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ABSTRACT

We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary
stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information
about the process with no additional sampling effort. Reflected STS estimators are computed from “reflections” of
the original sample path. We show that it is possible to construct linear combinations of reflected estimators with
smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo
examples to show that the estimators perform as well in practice as advertised by the theory.

1 INTRODUCTION

A fundamental problem in simulation output analysis concerns the computation of point and confidence interval
(CI) estimators for the mean, �, of a stationary discrete-time stochastic process fXj W j D 1; 2; : : :g. The
point estimation of � is an “easy” problem when the underlying system starts in steady state; the sample mean
NXn � n�1

Pn
j D1 Xj based on the finite sample X1; : : : ; Xn is an unbiased estimator of � and is usually the estimator

of choice. In order to provide a measure of the sample mean’s precision, an estimate of Var. NXn/ also needs to be
calculated. If the Xj ’s are independent and identically distributed (i.i.d.) random variables, then the sample variance
S2

X.n/ � .n�1/�1
Pn

j D1.Xj � NXn/2 is an unbiased estimator of the population variance �2
X � EŒ.X1 ��/2�. In this

case, Var. NXn/ can be estimated by S2
X .n/=n. By the Central Limit Theorem, an asymptotically (as n ! 1) valid

100.1 � ˛/% CI for � is NXn ˙ z1�˛=2SX.n/=
p

n, where zˇ is the ˇ-quantile of the standard normal distribution.
Unfortunately, the Xj ’s are typically correlated in simulation problems. While NXn remains unbiased for �, S2

X .n/

can be severely biased for �2
X . In addition, if the autocovariance function Rj � Cov.X1; X1Cj /, for j D 0; 1; : : :,

is positive, it can be shown that EŒS2
X .n/=n� � Var. NXn/ (Law 2007). In this case, valid CIs for � can still be

obtained based on estimators of the quantities f�2
n � nVar. NXn/ W n D 1; 2; : : :g or their limit �2 � limn!1 �2

n ,
which is called the (asymptotic) variance parameter of the process.

One can find in the literature many techniques for estimating f�2
n W n D 1; 2; : : :g and �2, such as nonoverlapping

batch means (NBM) (Schmeiser 1982), overlapping batch means (OBM) (Meketon and Schmeiser 1984), and stan-
dardized time series (STS) area (Schruben 1983) and CramKer–von Mises (CvM) (Goldsman, Kang, and Seila 1999)
estimators. These techniques typically group observations into nonoverlapping or overlapping batches in order to
produce low-variance estimators for the variance parameter.

Several techniques employ forms of data re-use in an effort to estimate �2. For instance,
Foley and Goldsman (1999) consider orthonormal weight functions that yield a series of asymptotically i.i.d. STS
area estimators based on a single data set. More-recent re-use methods include that of Calvin and Nakayama (2006),
which averages multiple estimators based on permuted sample path segments, and that of Calvin (2007), which

1275978-1-4244-9864-2/10/$26.00 ©2010 IEEE



Meterelliyoz, Alexopoulos, and Goldsman

produces multiple estimators based on various iterated integrations of the sample path. Alexopoulos et al. (2010)
and Meterelliyoz et al. (2009) develop folded area and CvM estimators based on nonoverlapping and overlapping
batches. In addition, there is a substantial simulation literature on estimators incorporating jackknifing and/or
bootstrapping; see, e.g., Batur, Goldsman, and Kim (2009).

This article makes the following contributions to variance estimation for steady-state simulations. First, it
introduces a new class of variance parameter estimators employing data re-use, namely, estimators based on
reflections of the STS formed by the entire sample. A reflection operation on the original STS yields another STS;
both STSs converge (as the sample size goes to infinity) to Brownian bridges with a known cross-covariance structure.
The second contribution is the development of linear combinations of reflected estimators with substantially smaller
mean square error (MSE) than the constituent estimators.

The remainder of this article is organized as follows. Section 2 reviews background material, Section 3 defines
and studies various reflected estimators, and Section 4 provides conclusions.

2 BACKGROUND

In this section, we give some assumptions, definitions, and results that are needed in the rest of this article. We
start in §2.1 with a list of necessary assumptions and a review of some basic properties regarding the convergence
of stationary processes. We define the STS and some of the variance parameter estimators based on STS in §2.2.

2.1 Basics and Assumptions

We start with a Functional Central Limit Theorem (FCLT) that holds for several classes of stationary processes,
e.g., stationary strongly mixing processes, associated stationary processes, and regenerative processes; see, e.g.,
Glynn and Iglehart (1990).

