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ABSTRACT

Recent years have seen an upsurge in piracy, particularly off the Horn of Africa. Piracy differs from other asymmetric
threats, such as terrorism, in that it is economically motivated. Pirates operating off East Africa have threatened
maritime safety and cost commercial shipping billions of dollars paid in ransom. Piracy in this region is conducted
from small boats which can only survive for a few days away from their base of operations, have limited survival in
severe weather, and cannot perform boarding operations in high wind or sea state conditions. In this study we use
agent models and statistical design of experiments to gain insight into how meteorological and oceanographic forecasts
can used to dynamically predict relative risks for commercial shipping.

1 BACKGROUND

Due to the increase in pirate activity off the coast of Somalia (Murphy 2009), the United States military and the combined
forces of the worlds navies are partnering together to defeat these violent extremists. Piracy has threatened maritime
safety and cost commercial shipping billions of dollars paid in ransom monies. The Gulf of Aden and the Horn of
Africa were once safe to transit, but are no longer so. For this reason, President Obama has issued an executive order
to defeat terrorism in the form of piracy. The Commander of the U.S. Naval Forces Central Command (CENTCOM),
U.S. Fifth Fleet, Combined Maritime Forces (CMF), is responsible for the safety, stability, peace, and vital interests
of the United States for 2.5 million square miles of water. In this paper, we focus on the Somali geographical region
where pirate attacks have been most concentrated. Combined Task Force 151 (CTF 151) is a multi-national task force
that is responsible for 1.1 million square miles of water in the Gulf of Aden and off the coast of Somalia.

Pirates in this area generally operate from small boats (skiffs) that have limited survivability at sea in severe weather
conditions. We will refer to these as METOC (Meteorology and Oceanography) conditions. High sea state and/or
wind speeds make it difficult or nearly impossible for pirates to attempt to board commercial vessels. Our analysis is
intended to provide insight into what factors are most influential in contributing to and limiting pirate behavior.

In response to the piracy problem, the U.S. Naval Oceanographic Office (NAVOCEANO) at Stennis Space Center
has been providing a forecasting product called the Piracy Performance Surface (PPS). The PPS uses forecasts of winds
and seas to map the locations that are most conducive to pirate activity, and incorporates information on confirmed
pirate activity in the form of an attack, an attempted attack, or suspicious activity. The existing product was developed
rapidly to provide support to the operators. NAVOCEANO is working to improve the model of the relationship between
METOC and pirate activity, and to improve the way the pirate threat is updated when confirmed piracy activity is
observed.

The overarching research question is: How can the N2/N6 (Director for Information Dominance that comprises
information, intelligence, command, and control) contribute decision-critical information to the operators who are
protecting commercial shipping traffic?

978-1-4244-9864-2/10/$26.00 ©2010 IEEE 1330



Esher, Hall, Hansen, Regnier, Sanchez and Singham

By September 2010, a new simulation-based engine will be implemented to produce the PPSNext. The simulation
is based on a model of pirate behavior (hereafter, CONOPS, Concept of Operations), combined with forecasts for
METOC conditions and intelligence on certain parameters of pirate behavior, such as whether they operate from land
or sea bases (mother ships) and the number and locations of those bases.

Our goal in this preliminary study is to provide insight on which factors describing pirate CONOPS are the most
important drivers of the map reflecting relative pirate threat and which have the strongest interaction with METOC
variables. These results would indicate which parameters in pirate CONOPS are most important to include in the model
and should receive most intelligence resources.

2 SIMULATING PIRATES AND ENVIRONMENT

In the model of pirate CONOPS, the basic pirate strategy is to depart from a base—either a land-based camp or a
sea-based mother ship—typically in a Boston Whaler that has longer longevity and life expectancy at sea, with a
handful of pirates and a few days supplies. The skiff motors to its pre-determined location (latitude and longitude). As
illustrated in Figure 1, the skiff then drifts with the winds and currents until the pirates run out of supplies, at which
point the skiff motors back to its land or sea base.

Winds, waves, and currents affect the pirates. In their drift phase, their motion is determined by currents and winds.
In addition, one of the factors whose impact we are evaluating is whether pirates use weather forecast knowledge to
plan and implement an attack. In the current implementation, if the pirates have forecast knowledge it is assumed that
their information is perfect. If they have forecast knowledge they do not go to locations with unacceptable weather, as
determined by wind and wave thresholds. If they do not have forecast knowledge and encounter unacceptable weather,
they return to their base location.
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Figure 1: Example of a pirate skiff trajectory.

