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ABSTRACT

Consider multi-dimensional root finding when the equations are available only implicitly via a Monte Carlo
simulation oracle that for any solution returns a vector of point estimates. We develop DARTS, a stochastic-
approximation algorithm that makes quasi-Newton moves to a new solution whenever the current sample size
is large compared to the estimated quality of the current solution and estimated sampling error. We show
that DARTS converges in a certain precise sense, and discuss reasons to expect substantial computational
efficiencies over traditional stochastic approximation variations.

1 INTRODUCTION

In this paper we revisit Stochastic Approximation (SA) for solving the Stochastic Root-Finding Problem
(SRFP) — that of identifying a solution x to the vector equation g(x) = 0 (g : IRq → IRq is a vector-valued
function) when a stochastic simulation capable of “generating” a consistent estimator of g is all that is available.
The reader might recognize SRFPs as the stochastic analogue of the problem of solving a nonlinear system
of equations — something that has been investigated in tremendous detail ever since Sir Isaac Newton, in
the mid-seventeenth century, first introduced a method to successively approximate the roots of polynomials.
SRFPs, by contrast, first gained attention in 1951 through a seminal paper by Robbins and Monro (1951)
introducing the now famous SA recursion. The relevance of SRFPs as a class of problems in their own
right is now fairly well-established. See, for example, (Pasupathy 2010, Pasupathy and Schmeiser 2009,
Pasupathy and Kim 2010) for elaborate accounts on the contexts in which SRFPs occur, specific motivating
examples, and their relation to simulation-optimization problems.

Our main aim in this paper is much less the introduction of yet another algorithm for solving SRFPs, than
using SRFPs as a context to set the stage for a novel sampling-based variant of SA. Our hope is that, much
like the original paper by Robbins and Monro (1951), this paper forms the first step toward using sampling-
based SA variants within simulation-optimization problems. As we elaborate in subsequent sections, our
motivation for improving SA is essentially the same as Broadie, Cicek, and Zeevi (2009a, 2009b) — to come
up with a simple SA recursion that does not rely on the user for tuning algorithmic parameters to ensure good
performance. While Broadie, Cicek, and Zeevi (2009a, 2009b) and numerous other authors before them have
attempted this through rules that dynamically tune algorithm parameters as SA recurses through the solution
space, our strategy is fundamentally different. As we shall see, the algorithm we propose attempts to dispense
with all parameters within SA through the judicious use of sampling.

1.1 Problem Statement

We now present a formal problem statement for SRFPs.
Given: A simulation that generates, for any x ∈ D ⊂ IRq, an estimator Gm(x) of the function g : D → IRq

such that Gm(x)
d→g(x) (“

d→” denotes convergence in distribution) as m → ∞, for all x ∈ D.
Find: A root x∗ ∈ D of g, i.e., find x∗ such that g(x∗) = γ , assuming one exists.
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As stated, the SRFP makes no assumptions about the nature of Gm(x) except that Gm(x)
d→g(x) as m → ∞,

where m is the “sample size,” i.e., some measure of simulation effort that is usually well-defined depending
on the context. In the context of terminating simulations (Law 2007, pp. 490,491), m usually refers to the
number of times the simulation is called in computing the estimator Gm(x). In non-terminating simulations,
m usually refers to the “length of time” the simulation is executed when computing the estimator Gm(x). That

Gm(x)
d→g(x) as m → ∞ is a standing assumption. For the purposes of this paper, the feasible set D is assumed

to be known, i.e., any constraint functions involved in the specification of D are observed without error.

1.2 Notation and Terminology

The following is a list of key notation and definitions adopted in the paper: (i) π∗ and x∗ denote the set of true
solutions to the SRFP and a solution in the set π∗, respectively; (ii) If x = (x1, . . . ,xq) is a q×1 vector, then

the L2 norm of x is defined by ‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
q; (iii) The sequence of random vectors {Xk} is said

to converge to a random vector X almost surely, written as Xk → X wp1, if Pr{limk→∞ Xk = X} = 1; (iv) The
sequence of random vectors {Xk} is said to converge to a random vector X in probability, written as Xk

p→X ,
if ∀ε > 0, limk→∞ Pr{‖Xk −X‖ > ε} = 0; (v) The sequence of random vectors {Xk} is said to converge to

a random vector X in distribution, written as Xk
d→X , if limk→∞ Pr{Xk ≤ t} = Pr{X ≤ t} for all continuity

