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ABSTRACT 

A basic way that entities can cooperate with one another is by sharing of tasks through synchronized 

movement to balance their geometric load.  For example, players of a team defending a goal may be as-

signed equal-spaced zones to defend or units in a military force may be assigned equal-spaced sectors to 

control.  As the dynamics of the situation unfold and as entities move, withdraw, or enter the space; the 

other entities cooperate by adjusting their positions to retain load balance.   Various ways that this geome-

tric cooperation can be accomplished, both from the perspectives of central and local control, are devel-

oped, analyzed, and simulated. This problem is related to other geometric cooperation problems such as 

movements in multi-player pursuit-evasion games and balancing loads for other generally non-geometric 

algorithms.  The authors use the metrics to establish a framework for a theory of geometric cooperation.   

Simulations, metrics, and results of the algorithms’ performance in various scenarios are presented.   

1 INTRODUCTION 

The major theme of this paper is cooperation – specifically, the way entities cooperate by sharing tasks 

through synchronized movement to balance their geometric load.  This kind of cooperation is motivated 

by military units assigned equal-spaced sectors to control or sports players assigned equal areas to cover 

or defend.  This paper provides the background, problem, algorithms, results, and analysis of an investiga-

tion in geometric cooperation in the form of equi-distribution of dynamic entities in a geometrical situa-

tion.  The essence of the problem is to have mobile entities maintain equal-area spacing in an assigned 

geometry as the dynamics of the situation unfold -- entities move, withdraw, or enter the space.    

 The Army’s myriad networks connect battlespace entities (not only humans and soldiers, but also ma-

chines, computers, and robots).  Many of the social/biological/physical/informational connections in these 

networks are in the form of cooperation – entities working together to achieve a common goal.  A major 

component of net-centric warfare is to “interact and collaborate in the virtual (informational) domain”  

(Alberts, Garstka, and Stein 1999).  At the most basic level, cooperation can be traced to geometric syn-

chronization of entities (Strogatz 2003).  At the highest levels of application, businesses are embracing 

the concept with the hope of inventing “organizations for the twenty-first century that will not only be 

more economically productive but also more humanly desirable”  (Malone, Laubacher, and Morton 2003; 

Tapscott and Williams 2006).  So how does this complex web of connections, relationships, collabora-

tions, and communities of diverse entities work? What are the metrics for a successful cooperative net-

work?  What is cooperation and what makes a cooperative system or organization effective?  What forms 

of communication within a network can enhance cooperation?  How do we measure trust and selfless-

ness?  Can a cooperative autonomous system be as effective as a centrally controlled system?  Can net-
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work structures, processes, tools, connections, communications, and languages enhance cooperation, 

achieve synergy, and optimize networks?   

 Cooperation is not yet well-understood from a mathematical point-of-view. The most classical ma-

thematical construct in this area is John von Neumann’s “cooperative game theory”, introduced in the ear-

ly 20
th
 century (Neumann 1928). However, this concept applies primarily to a group of entities working 

together for selfish reasons. In contrast, most forms of cooperation in social and military networks involve 

a team working together for a common good. In reality, von Neumann’s theory only applies to certain 

kinds of cooperation.  This work starts at the root level of cooperation to establish the basic framework.   

 The framework of subset team games (Arney and Peterson 2008) provides a foundational tool that 

can be used to study some of these questions about networks and cooperative system. The framework 

builds upon existing metrics of “team success” to provide complementary metrics of “altruistic” or team-

oriented cooperation and “selfish” cooperation. The result is a tool that can provide some powerful insight 

into altruism, teamwork and cooperation. (Axelrod 1996, Axelrod and Cohen 2000) 

 In this paper,  we demonstrate several examples in basic geometric cooperation.  We seek to build a 

foundation by establishing a simulation tool to study these questions about networks and cooperative sys-

tems.  In this paper, we demonstrate several examples in basic geometric cooperation.  Using a game 

theoretic construct, the basic assumption is that the players (or entities) join together as a team, working 

for the best team payoff or metric performance.  In this case, the goal of the entities (or players) is to 

maintain their equal spacing as the situation changes.  There are many examples of such situations: play-

ers on sports teams assigned to defend areas that shift in importance as the game is played; groups in or-

ganizations assigned to perform tasks that can be assigned geometrically; military units assigned to con-

trol or observe assigned areas of operations where assignments need to shift as the situation changes; and 

mobile sensors placed on the battlefield to monitor and sense equally the entire battlespace.   