In the PPSNext operational implementation, the METOC conditions will be the result of a coupled atmospheric-
oceanic model. In the prototype model used for this preliminary analysis, notional winds, seas, and currents(shown in
Figure 2) change over the course of the 72-hour simulation, but otherwise do not vary as a function of simulation trial.
The pirates operate in a 20x30-cell grid, with each cell 10 km on a side.

3 OUTPUT STATISTICS
3.1 Considerations

Perhaps the biggest challenge is how to summarize the simulations output. Although there is a limited database of
historical pirate attacks, it has not been possible so far to recreate the METOC conditions corresponding to the period
of known pirate activity against which to verify the model. Therefore, for these preliminary experiments there is no
ground truth against which to compare results. In addition, even if we consider only the relative density of pirate
activity across the simulated area and summarize pirate activity in 12-hour periods, each simulation produces a pirate
density in each of 600 cells at each of six time periods (See Figure 3). Each simulation must be summarized and
compared usefully with the results for other design points to identify the variables that are most influential and most
related with METOC conditions.
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Figure 2: Simulated wind and currents.
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Figure 3: Sample PPSNext simulation output.

As described in Section 4, we undertook an experiment with a single replication of 33 design points, yielding 33
simulation runs. Within each simulation, differences across the six time periods would reflect sensitivity to METOC
conditions (which changes over the course of the 72 simulated hours) and interactions with METOC conditions.
Comparing the six pirate density plots would result in 15 pairwise comparisons. This suggests that some means of
automating the process should be considered for larger future studies.

3.2 Potential Summary Statistics

We considered a variety of potential summary statistics for comparing two maps of pirate density (whether they were
from the same time period, and different design points, or the same design point, but different time periods). The
following measures were used as response-variables in our experiment:

e  The maximum root mean square cell-by-cell difference (RMSE) between each design point and all other design
points. RMSE especially penalizes large errors.

e The cell-wise maximum difference (MaxDiff) in pirate density between each design point and all other design
points.

e For each trial, the largest RMSE between a 12hr pirate density and the 72-hour averaged pirate density map
(this response variable is called ARMSE, and analogous measures are AMaxDiff and A50"" percentile).
The mean across time-periods of the area that bounds 50% of the pirate density (50 percentile).
Smoothed variations of each of the above, indicated by an S-prefix.

Other summary statistics that we considered, and which might be applicable in future work include:
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Cell-by-cell differences in mean relative entropy.
Location: minimum distance between two modes (or sum of minimum 2 or 3 distances).
Decision-related:
- How much of the total pirate density can be captured within n miles of m optimally deployed search
assets?
- How big would a circular covering disk have to be to capture 75% of the pirate density?
- Sum of differences over larger (coarse-grained) cells that might be defined according to the size of an
area searchable by Task Force 151 assets within a given time.
Other:
- Bivariate Fourier transform of the pirate density grid.
- Max eigenvector of the pirate density grid.

4 EXPERIMENTAL DESIGN

Because the current implementation of the simulation is in Matlab (Mathworks 2010) we expected each trial to take an
hour or two to run, so we knew we would be limited in the number of design points we could explore within the time
available for the initial study. To capture the effects of all variables and interactions among them, we used a Nearly
Orthogonal Latin Hypercube (NOLH) design (Cioppa and Lucas 2007), downloaded from the SEED Center (2010).
We restricted ourselves to an eleven factor experimental design with 33 design points. The factors and their maximum
and minimum values are shown in Table 1 below.

Table 1: Factors and factor ranges studied in the experimental design. Summary names for later reference are in square
brackets. Starred factors are used to calculate the number of land bases [Camps] and sea bases [Sea Bases].

Factor Minimum Maximum

simulated pirates per day 200 1200
mission length (hours) [Length] 72 120
number of pirate groups 3 7
total number of land and sea bases* 3 7
proportion of bases that are sea bases™ 0.25 0.5
known base locations (Yes/No) No Yes
transit speed (kts) [Speed] 8 12
pirates’ wind threshold (kts) [Wind] 10 20
pirates’ wave threshold (ft) [Wave] 3 10
probability that pirates use forecasts 0.0 1.0
wind drift [Drift] 0.1 0.75

5 RESULTS

For each response variable, we used JMP statistical software to fit a regression model to a set of 75 potential predictors,
i.e., the variables shown in Table 1, their squares, and all second-order (pairwise) interaction terms. JMP performed
stepwise regression, allowing variables to enter and leave the model based on their significance (p-value).