Assumption FCLT Suppose that the series �2 �
P1

j D�1 Rj converges absolutely and �2 > 0. For each positive
integer n, let

Yn.t/ � bntc. NXbntc � �/

�
p

n
; for t 2 Œ0; 1�; (1)

where b�c is the greatest integer function and fXj g is stationary with mean �. Then

Yn.�/ D�!
n!1

W.�/;

where W.�/ is a standard Brownian motion process on [0,1], and
D�!

n!1
denotes weak convergence (as n ! 1)

in the Skorohod space DŒ0; 1� of real-valued functions on Œ0; 1� that are right-continuous with left-hand limits
(Billingsley 1968).

Assumptions A below refer to the output process and Assumptions F apply to weight functions used in STS
estimators.

Assumptions A

1. The process fXj W j � 1g satisfies Assumption FCLT.
2. The autocovariance function decays exponentially, i.e., jRj j D O.ıj /, j D 1; 2; : : :, for some ı 2 .0; 1/.

Assumptions F

1. The function f .�/ is normalized so that Var

� Z 1

0

f .t/B.t/ dt

�

D 1, where B.�/ is a standard Brownian

bridge process on Œ0; 1�.
2. f .t/ is twice continuously differentiable in Œ0; 1�.
3. f .t/ is symmetric about t D 1=2; that is, f .t/ D f .1 � t/ for t 2 Œ0; 1=2�.
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The Brownian bridge process is defined by B.t/ D tW.1/�W.t/, for t 2 Œ0; 1�. All finite-dimensional distributions
of B.�/ are normal with EŒB.t/� D 0 and Cov.B.s/;B.t// D min.s; t/ � st for 0 � s; t � 1. One can also show
B.�/ is independent of W.1/.

In the rest of this article, we let 
1 � 2
P1

`D1 `R`. We use the “big-oh” notation p.n/ D O.q.n// to mean that
there are positive constants c and k such that 0 � p.n/ � cq.n/ for all n � k, and we use the “little-oh” notation
p.n/ D o.q.n// to mean that lim

n!1
p.n/=q.n/ D 0. We also define the functions

F.t/ �
Z t

0

f .s/ ds and NF .t/ �
Z t

0

F.s/ ds;

for 0 � t � 1, and we let F � F.1/ and NF � NF .1/.

2.2 Standardized Time Series Area Estimators

In this section, we define the STS and review that STS area estimator for the variance parameter.
The STS based on the sample X1; : : : ; Xn is defined as

Tn.t/ � bntc. NXn � NXbntc/

�
p

n
; for t 2 Œ0; 1�: (2)

Under Assumptions A, it can be shown that (Schruben 1983)

�p
n. NXn � �/; �Tn.�/

� D�!
n!1

Œ�W.1/; �B.�/� :

This leads to the area estimator for the variance parameter.
Goldsman, Meketon, and Schruben (1990) introduced the weighted area estimator for �2, which is based on

the square of the weighted area under the STS (2) and its limiting functional. These are defined by

A.f I n/ �
�

1

n

n
X

j D1

f
�

j
n

�

�Tn

�

j
n

�

�2

and A.f / �
�Z 1

0

f .t/�B.t/ dt

�2

;

respectively. The weight function f .�/ is assumed to satisfy Assumptions F.
Under Assumptions A, the continuous mapping theorem (Billingsley 1968) implies that

R 1

0
f .t/�B.t/ dt �

�N.0; 1/ and A.f I n/
D�!

n!1
A.f / � �2�2

1, where N.0; 1/ denotes a standard normal random variable, and �2
�

denotes a chi-squared random variable with � degrees of freedom.
Under Assumptions A and F, Goldsman, Meketon, and Schruben (1990) show that the expected value of the

weighted area estimator is

EŒA.f; n/� D �2 � Œ.F � NF /2 C NF 2�
1

2n
C O.1=n2/: (3)

Further, if we assume that the sequence fA2.f I n/ W n D 1; 2; : : :g is uniformly integrable (Billingsley 1968), then

lim
n!1

VarŒA.f I n/� D VarŒA.f /� D 2�4:

Example 1. The most-basic area estimator from Schruben (1983) uses the constant weight function f0.t/ �
p

12,
t 2 Œ0; 1�. In this case, Equation (3) gives EŒA.f0I n/� D �2 � 3
1=n C O.1=n2/. We say that an estimator of �2

is first-order unbiased if it has bias of the form o.1=n/. Goldsman, Meketon, and Schruben (1990) showed that
the quadratic weight function f2.t/ �

p
840.3t2 � 3t C 1=2/, t 2 Œ0; 1�, results in a first-order unbiased estimator

A.f2I n/. G
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3 REFLECTED ESTIMATORS

3.1 Basic Results on Reflected Sample Paths

Assumptions A can be used to show that certain functionals of a stationary process converge in distribution to the
associated functionals of a Brownian motion process. In this section, we take advantage of the reflection principle
of Brownian motion to produce new estimators for �2.