points t of Pr{X ≤ t}; (vi) For a sequence of real numbers {ak}, we say ak = o(1) if limn→∞ ak = 0; and
ak = O(1) if {ak} is bounded, i.e., ∃c > 0 with |ak| < c,∀k; (vii) For a sequence of random variables {Xk},
we say Xk = Op(1), if {Xk} is stochastically bounded (or bounded in probability), if ∀ε > 0 ∃M > 0 such
that Pr{|Xk| > M} < ε,∀k; (viii) dist(x,A) = inf{‖x− y‖ : y ∈ A} denotes the Euclidean distance between a
point x ∈ IRq and a set A ⊂ IRq; (ix) The words “root” and “zero” of a function f : D ⊂ IRq → IRq are used
interchangeably to refer to x ∈ D satisfying f (x) = 0; (x) The indicator function IA(x) = 1 if x ∈ A and 0
otherwise; (xi) The region BA(ε) = {x : dist(x,A) ≤ ε}.

2 STOCHASTIC APPROXIMATION

We now provide a very broad overview of SA algorithms. SA has a long history and a tremendous amount
has been written (see, for example, Kushner and Clark (1978), Kushner and Yin (2003)) on the subject over
the last four decades. What we present here is thus by no means a comprehensive account. Instead, we focus
on just the basics of SA with a view toward easier exposition of DARTS in the subsequent section.

Classical Stochastic Approximation (CSA) is the original stochastic root-finding algorithm developed by
Robbins and Monro (1951). Much of the literature on solving SRFPs is based on CSA. The algorithm as was
originally proposed has the simple iterative structure

Xk+1 = Xk −ak(Y k − γ),k = 0,1, . . . , (1)

where X0 is the initial guess, Y k = ∑m
i=1Yi(Xk)/m, {Y1(x), . . . ,Ym(x)} is a random sample from the distribution

of Y (x), and {ak}∞
k=0 is a predetermined sequence of positive constants satisfying ∑∞

i=0 ak = ∞ and ∑∞
i=0 a2

k < ∞.
Owing to its simple structure, CSA converges in mean square under fairly general conditions.

The last four decades have seen an enormous number of variations on the basic iteration in (1). Most of
these variations have focused on ways to accelerate convergence of the original iteration through better step-size
and/or direction choices within the SA iteration. For example, a notable variant of CSA is the Accelerated
Stochastic Approximation (ASA) algorithm proposed by Kesten (1958) where an adaptive random step-size
that decreases only when the previous two iterates have “bracketed” the target value γ is introduced. ASA
is a slightly improved version of CSA but still suffers from the existence of a predetermined sequence of
parameters {ak}, and the non-utilization of slope information. Following Kesten’s work in 1958, various
other authors (e.g., Fabian (1968), Venter (1967), Wasan (1969)) have either extended CSA, or expounded
on the specific properties of the CSA iterates. More recently, Andradóttir has proposed the Scaled Stochastic
Approximation (Andradóttir 1996) and the Projected Stochastic Approximation (Andradóttir 1991) algorithms
as modifications to CSA. Scaled Stochastic Approximation, for example, uses the iteration

Xk+1 = Xk −ak

(

Y
(1)
k − γ

max{ε, |Y (2)
k − γ|}

+
Y

(2)
k − γ

max{ε, |Y (1)
k − γ|}

)

,k = 0,1, . . . ,
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where ε is a predetermined constant, and given Xk, Y
(1)
k and Y

(2)
k are two independent estimators of g(Xk) at

a specified sample size. These two algorithms, like most other earlier modifications to CSA focus either on
relaxing convergence conditions or on randomizing the step-size sequence while achieving optimal asymptotic
efficiency. All these variants of CSA have a simple structure, extend naturally to multiple dimensions, and
usually require user-tuning of parameters.