Table 2 shows the factors that were included in each model, as well as the adjusted R? for each model. Wave
threshold and wind threshold proved to be the most significant factors in the current Matlab implementation of the
PPSNext model, with at least one of these two variables appearing in the model for every response variable except
MaxDiff, which is the weakest of the response models. Also note that Wind and/or Wave are among the top two
influential factors in all cases other than the MaxDiff model.

The absence of some factors from this set of models is very interesting. For example, these results seem to indicate
that it is not important for intelligence to learn whether pirates can acquire and use METOC forecasts, nor would it
change the PPSNext if they acquired that capability.

The A-prefixed response variables measure differences within a single simulation (design point) over the 72-hour
simulated time period, rather than differences relative to the other design points. Therefore, the X-variables that are
most related to the A Y-variables can be interpreted as those that have the largest interaction with METOC conditions.
Both wind and wave thresholds appear in the model for every A response variable, indicating (not unexpectedly) that
wind and wave thresholds interact strongly with METOC conditions in determining the spatial distribution of pirate
activity. The wind drift factor and mission length do not appear in any of these models, however, indicating that they
do not interact strongly with METOC conditions.

Factors that might be estimated using intelligence also appear to drive the results, in particular mission length. The
interaction between mission length and wind threshold in two of the models is interesting. The number of sea bases
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Table 2: Summary of the regression models for each response variable, detailing the adjusted R? and the statistically
significant input factors ordered from most to least influential.

RMSE S-RMSE | MaxDiff ARMSE | S-ARMSE | AMaxDiff | S-AMaxDiff | 50"%-ile | S-50""%-ile
0.77 0.68 ‘ 0.38 ‘ 0.55 0.77 0.66 0.84 0.73 0.71
Length Speed
X Length X Wind Wave Wave Wave Length Length
Wind Drift
Wave Wave
X Wind Drift Wave Wind Wind X Wind Wind
Wave Wave
Camps
Wave Wave Speed X Sea Bases Camps Sea Bases Speed
Wave
Length Sea Bases
Drift X Camps X Wind Speed Sea Bases
Wind Wave
Camps Wave Camps Sea Bases
X X X X Wave
Drift Wave Wind Speed
Camps
Length

or camps—which are highly related, as the number of sea bases is a fraction of the total number of bases—appear in
many of the models, indicating that it would be valuable to have good estimates of the number of bases.

The results do not provide clear guidance as to which of the output measures are more useful. In addition, smoothing
does not have a consistent effect on the significance of the results. For some measures, the smoothed output model
achieves greater R? than the raw value and for some measures the opposite occurs. The smoothed MaxDiff did not
produce any factors that were significant at the o = 0.01 level, and therefore its model is not shown in Table 2.

6 FUTURE WORK

Near-term future work on this project, to be completed in the next year, includes running similar experiments using
the operational code. The improved model will include environmental and navigational conditions for specific, real
areas of operations (in particular the area off the HOA plus the Gulf of Aden). We will seek to confirm the qualitative
results of this preliminary study, and to identify which aspects of pirate CONOPS are most critical in interaction with
METOC conditions and METOC uncertainty.

Another major component of future work is the possibility of building an agent-based model that will be able
to represent other factors that we know to be important to the problem of detecting and protecting against the pirate
threat. In particular, we would like to add agents that represent commercial shipping, searchers, and neutral vessels.
We have begun researching modeling platforms for implementing an agent-based piracy model and the key features
that we would like to see included. Two possible candidates are Pythagoras (Northrup Grumman 2008) and MANA
(Lauren and Stephen 2002). One of the potential benefits of using either of these agent-based modeling platforms is
the ability to run a multitude of simulations quickly.

MANA and Pythagoras offer slightly different feature sets, which can be important for modeling a specific scenario.
For instance, Abel (2009) used MANA productively to model frigate defense effectiveness against pirate activity because
MANA enabled him to model quadrant dimensionality of the frigate in the form of port, starboard, fore, and aft. This
was essential for understanding weapons coverage in defending a frigate. However, our investigations indicate that
MANA does not currently have the model flexibility that we need to study METOC conditions.
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Pythagoras has the flexibility to model pirate behaviors such as seasickness, and to incorporate behaviors such
as deciding to return to base after running out of supplies such as food or water. On the negative side, Pythagoras
cannot model METOC as fluid dynamics since weather conditions change with each time step. METOC would be
static while the agents would be dynamic. Although this feature is not represented in the current pirate simulation,
it would be useful to model agents that lack perfect information about METOC conditions. This would be a more
realistic representation for using a forecast.
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