Reflection Principle: If W.t/ is a Brownian motion on Œ0; 1�, then

Wc.t/ �
(

W.t/ if 0 � t < c

2W.c/ � W.t/ if c � t � 1

is also a Brownian motion process, where c 2 Œ0; 1� is any reflection point. Note that the processes W.�/ and Wc.�/
are correlated.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

original
reflected

Figure 1: Original and Reflected Brownian Motion Processes (c D 0:5)

Figure 1 shows an example of the original and reflected Brownian motion processes corresponding to the
reflection point c D 0:5. The reflection principle tells us that Brownian motion processes reflected after they hit
any point c 2 Œ0; 1� preserve the same distributional properties as the original Brownian motion. Hence, we can
use a sample path from a Brownian motion process to generate several other different sample paths from the same
process. This suggests that a single set of data from a simulation output process can be re-used to obtain alternative
sample data sets, where their respective sample functionals Yn.t/ still converge in distribution to the corresponding
Brownian motion processes. Not surprisingly, the new sample paths generated through reflection are generally
correlated — and this correlation is taken into account in the subsequent analysis.

We will henceforth assume that the mean � for this process is zero. For processes with � ¤ 0, we can consider
(without loss of generality) the difference of two independent realizations, so that the mean and the variance of the
sample mean of the difference are zero and approximately 2�2=n, respectively. Hence the assumption of � D 0 is
legitimate. In any case, define

Xc;j �
(

Xj if 1 � j � bcnc
�Xj if bcnc C 1 � j � n

for j D 1; : : : ; n. Let Sc;k �
Pk

j D1 Xc;j for k D 1; 2; : : :. One has

Sc;bntc �
(

Sbntc if 0 � t < c

2Sbncc � Sbntc if c � t � 1:
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Further define Xc;n.t/ � Sc;bntc=.�
p

n/, and note that, by Equation (1) with � D 0,

Xc;n.t/ D
( Sbntc

�
p

n
if 0 � t < c

2Sbncc

�
p

n
� Sbntc

�
p

n
if c � t � 1

D�!
n!1

(

W.t/ if 0 � t < c

2W.c/ � W.t/ if c � t � 1
D Wc.t/:

Thus, we have shown that the process Xc;n.�/ obtained from the reflected data fXc;j W j D 1; : : : ; ng converges to
the limiting Brownian motion that results from a reflection at point bcnc of the original process fXj W j D 1; : : : ; ng.

In §2, we reviewed estimators based on the STS Tn.�/ and showed that their limiting functionals are based on
functionals of Brownian bridge processes. For t 2 Œ0; 1�, the reflected STS with reflection point c is

Tc;n.t/ � bntc. NXc;n � NXc;bntc/

�
p

n
D tSc;n

�
p

n
� Sc;bntc

�
p

n
� .nt � bntc/ NXc;n

�
p

n
; (4)

where NXc;n � 1
n

Pn
j D1 Xc;j . Analogously to a standard Brownian bridge B.t/, the reflected Brownian bridge

process with reflection point c can be expressed as

Bc.t/ � tWc.1/ � Wc.t/ D
(

t Œ2W.c/ � W.1/� � W.t/ if 0 � t < c

W.t/ C 2.t � 1/W.c/ � tW.1/ if c � t � 1:

It is easy to show that Cov.Bc.s/;Bc.t// D min.s; t/ � st for 0 � s; t � 1, and hence Bc.t/ is indeed a Brownian

bridge process. Equation (4) and Assumptions A imply Tc;n.t/
D�!

n!1
Bc.t/ since

.nt � bntc/ NXc;n

�
p

n

P�! 0;

where
P�! denotes convergence in probability as n ! 1.

3.2 Reflected Area Estimators

We define the reflected area estimator Ac.f I n/ with reflection point c 2 Œ0; 1� and its limiting functional Ac.f / as

Ac.f I n/ �
�

1

n

n
X

j D1

f
�

j
n

�

�Tc;n. j
n

/

�2

and Ac.f / �
�Z 1

0

f .t/�Bc.t/ dt

�2

;

respectively, where f .�/ is a weight function satisfying Assumptions F. Under Assumptions A, it can be shown that

Ac.f I n/
D�!

n!1
Ac.f /. The following theorem gives the expected values of Ac.f I n/ for the weight functions f0.�/

and f2.�/. For notational convenience, we assume cn to be integer. The proof can be found in Meterelliyoz (2008).