Arguably the most popular current method for solving SRFPs is Spall’s Simultaneous Perturbation
Stochastic Approximation (SPSA) method. The first-order and second-order versions of this method are
discussed in (Spall 2000, Spall 2003). The second-order method, called Adaptive Simultaneous Perturbation
(ASP), is the true stochastic analogue of the modified Newton’s method for finding the zeros of a deterministic
non-linear function. The iteration for ASP is usually expressed as

Xn+1 = ΠD(Xk −akU(Xk)
−1Gm(Xk)), (2)

where ΠD [x] is the point in the set D that is closest to x, and U(Xk) is the Jacobian estimate of the
function g at the point Xk estimated by sampling at most one or two extra points in the vicinity of Xk.
One of the important contributions of ASP is the efficient incorporation of gradient estimates for direc-
tion finding into the SA recursion. Spall (2000, 2003) shows that even with such parsimonious Jacobian
estimation, there is no loss in asymptotic efficiency. There have been numerous important papers focus-
ing on techniques to accelerate convergence of the iteration in (2). Three notable examples are the idea of
averaging iterates (Polyak and Juditsky 1992), the idea of having multiple time scales within the basic SA iter-
ation (Bhatnagar and Borkar 1997, Bhatnagar and Borkar 1998, Bhatnagar, Fu, and Marcus 2001), and most
recently the idea of scaling and shifting for dynamic tuning of parameters within Stochastic Approximation
(SA) (Broadie, Cicek, and Zeevi 2009a, Broadie, Cicek, and Zeevi 2009b).

3 DARTS - AN ADAPTIVE SAMPLING VARIATION OF SA FOR ROOT FINDING

Despite the tremendous amount of work on SA variations over the last four decades, the crucial question of
automatically choosing the parameters {ak} in SA algorithms has remained somewhat elusive. For instance,
Spall mentions in (Spall 2003, pp. 197) that while ASP performs well when the initial solution is “sufficiently
close” to the true root, the iteration generally requires careful choice of parameters for efficient performance.
Similar sentiments have been expressed in (Yakowitz, L’Ecuyer, and Vazquez-Abad 2000), and demonstrated
with plenty of evidence in (Pasupathy and Schmeiser 2009, Pasupathy and Kim 2010).

The main issue within virtually all SA variations is that the sequence {ak} is never chosen “just
right” for a given problem. The parameters are either “too small” resulting in SA “stalling,” or they
are chosen “too big” resulting in SA exhibiting “wild fluctuations.” See (Broadie, Cicek, and Zeevi 2009b,
Broadie, Cicek, and Zeevi 2009a) for a more elaborate description. Such unsatisfactory finite-time behavior
is in spite of assurances of optimal performance in the asymptotic sense. This is somewhat unsurprising
because optimal asymptotic performance only stipulates that the sequence {ak} be chosen to satisfy certain
asymptotic properties, thereby leaving an infinite number of possible choices for the user. DARTS (Dynamic
Adaptive Random Target Shooting), the stochastic root-finding algorithm that we propose in this paper, adopts
a fundamentally different strategy to circumvent this issue of choosing parameters within SA variations. In
broad terms, DARTS is an SA variation where the sequence {ak} is almost fully dispensed with, through a
judicious use of sampling as the algorithm evolves through the search space.

For exposition, let us indulge in a “thought experiment” where the estimator Gm(·) provided as part of
the problem has zero variance, i.e., each call to the simulation at a candidate solution x returns the exact
value of the function g(x). If this information is available ahead of time, a user will simply set m = 1, i.e.,
call the simulation exactly once on each visit to a candidate solution x ∈ D . More importantly, the user
will dispense with the parameter sequence {ak} introduced within the SA variation. The resulting recursion
will coincide with one of the numerous available Newton-based recursions (Ortega and Rheinboldt 1970,
Kelly 2006, Kelly 1995) that are available for solving deterministic root-finding problems.

This last observation tells us that the role of the parameter sequence {ak} in SA is purely to protect
the SA recursion from ill-effects of the randomness inherent in the simulation estimator Gm(·). Specifically,
due to the variance inherent to the estimator Gm(·), the recursion only has a rough sense of the quality of
an incumbent solution. In fact, even if the recursion accidentally had a correct zero x∗ ∈ π∗ of the function
g(x), it simply would not know this fact without doing an infinite amount of sampling. The luxury of having
an accurate measure of quality, e.g., ‖g(x)− γ‖, is thus lost in the stochastic context. This is precisely why
SA recursions have to introduce artificial constructs such as the parameter sequence {ak} to ensure that the
recursion takes shorter and shorter steps, i.e., converges, in the limit. (Of course, due to the possibility of
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converging “too quickly” to the wrong zero, not every sequence {ak} that converges to zero will be fit for the
purpose.) Such artificial constructs are not needed in the deterministic context because the known quantity
‖g(x)−γ‖ provides an indication, after appropriate scaling, as to whether the recursion should be taking large
or small steps.