2 GEOMETRIC EQUI-DISTRIBUTION PROBLEM 

2.1 Equal Areas 

In this paper, we focus on cooperation for the simple task of determining geometric assignments in a po-

lygonal region to establish regions of equal area.  There are some static algorithms that try to use establish 

shapes (triangles, polygons) to divide the region (Ben et al. 2006, Snyder 1992)    Each entity (player or 

agent) is assigned a particular region within the polygon, and the goal is for the entities (players) to sense 

their situation and move autonomously to equalize their assigned areas.   Several agent-based algorithms 

are developed and run in simulations to test the performance and convergence of the algorithm.  Metrics 

are computed to determine how successful the entity distribution is at any stage of the dynamic situation.   

2.2 Metrics 

The metrics that are used are normalized with respect to the mean area of the sub-regions and the number 

of entities to capture the deviations in the areas of responsibilities as ratios.  Let   represent the mean 

sub-region area, and let  represent the areas assigned to individual players.  We track three 

measures of deviation: 

1) The maximum deviation from the mean as a ratio with mean sub-region area: . 

2) The average deviation from the mean as a ratio with mean sub-region area: . 

3) The sum of the mean-squared deviations as a ratio with the square of the mean sub-region area: 

. 

By tracking these normalized utility metrics (ratios or percentages), we are able to normalize the algo-

rithms behavior independent of the size of the region or the number of points used in the simulation.   
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2.3 Basic Geometry 

The simulations are performed by establishing a polygonal region and initially randomly dispersing a spe-

cified number of points (representing entities or players) in the region.  A Voronoi diagram then partitions 

the overall region into sub-regions where each point is responsible for the area where it is the closest 

point. (Ohyama 2007)  This geometric framework is shown as the “meshed” region in Figure 1.  In a dy-

namic assignment game, the areas would then be assigned to each given point as it cooperates to maxim-

ize the utility function.  The simulations implement various algorithms to dynamically adjust the point lo-

cations to make the areas equal.   

 

 

 
Figure 1: Initial “meshed” region with 40 points (unequal areas).  This region has poor utility metrics --- 

e.g., the maximum assigned area for the largest entity is 140% of the mean area. 

3 ALGORITHMS 

We begin with the premise that when the autonomous entities in a region sense they are no longer in 

balance in terms of equal areas of responsibility, they attempt to move to equalize the areas using only 

local information.  To do this, the entity determines local factors (distances or areas or loads of 

neighboring entities) and seeks to move in a way to reduce the imbalance.  For organization purposes, we 

classify the balancing algorithms as static (based on local static factors -- areas of neighboring sub-

regions) or dynamic (based on how neighboring elements are moving – distances from neighbors).  We 

present two algorithms of both types for a total of four algorithms and label them S-1, S-2, D-1, and D-2.    
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3.1 Static Algorithms 

The two static (local, area-based) algorithms are described as follows: 

 

• S-1:  Each entity moves toward the neighboring sub-region with largest area in an attempt 

to increase its own area and decrease the area of the larger-area neighbor.   

•  S-2:  Each entity moves  in a direction found by weighting the differences in the region’s 

area with all its adjacent neighbor areas.  If the neighbor has area  and position , and its 

neighbors have areas  and positions , then the entity will move its position by 

 

 
where  is a constant parameter. This is equivalent to gradient-based local optimization 

of the function . 

 

 In these static algorithms, an entity uses information about its neighbors’ positions and areas only. 

