.  Eliminate all orders now occurring twice from the job they were members of in the first parent. 

Thus, some jobs coming from the first parent have to be altered. 

4. Adopt the resulting jobs according to the hard constraints and the objective function to optimize. 

5. Repeat Step 2 till Step 4 with changed roles of the parents to obtain the second offspring. 

Now the orders that are eliminated have to be reinserted into the child C again. As described in (Brown et 

al. 2003), the reinsertion strategy may have great influence on performance of the algorithm. Therefore, 

we apply the heuristics described in Subsection 4.1 as one of the best strategies of reinserting the unin-

serted orders. Sometimes it happens that not all of the uninserted orders can be reinserted. We repeat the 

crossover several times until a feasible offspring is obtained. 

Having uninserted orders, we try to reinsert them in some local search manner in order to build better 

groups. For lot processing, we go through the list of jobs and try to replace for each of them up to three 

orders with one that is not inserted so far to increase the utilization and total weight of the jobs. More or-

ders with smaller sizes become uninserted and it is easier to redistribute them later by applying the simple 

heuristic. In case of single item processing, for each job we try to reinsert up to three orders with one or-

der in such a way that utilization of the job decreases but the total weight of it increases. Jobs with small 

utilization and high total weight are preferable because finally they are processed at the beginning of the 

sequence and provides smaller values of TWC. The remaining uninserted orders are reinserted by apply-

ing the simple heuristic. 

Mutation is used to avoid a premature convergence of the GA towards a local optimum. We use a 

swap mutator as mutation operator. This means that in some genomes two jobs are selected randomly. In 

each of these two jobs we select randomly one order and then we exchange the two orders between the se-

lected jobs preserving feasibility of the genome. Another possibility is exchanging more than two arbi-

trary orders in the selected jobs.  

After crossover and mutation we improve the offspring using local search. The main idea of the local 

search is to swap orders across jobs to improve fitness of the genome. This technique depends on the type 

of processing. In case of  lot processing, we exchange orders between any pair of jobs in order to obtain 

improvement of TWC. Let job i  be processed before job j . The procedure works as follows. We select 

each order io  from job iF  and jo  from jF  respectively. Then we check whether it is possible to ex-

change them preserving feasibility of the genome. If yes then in case jo  has a larger weight than io  the 

orders are exchanged. We do not have to recalculate the objective function of the genome in order to veri-

fy whether the genome is better or not after the exchange. The used local search procedure for lot 

processing is shown in Figure 3. 

 

Figure 3: Local search steps in a lot processing environment 

Firstly, we try to exchange orders between jobs 1F  and 2F  then between 1F and 3F , and so on. After that 

we repeat this procedure between jobs 2F and 3F , 2F and 4F , and so on. 

Step 1 

Step 3 

Step 2 

1F 2F 3F
4F
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We use a similar exchange procedure in case of single item processing. We can easily verify whether 

the exchange improves the genome if the exchange is performed between two adjacent jobs iF  and 1+iF . 

Suppose we consider two adjacent jobs iF  and 1+iF . We select an order io  from iF  and an order 1+io  

from 1+iF . Let is  and 1+is  be the sizes and iw  and 1+iw  the weights of io  and 1+io  respectively. Denote 

the total weight of job iF  by iW  and the total size of the orders in 1+iF  by 1+iS  before the exchange. We 

can prove that if the condition 
 

     ( 1+iw - iw )( 1+iS - 1+is )+( iW - iw )( is - 1+is )+ 1+iw is - iw 1+is  > 0       (3) 

 

is satisfied then swapping orders io  and 1+io , if it is possible, leads to a smaller value of TWC and, there-

fore, to better fitness of the genome. The described procedure of order exchanges is depicted in Figure 4. 
 

 

Figure 4: Local search steps in a single item processing environment 

We start to exchange orders between the jobs 1F and 2F , then between 2F and 3F , and so on until all the 

jobs are covered. After one such pass there might still be potential for further improvement. Therefore, we 

apply several passes until a further improvement is not possible. The procedure is motivated as follows. 

Even if some order o  is placed into the first job 1F  in the optimal solution, and we are dealing with a 

non-optimal solution, then after several passes the order can be shifted from the last job to the first job. 

Applying a local search technique leads to larger computational efforts within each iteration of the algo-

rithm. But the performance of GGA is better. Hence, the GGA converges faster towards a solution with a 

small TWC value. 

Besides crossover and mutation we also apply inversion techniques in order to bring together the most 

promising jobs in the genome. Thus every time before recalculation of the TWC value of a genome, we 

sort the jobs by applying the two properties shown in Section 2. Thus, we obtain the optimal sequence of 

the jobs. 