DARTS aims to dispense with the parameter sequence {ak} in the SA iteration through a simple but
judicious sampling sampling framework. The main idea is to augment the basic Newton search inherent in SA
iterations with differential sampling that is commensurate with the inferred quality of an incumbent solution.
Specifically, and as we will explain in further detail, the expected sample size used at an incumbent solution
x increases in inverse proportion to ‖g(x)− γ‖. (We note that all of the SA variations discussed in Section
2 explicitly or implicitly assume that a fixed sample size m is used to construct the estimator Gm as the SA
algorithm evolves through the search space.) We argue that the sampling scheme incorporated within DARTS
is an intuitive and automatically-implemented efficiency mechanism, that facilitates rapid convergence to a
zero of the function g.

3.1 Algorithm Listing

We now provide a formal listing of the algorithm DARTS. For convenience, the algorithm listing is presented
assuming that the estimator Gm is a sample mean. This restrictions is purely for expository purposes, and is
easily relaxed.

Algorithm DARTS:

Given: target γ; a simulation that returns Gm(x) = ∑m
i=1Yi(x) for given x ∈ D and given sample size m.

Find: a root x∗ ∈ D satisfying g(x∗) = γ .
Algorithmic Parameters: initial guess X0; a positive constant c satisfying 0 < c < 1.

0. Set k = 0.
1. Simulate at Xk with sample size

M(Xk) = inf{m : ‖Gm(x)− γ‖ > cσ̂m(x)/
√

m},

where σ̂m(x) =
√

(m−1)−1 ∑m
i=1(Yi(x)−Gm(x))T (Yi(x)−Gm(x)), and Yi, i = 1,2, . . . ,m are column

vectors.
2. Set

Xk+1 = ΠD(Xk −U(Xk)
−1GM(Xk)(Xk)),

where U(Xk) is an appropriately chosen Jacobian estimator of g(Xk).
3. Set k = k +1 and go to Step 1.

Let us first note that the search step in DARTS (Step 2) does not have the usual sequence of parameters
{ak} found in SA variations. Next, as can be seen from the algorithm listing, DARTS does nothing different
from modern SA iterations in terms of the search procedure — the search step consists of a Newton step
followed by a projection, if necessary. The key deviation arises in Step 1 where the sample size M(Xk) to
be used at the incumbent solution Xk is determined dynamically. DARTS continues to sample at Xk until
the estimated deviation from the target ‖Gmk(Xk)− γ‖ exceeds a small fraction of an appropriate summary
measure of sampling variability. The justification for the sampling strategy in Step 2 is based on the idea that
the iteration should not progress until DARTS is reasonably certain that the deviation of Gmk(Xk) from the
target γ is much less due to the sampling variability of Gmk(Xk) than due to the bias of Gmk(Xk) with respect
γ .

Why should we expect DARTS to converge in any sense? As we shall see, the sampling framework
within DARTS is designed to make the iterates spend most of their time around a zero. This is because, in the
proximity of a zero, ‖g(Xk)− γ‖ tends to be small by definition, and sampling continues in Step 2 while the
sampling variability in Gm(Xk) exceeds ‖Gm(Xk)− γ‖. By the same reasoning, DARTS spends little time far
away from the set of zeros where the standard for a move is much less stringent due to the large magnitude of
‖g(Xk)− γ‖. In fact, our numerical experience demonstrates exactly that — the iterates in DARTS spend an
inordinate amount of time around a zero, interspersed with brief forays far away from the set of zeros. The
forays are a clear result of randomness that is inherent in the estimator Gm, and are decidedly brief because
the sampling scheme dictates that the sample size should be small when the inferred solution quality is poor.
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(As we demonstrate in Section 3.2, the sampling rate at solution x in Step 2 of DARTS should increase fast
enough with distance ‖g(x)− γ‖ in order to guarantee convergence.)

The simple sampling strategy in Step 2 also seems to naturally promote efficiency. Unlike in traditional
SA variations, where the operative sample size does not vary across incumbent solutions, sampling within
DARTS is performed selectively and (only) to the extent of reliably identifying a better incumbent solution
through the search step. Accordingly, sample sizes tend to be low at locations far away from a zero, since
identifying better candidates is relatively easy; locations close to a zero, by similar reasoning, are usually
associated with a high sample size. The latter point implies that the trajectory of DARTS, in the vicinity of a
zero, in general looks very similar to the (hypothetical) trajectory of a deterministic Newton recursion when
executed on the function g(x).