Theorem 1. If c 2 Œ0; 1� and Assumptions A and F hold, then

EŒAc.f0; n/� D �2 � .24c2 � 24c C 3/

1

n
C O.1=n2/ (5)

and

EŒAc.f2I n/� D �2 � 420.4c6 � 12c5 C 13c4 � 6c3 C c2/

1

n
C O.1=n2/: (6)

Remark 1. Note that the first-order bias term in Equation (5) vanishes when c D 0:14645 and 0:85355. Similarly,
c D 0; 1=2; and 1 eliminates the first-order bias in Equation (6). In particular, reflection in the middle of the
sample yields a first-order unbiased estimator for the weight function f2.
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3.2.1 Linear Combinations of Reflected Area Estimators

We can obtain more-precise estimators in terms of variance if we find appropriate linear combinations of the original
and reflected estimators. This is also consistent with the principle of data re-use. To this end, we consider estimators of
the form

Pk
j D1 j̨Acj

.f I n/, where 0 � c1 � c2 � � � � � ck � 1 are the reflection points and we aim at minimizing

the variance of the limiting functional
Pk

j D1 j̨Acj
.f /. If ˛̨̨ � .˛1; ˛2; : : : ; ˛k/ and ccc � .c1; c2; : : : ; ck/, the

underlying optimization problem can be stated formally as

min
˛;c˛;c˛;c

Var

2

4

k
X

j D1

j̨Acj
.f /

3

5 (7)

subject to
k

X

j D1

j̨ D 1

0 � c1 � c2 � � � � � ck � 1

j̨ 2 IRI j D 1; : : : ; k:

While this linear combination has minimum asymptotic variance, it is also asymptotically unbiased.
Meterelliyoz (2008) provides the detailed solution of Problem (7), along with expressions for the optimal variance
for various weights f and values of k.

Example 2. For weight function f0, the optimal reflection points and weight combinations for two linearly combined
reflected area estimators are f0; 0:5g and f0:5; 0:5g, respectively. If we linearly combine three estimators, the optimal
values will be f0; 0:153; 0:847g and f0:33; 0:33; 0:33g, respectively.

If we solve the Problem (7) for weight function f2 with k D 2, the optimal reflection points and weight
combinations will be f0; 0:5g and f0:5; 0:5g, respectively. For k D 3, the solution is f0:208; 0:65; 0:86g and
f0:33; 0:33; 0:33g, respectively.

Example 3. Using the optimal reflection points and weight combinations from Example 2, we obtain the respective
expected values and variances of variance parameter estimators for a first-order autoregressive (AR(1)) process with
� D 0:9. An AR(1) process is a stationary (Gaussian) process that is defined by Xi D �Xi�1 C �i for i D 1; 2; : : :,
where 1 < � < 1, X0 � N.0; 1/, and the �i ’s are i.i.d. N.0; 1 � �2/ random variables that are independent of
X0. This process has covariance function Rk D �jkj, for k D 0; 1; 2; : : :, so that �2 D .1 C �/=.1 � �/ and

1 D 2�=.1 � �/2. In Table 1, theoretical and simulated results using n D 50000 observations are listed; all
theoretical values are derived in Meterelliyoz (2008). We see that the point estimates are very close to the theoretical
values, indicating that the estimators perform as advertised. In particular, we see that the asymptotic variance of the
area estimator for one long run (batch) of observations for the AR(1) process under study is 2�4 D 722. Further, the
combination of merely two reflected estimators induces a reduction in variance of about 50%, while the combination
of k D 3 estimators yields an additional reduction of about 10%.

4 CONCLUSIONS

This article studied estimators for the asymptotic variance parameter of a stationary stochastic process. The idea is
to form optimal linear combinations of estimators obtained from various reflections of the original (entire) sample
path. First of all, we considered the reflected version of a standardized time series area estimator based on an
arbitrary reflection point. The optimal reflection points and coefficients of the linearly combined area estimators
were obtained by solving (nonconvex) optimization problems. These linear combinations yielded estimators with
significantly smaller variances compared to those of the individual estimators. To complement the theoretical work,
we conducted Monte Carlo experiments, which confirmed our theoretical results. In future work, we will obtain
confidence intervals for �2 and � using the reflected estimators. We will also study analogous estimators based
on STS CramKer–von Mises estimators as well as estimators incorporating batching. In addition, we will combine
folding and reflection principles to obtain even-better estimators of the variance parameter.
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Table 1: Theoretical and Estimated Means and Variances of Linearly Combined Reflected Area Estimators for an
AR(1) Process with � D 0:9

Weight k Theoretical Mean Estimated Mean Theoretical Variance Estimated Variance

f0

1 18.95 19.00 722.00 724.20

2 19.00 18.98 361.00 362.77

3 18.98 18.98 294.15 293.60

f2

1 19.00 18.97 722.00 718.26

2 19.00 18.97 361.00 359.80

3 18.94 18.96 293.56 293.27
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