4.3 RKGA 

Unlike the GGA the RKGA approach (see Bean 1994) does not deal directly with groups but rather with 

sequences of orders which later are distributed between jobs according to some heuristic distribution rule 

as described in Subsection 4.1. We propose two variants of the algorithm for lot and single item 

processing.  

In this case every point of the search space of solutions is encoded as a sequence of real numbers 

[ ]1,0U~z
i

, called random keys. According to the random keys all the orders can be sequenced. We point 

out that not each such random key sequence represents a feasible solution because for some sequences not 

all orders can be distributed. An example of a genome and its decoding can be seen in Figure 5. 

 

Figure 5: Genome decoding for RKGA 

( 1z , 2z  , 3z  , …, Nz )  – random key 

1
2

5 8 10
7

9
3

4 k N

1 5 2 10 8 4 9 k Nl - decoded sequence of the orders 

1F 2F 3F NF

1F
2F 3F 4F

Step 1 Step 2 Step 3 
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Having the random keys, we can decode a sequence of the orders before the redistribution. We assume 

that order i  is sequenced for scheduling before order j  only if ji zz < . Like the GGA the RKGA re-

quires an initial population. The population is initialized as described for GGA. 

The crossover operator acts on two genomes. We use a standard two-point crossover. The crossover 

works as follows. We randomly select two crossing sites for the parent genomes. Then we exchange the 

content of the crossing sections between the parents. Here we work with the random keys and not directly 

with the sequence of orders. The procedure is shown in Figure 6. 
 

 

Figure 6: Random key two-point crossover 

The second offspring is generated in a similar manner by exchanging the roles of the parents. Now the 

child genomes 1C  and 2C  contain random keys which allows us to decode the sequence of the orders be-

fore the distribution process. Although after each crossover we obtain a feasible sequence of orders by 

decoding the random keys, the genome may not be feasible. The problem that not all orders can be distri-

buted can arise when using the FFD1-rule for lot processing or the FFD_AJS1-rule for single item 

processing. Such infeasible offspring have to be avoided. Therefore, we apply the crossover procedure 

several times until the obtained offspring is feasible. The mutation is implemented as a random swap of 

two different elements of the random key representation. 

Similar local search techniques are used as described for GGA. In contrast to GGA, we run the RKGA 

without changing the random keys after the local search because there is no direct counterpart in the ran-

dom key representation. The local search is performed before we calculate TWC. In this case, potentially 

the most promising genomes will survive. The same inversion as for GGA is applied for RKGA each time 

before we calculate the TWC value of a genome to determine its fitness. Again, this leads to a speed-up of 

the algorithm. 

5 COMPUTATIONAL EXPERIMENTS 

We start with describing our design of experiments. Then we present the computational results based on 

the randomly generated problem instances from Subsection 5.1. The simple heuristics, GGA, RKGA, and 

MGA, the best performing GA from (Mason and Qu 2005), are compared. 

5.1 Design of Experiments 

We generate randomly problem instances that depend on the number of available jobs, the number of or-

ders, the size, and weight of the orders according to the generation scheme found in (Mason et al. 2004). 

The parameter ν  defines the range of the order size, whereas the parameter β  is responsible for the ca-

pacity of the FOUPs. The used design of the experiments is presented in Table 1. 

We apply a steady-state GA with overlapping populations and a replacement rate of 0.5. The crossov-

er probability is selected as 0.8. The corresponding mutation probability is 0.1. The population size is 

300. Two hundred iterations per problem instance are performed by the GGA and one thousand iterations 

by RKGA and by MGA. These parameter values are chosen after extensive computational experiments 

based on a trial and error strategy. The three GAs are implemented in the programming language C++ us-

12z11z 13z 14z 15z
16z

21z 22z
23z 24z 25z 26z

11z 12z
23z 24z 15z 16z

1G

2G

C
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ing the framework GALib. A computer with Intel Core 2 Duo 2.26 MHz processor and 4 GB of main 

memory is used to carry out the experiments. 

5.2 Computational Results 

We compare the performance of the proposed heuristics by applying them to the problem instances. Since 

the researched problem is NP-hard, we are not always able to find optimal solutions within a reasonable 

amount of time when the number of orders and jobs is large. Thus, we start with assessing the proposed 

algorithms for small-sized problem instances using only one instance per factor combination. The consi-

dered number of orders in the small-sized problem instances is 10, 15, 20, and 25. 