3.2 Algorithm Analysis

In this section, we provide a brief analysis of the asymptotic behavior of DARTS. Specifically, we demonstrate
under mild conditions that the iterates {Xk} in DARTS converge to the set of zeros in probability, as the total
amount of expended effort tends to infinity. All results are stated without proofs, and we have no corresponding
rate results on {Xk} at the moment.

Recall that Xk is the incumbent solution at the end of k iterations obtained after expending an amount
of effort ∑k

i=1 M(Xi), where M(Xi) is the sample-size at iterate Xi. We now note that the double-sequence
{Xk,M(Xk)} is not a semi-Markov process (Çinlar 1975, Ross 1995). This is because, depending on the
Jacobian estimate used within DARTS, {Xk,M(Xk)} most probably satisfies

Pr{Xk+1 ∈ A ,Mk+1 ≤ m|X0,X1, . . . ,Xk;M0,M1, . . . ,Mk} = Pr{Xk+1 ∈ A ,Mk+1 ≤ m|Xk;Mk};

and never

Pr{Xk+1 ∈ A ,Mk+1 ≤ m|X0,X1, . . . ,Xk;M0,M1, . . . ,Mk} = Pr{Xk+1 ∈ A ,Mk+1 ≤ m|Xk}

for measurable sets A and m ∈ (0,∞). In other words, while the distribution of (Xk+1,M(Xk+1)) (conditional
on the entire history) most probably depends only on the most recent state (Xk,Mk), it depends on both the
iterate Xk and on how much sampling was done at the iterate Xk. This disqualifies {Xk,Mk} from being a
semi-Markov process, thereby making some of our analysis a little more nuanced.

Before proceeding further, we assume without proof that there exists a well-defined random variable

X such that Xk
d→X and that Pr{X ∈ π∗} = µ(π∗) > δ for some δ > 0. That the sequence {Xk} achieves

such steady state is fairly straightforward to show. Under mild conditions, most notably on the nature of the
estimator Gm, the Jacobian estimator used within the search step of DARTS, and the underlying function g, the
method of proof closely follows that established within (Meyn and Tweedie 2009, Chapter 10) for showing
the existence of a steady state distribution for a discrete time Markov chain on a continuous state space.

We are now ready to describe key properties of the sequence of sample sizes {Mk} used within DARTS.

Proposition 1. Let Gm(x) = m−1 ∑Yi(x) and σ̂m(x) =
√

(m−1)−1 ∑m
i=1(Yi(x)−Gm(x))T (Yi(x)−Gm(x)),

where Yi(x), i = 1,2, . . . are iid random (column) vectors having a finite variance matrix. Denote

M(x) = inf{m : ‖Gm(x)− γ‖ > cσ̂m(x)/
√

m}, (3)

where c is some positive constant. Then the following hold.

(i) E[supx/∈Bπ∗ (ε)M(x)] < ∞.
(ii) M(x) is Op(‖g(x)− γ‖−2), M(x) is not op(‖g(x)− γ‖−2), and E[M(x)] = O(‖g(x)− γ‖−2) as

dist(x,π∗) → 0.

The first assertion of Proposition 1 states that the expected sample size at any solution lying outside the region
Bπ∗(ε) is uniformly bounded. This is not surprising considering that the random variables Yi, i = 1,2, . . . ,m
making up the estimator Gm have finite variance. The proof of assertion (i) is very similar to the famous result
by Chow and Robbins (1965) for the context of sequential stopping when constructing fixed-width confidence
intervals. Assertion (ii) in Proposition 1 establishes the exact rate at which the sample size tends to infinity as
x tends to the set of zeros of g. This result is easily understood upon noting (loosely) that wp1, Gm(x) tends to
g(x) and σ̂2

m tends to the trace σ2(x) of the matrix Var(Y1) as m → ∞. From (3), this means that M(x) “looks
like” cσ2/‖g(x)− γ‖2 for large m. Such intuition is again based on arguments in (Chow and Robbins 1965).
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For ease of exposition of Proposition 2, let us introduce the random variable Zt related to the iterate Xk as

Zt = XJ(t), where J(t) = min{i :
i

∑
j=1

M(Xj) ≥ t}. (4)

In words, Zt is the incumbent solution in DARTS after expending an amount of sampling effort t. Proposition
2 is a statement on the asymptotic behavior of Zt .