3.2 Dynamic Algorithms 

The two dynamic (local distance- and movement-based) algorithms are described as follows: 

 

• D-1:  Each entity moves with the average of all neighbor movements (iterative scheme) if its area 

is close to the mean sub-region area. If the area is too much larger than this target area, or too 

much smaller, then its behavior depends upon whether or not its own region is part of the boun-

dary of the larger polygonal region. If it is a boundary point, then it will move toward the boun-

dary if its area is too large or away from the boundary if its area is too small. If it is not a boun-

dary point, then it will move toward its farthest neighbor if the area is too large or away from the 

closest neighbor if its area is too small. 

• D-2:  Each entity moves with the average of its two closest neighbors if they are far enough away, 

but moves directly away from its nearest neighbor if it is too close. After this initial movement 

stage, entities that are too close to the boundary move directly away from the boundary. 

 

 In these dynamic algorithms, an entity has information about its target area, the mean sub-region area. 

But it does not use information about its neighbors’ areas, but rather information about its neighbors’ po-

sitions and movement in past iterations. Each parameter in the algorithm, e.g. how close is “too close” for 

two neighbors and the threshold areas, remain fixed throughout a simulation. 

3.3 Equi-Distribution Platform 

The simulations are managed through our Java-programmed Equi-Distribution Platform that enables us to 

establish the initial polygonal region, set the number of sub-regions/entities/points, set the parameters, 

and establish graphic images through Voronoi diagrams.  Once the initial system is established the plat-

form enables us to select and run the algorithm (either continuously or step by step) and watch the move-

ment of the entities and monitor  the metrics of the simulation (to include plots of metrics over time).  A 

visual image of the complete graphic platform interface is shown in Figure 2.  
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Figure 2: JAVA-based simulation platform for geometric distribution algorithms 

 

 Our perspective was that because these algorithms are only locally based, convergence to an optimal 

mesh would be slow and difficult to achieve even using the areas as input parameters in algorithms S-1 

and S-2.  More in keeping with the idea that the entities should be able to directly sense the imbalance, al-

gorithms D-1 and D-2 use the distances to neighbors as their primary input parameters.  While there is 

some correspondence between distance and area, we were unsure that these local algorithms would lead 

to adequate or reasonable behavior. 

4 RESULTS 

4.1 Basic Convergence Results 
 

We have run the four algorithms to test their performance in various scenarios.  We did this for 40 entities 

(with two different initial conditions), 100 entities, and 400 entities, using all four of our algorithms in 

each case.  An image of the region with a sample converged mesh (40 areas or sub-regions that are equal) 

is shown in Figure 3. The results of the simulations for the four algorithms for 40 entities (2 different ini-

tial meshes), 100 entities, and 400 entities are provided in Table 1.   Additionally, the performance and 

convergence data for the simulations for algorithm S-2 are provided in Table 2. 
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Figure 3: Converged region with 40 points arrayed in locations to produce equal areas of responsibility. 

 

Table 1:  Data for all three deviation metrics for the simulations for all four algorithms (S-1, S-2, D-1, D-

2) and all four initial meshes (40, 40, 100, 400 points). 
 

After 500 steps 

Initial S1 S2 D1 D2 

CASE 1 : 40 points Mean Area 0.043         

Maximum Deviation 1.417 0.955 1.198E-04 0.641 1.154 

Mean Deviation 0.429 0.205 2.18E-05 0.117 0.376 

Mean Squared Deviation 0.292 0.07 1.25E-09 0.028 0.208 

CASE 2: 40 points Mean Area 0.043         

Maximum Deviation 1.191 1.061 2.18E-07 0.208 1.038 

Mean Deviation 0.303 0.308 6.47E-08 0.084 0.252 

Mean Squared Deviation 0.147 0.156 7.58E-15 0.011 0.11 

100 points Mean Area 0.017         

Maximum Deviation 2.35 0.895 5.20E-02 0.583 1.231 

Mean Deviation 0.474 0.212 4.00E-03 0.124 0.268 

Mean Squared Deviation 0.362 0.073 7.18E-05 0.027 0.125 

400 points Mean Area 0.004         

Maximum Deviation 2.572 0.904 1.90E-01 0.614 4.281 

Mean Deviation 0.428 0.149 1.40E-02 0.132 0.351 

Mean Squared Deviation 0.314 0.045 5.04E-04 0.029 0.274 
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 S-2 performance (converging at order n
-0.5