Table 1: Design of experiments 

Factor Level Count 

os  (in wafer) ~ 






 +
+

+
−

2

1ν
ν,

2

1v
νDU , { }5,3∈ν  2 

ow  ~ [ ]151,DU  1 

K (in wafer) 1+12β , { }21∈ ,β  2 

N 10,15,30,50,100 5 

F  β12/νN +1 1 

P (problem type) 
single item, lot processing, 10=ρ  

in both cases 
2 

Number of independent problem instances 5 per factor combination  

Total number of problem instances   200 
 

Table 2 presents the ratios of the TWC values for the various heuristics and the TWC values of the simple 

heuristics (SH). As it can be clearly seen, we obtain up to 4.5% better results in the lot processing case 

and up to 12% improvement in the single item processing case with respect to SH.  

 

Table 2: Relative TWC values for small-sized problem instances 

   Lot processing Single item processing 

N   GGA RKGA MGA SH CPLEX GGA RKGA MGA SH CPLEX* 

10 1 3 1.000 1.000 1.000 1.000 1.000 0.946 0.946 0.946 1.000 0.946 

 1 5 0.996 0.996 0.996 1.000 0.996 0.951 0.951 0.959 1.000 0.951 

 2 3 1.000 1.000 1.000 1.000 1.000 0.872 0.872 0.878 1.000 0.872 

 2 5 1.000 1.000 1.000 1.000 1.000 0.965 0.965 0.968 1.000 0.965 

15 1 3 1.000 1.000 1.000 1.000 1.000 0.960 0.960 0.960 1.000 0.960 

 1 5 0.955 0.955 0.955 1.000 0.955 0.970 0.970 0.970 1.000 0.970 

 2 3 0.983 0.983 0.983 1.000 0.983 0.923 0.923 0.943 1.000 0.923 

 2 5 0.987 0.987 0.987 1.000 0.987 0.927 0.927 0.930 1.000 0.927 

20 1 3 0.997 0.997 0.997 1.000 0.997 0.940 0.940 0.940 1.000 0.940 

 1 5 - - - Failed - 0.975 0.975 0.976 1.000    0.981 * 

 2 3 1.000 1.000 1.000 1.000 1.000 0.879 0.879 0.905 1.000 0.879 

 2 5 0.996 0.996 0.996 1.000 0.996 0.953 0.953 0.953 1.000   0.957 * 

25 1 3 1.000 1.000 1.000 1.000 1.000 0.960 0.960 0.96 1.000  0.960 * 

 1 5 0.957 0.957 0.96 1.000 0.957 0.967 0.967 0.967 1.000  0.987 * 

 2 3 1.000 1.000 1.000 1.000 1.000 0.959 0.959 0.961 1.000  0.959 * 

 2 5 0.993 0.993 0.993 1.000 0.993 0.942 0.943 0.942 1.000  0.946 * 

Total 0.987 0.987 0.988 1.000 0.987 0.948 0.948 0.951 1.000  0.941 * 

 

β ν

2500



Sobeyko and Mönch 

 

We also try to solve the mixed integer programs from (Mason et al. 2004) for our problem instances  with 

CPLEX in order to assess the quality of our heuristic solutions. Because of the hardness of the researched 

scheduling problems, we were not able to find the optimal solutions with CPLEX within 4 hours per in-

stance in some situations. Thus, the best found feasible solutions are marked with “*” in this situation. It 

is interesting to note that GGA always provides the optimal solution for each problem instance for which 

we are able to find this solution with CPLEX. 

MGA does not always find the optimum but provides near-to-optimal solutions at the same time. 

RKGA can compete with these algorithms. We notice that SH is not able to find a feasible solution for 

one problem instance. 

Next, we present the computational results for large-sized problem instances as well. Here, we gener-

ate five problem instances per factor combination and show the average values for the performance meas-

ures. The problem instances are generated with respect to solvability by the SH. In this situation, the GAs 

are terminated after two minutes. 
 

Table 3: Relative average and best TWC values for five problem instances per factor combination 

   Lot processing  
Best 

GGA 

 Single item processing  
Best 

GGA N 
 
 