Proposition 2. Let Gm(x) = m−1 ∑Yi(x) and σ̂m(x) =
√

(m−1)−1 ∑m
i=1(Yi(x)−Gm(x))T (Yi(x)−Gm(x)),

where Yi(x), i = 1,2, . . . are iid random (column) vectors having a finite variance matrix. Also, for x∗ ∈ π∗,
let g(x) = o(

√
x− x∗) as dist(x,π∗)→ 0. Then, denoting µk(·) as the probability measure associated with Xk,

for any ε > 0,

(i) limsupk→∞
∫

x∈D
I{Xk /∈ Bπ∗(ε)}M(x)µXk(dx) < ∞;

(ii) liminfk→∞
∫

x∈D
I{Xk ∈ Bπ∗(ε)}M(x)µXk(dx) = ∞;

(iii) limt→∞ Pr{Zt /∈ Bπ∗(ε)} = 0.

The condition g(x) = o(
√

‖x− x∗‖) as dist(x,π∗)→ 0 is a structural condition that stipulates a “minimum
decrease” on the function g around a zero. Assertion (i) of Proposition 2 states that the asymptotic expected effort
spent outside the region Bπ∗(ε) is finite. A proof follows somewhat simply from assertion (i) in Proposition
1. Likewise, assertion (ii) of Proposition 2 states that the asymptotic expected effort spent inside the region
Bπ∗(ε) is infinite. A proof for this assertion follows from the assumed nature of the limiting distribution of Xk
and assertion (ii) of Proposition 1. Specifically, we have assumed that the limiting distribution of Xk assigns
positive probability mass to the region Bπ∗(ε). Furthermore, we know from assertion (ii) of Proposition 1,
and the structural condition imposed on the function g, that the integrand in (ii) probabilistically increases to
infinity (as dist(x,π∗)→ 0) at a rate faster than the rate at which the function x−1 tends to infinity around x = 0.
These two facts together imply assertion (ii). Assertion (iii) of Proposition 2 is crucial from an algorithmic
standpoint. It implies that the incumbent solution converges to the set of solutions π∗ in probability. A proof
follows in a straightforward fashion from assertions (i) and (ii) .

Thus far, we have called Zt as the “incumbent solution,” i.e., the solution that would be returned to the
user if the algorithm was stopped after expending an amount of effort t. An alternative solution that seems
equally attractive for reporting to the user is the location X∗(t) where the largest sample size was observed
thus far, i.e.,

X∗(t) = XJ∗(t) where J∗(t) = argmax{M(Xj) : j ≤ J(t)} and J(t) = min{i :
i

∑
j=1

M(Xj) ≥ t}.

Proposition 3 asserts that such an incumbent solution converges in probability as well.

Proposition 3. Let the conditions of Propositions 1 and 2 hold. Then for any ε > 0,

lim
t→∞

Pr{X∗(t) /∈ Bπ∗(ε)} = 0.

We end this section by noting that the structural condition imposed on the function g in the vicinity of
its zeros (assumed in Proposition 2) can be relaxed if an additional parameter β ≥ 1 is introduced in the
expression for the sample size chosen at a solution x. Formally, instead of the definition in (3), if we define

M(x) = inf{m : ‖Gm(x)− γ‖β > cσ̂m(x)/
√

m},

then the required structural condition on g can be weakened to g(x) = o(‖x−x∗‖1/2β ) as dist(x,π∗)→ 0. This
has the effect of further increasing sampling in the vicinity of an incumbent solution whose quality is inferred
to be high. While this is elegant from a theoretical standpoint, the choice of the parameter β generally poses
practical problems.

4 CONCLUDING REMARKS AND ONGOING RESEARCH

The problem of automatically choosing parameters within SA algorithms has long proved elusive. This is
essentially because the conditions that stipulate optimal asymptotic performance of SA still leave a large
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number of potential parameter sequences for possible choice, all of which do not produce good finite-time
performance. DARTS is a new variation of SA that attempts to circumvent this problem by completely
dispensing with algorithm parameters through judicious sampling within the search space. The sampling
framework is such that the sampling effort spent at an incumbent solution is commensurate with the inferred
quality of the solution. This strategy plays the dual role of ensuring convergence and efficiency, while naturally
providing clues (through the sampling trail) into where the high quality solutions lie.