 using local neighbor area data) is impressive and shows 

that the entities are cooperating in an efficient manner.  Likewise, D-1’s performance using only local dis-

tance data was effective as well.  While this algorithm did not converge, it controls the deviations of the 

sub-regions and reaches an oscillatory equilibrium.  Overall, these two algorithms appear to exhibit coop-

erative behavior that provides for geometric synchronization of the system.     

 

Table 2: Performance metrics for algorithm S-2. 

 

Number of Steps 

Initial 10 50 100 250 500 

CASE 1: 

40 points Maximum Deviation 1.417 0.332 0.057 0.018 0.002 1.20E-04 

Mean Deviation 0.429 0.094 0.011 0.004 2.97E-04 2.18E-05 

Mean Sq. Deviation 0.292 0.014 2.47E-04 2.62E-05 2.48E-07 1.25E-09 

CASE 2: 

40 points Maximum Deviation 1.191 0.167 0.114 0.069 1.66E-04 2.18E-07 

Mean Deviation 0.303 0.051 0.012 0.009 4.65E-05 6.47E-08 

Mean Sq. Deviation 0.147 0.004 5.96E-04 2.88E-04 3.70E-09 7.58E-15 

100 

points  Maximum Deviation 2.35 0.521 0.288 0.064 0.037 0.052 

Mean Deviation 0.474 0.152 0.063 0.024 0.005 0.004 

Mean Sq. Deviation 0.362 0.037 0.006 7.93E-04 5.42E-05 7.18E-05 

400 

points Maximum Deviation 2.572 1.028 0.437 0.389 0.257 0.190 

Mean Deviation 0.428 0.218 0.093 0.054 0.014 0.014 

Mean Sq. Deviation 0.314 0.078 0.013 0.005 0.001 5.04E-04 

 

 

4.2 Cooperation Simulation 

 

In the following simulation, different individual entities were programmed to follow different algorithms 

forming teams whose goal was to converge (the utility function measures how close each entity is to the 

mean or equi-distribution).  The entities were scored as to their altruistic and selfish contributions and 

teams were scored as to their overall performance.  Figure 4 shows the evolution of average team scores 

for five teams of various player (algorithm) composition, with a maximum/ideal score of 20 and the aver-

age taken over 200 sets of initial positions. 
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Figure 4: Teams scores reflecting average closeness to equi-distribution for five teams of 20 players each 

with various compositions of players using the S-1 and S-2 algorithms (as indicated in the margin). Each 

line represents the average of 200 runs for different sets of initial conditions, with each run consisting of 

140 iterations. 

 

 It is clear from Figure 4 that the S-2 algorithm performs better on a homogeneous team than the S-1 

algorithm, but it is less clear to what extent the individual players (algorithms) contribute to the overall 

team score on a heterogeneous team. The framework of subset team games (Arney/Peterson 2008) pro-

vides one way to compare the contributions of the different algorithms to the common team. Within this 

framework, a player’s overall contribution is determined by the difference between team score with and 

without that player. That contribution is further subdivided into a selfish contribution, indicating to what 

extent that player’s contribution helps itself, and an altruistic contribution, indicating to what extent that 

player’s contribution helps out the other players on the team. 