 
GGA RKGA MGA SH GGA RKGA MGA SH 

10 1 3 0.981 0.981 0.981 1.000 0.970 0.929 0.929 0.929 1.000 0.884 

  1 5 0.987 0.987 0.987 1.000 0.969 0.953 0.953 0.953 1.000 0.891 

  2 3 0.997 0.997 0.997 1.000 0.987 0.92 0.920 0.936 1.000 0.865 

  2 5 0.985 0.985 0.985 1.000 0.965 0.927 0.927 0.929 1.000 0.845 

15 1 3 0.988 0.988 0.988 1.000 0.948 0.931 0.931 0.931 1.000 0.892 

  1 5 0.962 0.962 0.962 1.000 0.919 0.981 0.981 0.985 1.000 0.966 

  2 3 1.000 1.000 1.000 1.000 1.000 0.943 0.943 0.945 1.000 0.919 

  2 5 0.980 0.980 0.980 1.000 0.964 0.936 0.936 0.941 1.000 0.921 

30 1 3 0.996 0.996 0.996 1.000 0.991 0.961 0.963 0.963 1.000 0.945 

  1 5 0.970 0.970 0.971 1.000 0.932 0.978 0.980 0.978 1.000 0.955 

  2 3 1.001 0.999 0.999 1.000 0.997 0.946 0.946 0.955 1.000 0.918 

  2 5 0.977 0.977 0.979 1.000 0.952 0.97 0.971 0.971 1.000 0.963 

50 1 3 0.997 0.998 0.999 1.000 0.995 0.979 0.989 0.981 1.000 0.972 

  1 5 0.968 0.97 0.972 1.000 0.959 0.988 1.000 0.992 1.000 0.98 

  2 3 0.996 0.996 0.999 1.000 0.988 0.959 0.961 0.966 1.000 0.951 

  2 5 0.985 0.987 0.986 1.000 0.977 0.983 0.992 0.984 1.000 0.978 

100 1 3 0.996 1.005 1.001 1.000 0.99 0.994 1.067 0.996 1.000 0.99 

  1 5 0.975 0.981 0.991 1.000 0.966 0.995 1.025 1.005 1.000 0.992 

  2 3 1.000 1.010 1.003 1.000 0.998 0.988 1.020 0.991 1.000 0.982 

  2 5 0.985 0.994 1.002 1.000 0.979 0.994 1.060 1.000 1.000 0.99 

Total 0.984 0.9900 0.993 1.000 0.972 0.987 1.023 0.992 1.000 0.944 

 

From Table 3 we can see that GGA always provides results of a slightly better quality, especially for 

relatively small-sized problem instances. But when the size of the problem instances grow, the perfor-

mance of the GAs decreases compared to the simple heuristics. We assume that this effect is caused by 

the increasing amount of small orders. Thus, the orders can be distributed more easily between the jobs 

and therefore, such problem instances are easier to solve by the SHs.  

We also point out that the GGA slightly outperforms MGA. Of course, the improvement compared to 

the simple heuristics depends on the problem instance. Therefore, we analyze not only the average im-

provement but also the results for every separate problem instance. The best relative values found by the 

GGA are also presented in Table 3. We see that for small problem instances the improvement can be quite 

large.  

β ν
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Our computational experiments show that GGA outperforms the other GAs with respect to the number 

of iterations. Although one iteration of the GGA is more time consuming, it provides a larger improve-

ment of the objective function value.  

In case of lot processing the GGA has quite good performance when the time of computation is limi-

ted. We consider different maximum computing time levels for out experiments. The numerous computa-

tional experiments show that already after 10 seconds of computation per problem instance for large-sized 

problem instances with an amount of 50 and 100 orders the quality of solutions of the GGA is larger than 

the quality of solutions obtained by the MGA and the SHs. 

For the case of a single item processing environment, GGA is outperformed by MGA when only a 

small amount of computing time is allowed. This is caused by the relatively large computational effort of 

one iteration of the GGA and sometimes infeasible child genomes after the crossover. But as the number 

of iterations increases the solutions improve. Finally, GGA also slightly outperforms MGA when enough 

computing time is available. 

6 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we discussed heuristics that are motivated by scheduling problems that can be found in 300-

mm wafer fabs. Lots are transported using FOUPs. It appears that often orders have to be grouped togeth-

er to fill a single FOUP. We proposed two different GAs. The first algorithm is a GGA as proposed by 

Falkenauer (1998). The second algorithm starts from order sequences and transforms each of the se-

quences into a sequence of jobs. The order sequences are determined by a RKGA. It turned out that the 

GGA only slightly outperforms GAs from previous research. But GGA is much faster when a lot 

processing environment is assumed. RKGA behaves similar to the best performing GA from previous re-

search. We conclude that GGA is appropriate to solve MOJ scheduling problems because of its group-

centric point of view.  

There are several directions for future research. First of all, we are interested in studying problems 

with ready times, i.e., it is not required that all orders are available at the beginning, and due dates for the 

orders. A first preliminary experimentation shows that the GGA clearly outperforms the MGA in this sit-

uation. Furthermore, we are also interested in extending the GGA approach to the case of parallel ma-

chines.  
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