While DARTS has been presented for the context of SRFPs in this paper, we believe that the sampling
ideas inherent in DARTS apply more generally, particularly in simulation optimization problems. Our ongoing
research attempts to construct an analogous sampling-based SA algorithm for continuous local simulation-
optimization problems.
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Çinlar, E. 1975. Introduction to stochastic processes. New Jersey: Prentice-Hall.
Chow, Y. S., and H. E. Robbins. 1965. On the asymptotic theory of fixed-width confidence intervals for the

mean. Annals of Mathematical Statistics 36:457–462.
Fabian, V. 1968. On asymptotic normality in stochastic approximation. Annals of Mathematical Statis-

tics 39:1327–1332.
Kelly, C. T. 1995. Iterative methods for linear and nonlinear equations. Philadelphia, PA.: SIAM.
Kelly, C. T. 2006. Solving nonlinear equations with Newton’s method. Philadelphia, PA.: SIAM.
Kesten, H. 1958. Accelerated stochastic approximation. Annals of Mathematical Statistics 21:41–59.
Kushner, H., and D. Clark. 1978. Stochastic approximation methods for constrained and unconstrained systems.

New York, NY.: Springer-Verlag.
Kushner, H. J., and G. G. Yin. 2003. Stochastic approximation and recursive algorithms and applications.

New York, NY.: Springer-Verlag.
Law, A. M. 2007. Simulation modeling and analysis. New York, NY.: McGraw-Hill.
Meyn, S., and R. L. Tweedie. 2009. Markov chains and stochastic stability. Cambridge, UK: Cambridge

University Press.
Ortega, J. M., and W. C. Rheinboldt. 1970. Iterative solution of nonlinear equations in several variables. New

York, NY.: Academic Press.
Pasupathy, R. 2010. On choosing parameters in retrospective-approximation algorithms for stochastic root

finding and simulation optimization. To Appear in Operations Research.
Pasupathy, R., and S. Kim. 2010. The stochastic root-finding problem: overview, solutions, and open questions.

ACM Transactions on Modeling and Computer Simulation. Under revision.
Pasupathy, R., and B. W. Schmeiser. 2009. Retrospective-approximation algorithms for multidimensional

stochastic root-finding problems. ACM Transactions on Modeling and Computer Simulation 19 (2):
5:1–5:36.

Polyak, B. T., and A. B. Juditsky. 1992. Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization 30 (4): 838–855.

Robbins, H., and S. Monro. 1951. A stochastic approximation method. Annals of Mathematical Statistics 22:400–
407.

Ross, S. 1995. Stochastic processes. New York, NY.: Wiley.

1261



Pasupathy and Schmeiser

Spall, J. C. 2000. Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans-
actions on Automatic Control 45:1839–1853.

Spall, J. C. 2003. Introduction to stochastic search and optimization. Hoboken, NJ.: John Wiley & Sons, Inc.
Venter, H. J. 1967. An extension of the Robbins-Monro procedure. Annals of Mathematical Statistics 38:181–

190.
Wasan, M. T. 1969. Stochastic approximation. Cambridge, UK: Cambridge University Press.
Yakowitz, S., P. L’Ecuyer, and F. Vazquez-Abad. 2000. Global stochastic optimization with low-dispersion

point sets. Operations Research 48:939–950.

AUTHOR BIOGRAPHIES

RAGHU PASUPATHY is an assistant professor in the Industrial and Systems Engineering Department at
Virginia Tech. His research interests lie broadly in Monte Carlo methods with a specific focus on simulation op-
timization and stochastic root finding. He is a member of INFORMS, IIE, and ASA, and serves as an Associate
Editor for ACM TOMACS and INFORMS Journal on Computing. His e-mail address is 〈pasupath@vt.edu〉
and his web page is 〈https://filebox.vt.edu/users/pasupath/pasupath.htm〉.

BRUCE SCHMEISER is professor of Industrial Engineering at Purdue University. His research interests
center on developing methods for better simulation experiments. He is a member of INFORMS, is a Fellow
of IIE, and has been active within the Winter Simulation Conference for many years. His e-mail address is
〈bruce@purdue.edu〉 and his web page is 〈gilbreth.ecn.purdue.edu/∼bruce/〉.

1262