 On this individual level, the results indicate that the S-2 algorithms perform better than the S-1 algo-

rithms on heterogeneous teams, in both their selfish and altruistic contribution. Figure 5 shows a com-

parison of the altruistic and selfish scores of the S-1 and S-2 players on a common team, in this case a 

team of 20 entities with 10 S-1 and 10 S-2 players. The selfish contribution of S-2 is better on average, 

and the gap widens over time. The altruistic contribution of S-2 is also better on average, and increases 

over time. Similar differences in cooperation utility were also apparent in all other team compositions of 

players performing the S-1 and S-2 algorithms. 

 These results indicate that the S-2 algorithm, which weights individual movements based on differ-

ences in neighbor areas, improves the overall team score beyond what is expected from a single individu-

al gain. Even in the scenario where almost all players follow S-1, a few S-2 players can have a positive 

impact on their fellow S-1 players. 
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Figure 5: Selfish and altruistic scores for players operating with S-1 and S-2 algorithms on a team with 10 

S-1 players and 10 S-2 players. Each line represents the average of 200 runs for different sets of initial 

conditions, with each run consisting of 140 iterations. Despite some noise in the results, there is clear evi-

dence that the S-2 algorithm is more altruistic. 

5 APPLICATION 

One well-known application involving this problem is the positioning of satellites over the earth so they 

have equal area coverage.  Other applications involve geo-spatial allocations, air traffic control situations, 

parallel computing allocations, and various needs of mapping and geographical information systems.  We 

provide a sample of the power of the S-2 algorithm by showing the graphs in Figures 6 and 7 of equi-

distributing 10 and 25 satellites, respectively, over the coverage region of New York State.   

 

 The dynamic power of these algorithms enable positions to be autonomously adjusted as satellites 

shift or drift or are incapacitated or added to the region.  For example, programming the satellites with the 

S-2 algorithm would allow each satellite to alter their own coverage area in response to the change in the 

operability or coverage of a neighbor.  This could be done locally by the satellites and would not require 

an outside controller to recalculate the necessary coverage and then program each satellites to move to a 

new designated location to ensure equal area coverage.   
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Figure 6:  Result of the S-2 algorithm distributing 10 satellites over New York State. 

 

 
 

Figure 7:  Result of the S-2 algorithm distributing 25 satellites over New York State. 
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6 CONCLUSION 

The simulation results clearly indicate that local algorithms are sufficient to achieve a global balance in 

areas assigned to individual entities, and in the case of the weighted-area algorithm (S-2), the conver-

gence of these local solutions can be surprisingly quick.  It is even more surprising that algorithms that do 

not directly use information about area also show good performance, although they do not converge. 

 The results obtained here using the Equi-Distribution Platform inform our understanding of how me-

trics for a basic cooperation algorithm can be used to understand the power of cooperation. Underlying 

the simulation is a geometry network comprised of individual entities and their neighboring entities, and 

we have demonstrated that this kind of geometric system can solve global problems using only local in-

formation. 

 We also seek to understand this system as a cooperative geometric network.   The main idea behind 

this development is that better networks with increased performance metrics will reduce communications 

load and increase efficiency.  Our results indicate that certain algorithms perform better in heterogeneous 

teams, both from a selfish perspective and from an altruistic perspective.  This quantitative analysis of the 

cooperative nature of algorithms could prove valuable in assessing situations where certain algorithms are 

expensive but perform better than others. 

 The Army has many networks and organizations that operate primarily on the basis of cooperation. 

The Army’s culture is based on highly technical, cooperative teams.  Many of the new emerging technol-

ogies of net-centric warfare involve using cooperation in the form of hybrid systems – specialized teams 

of people, machines, computers, and robots (Alberts, Garstka, and Stein 1999).  At the next layer of detail 

the major elements of cooperation are the mix of trust and autonomy of the agents (i.e., lack of strict con-

trol). The American Army is known for its trust and autonomy and this culture will continue in our future 

doctrine; and therefore, understanding, designing for and using cooperation are critical elements in meet-

ing the goals of the future highly networked Army. This fundamental research in the basic mathematical 

principles of cooperation can contribute greatly to that effort and these important Army goals. 
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