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ABSTRACT

To efficiently compare Ranking and Selection procedures, we present a three-layer performance evaluation process. The
two most popular formulations, namely the Bayes and Indifference Zone formulations, have a common representation
analogous to convex risk measures used in quantitative risk management. We study decision makers’ acceptance sets
via an axiomatic approach and introduce a new performance measure using computational cost.

1 MOTIVATION

In ranking and selection (R&S), we use stochastic simulation to determine which of several simulated systems is the
best. This need arises, for example, if we have a simulation of a call center that we would like to use to choose among
several possible staffing policies. We would first decide how many samples of the customer waiting time to take using
each staffing policy, and would then use these samples to decide which system has the most desirable waiting time
distribution. The crucial decision in R&S is choosing how many samples to take from each system. If we make this
decision intelligently, we can find a good system more reliably and in less time than can be found using naive sampling
strategies.

An enormous number of R&S procedures have been introduced in the literature, and two opposing theoretical
frameworks have been introduced for evaluating the performance of these procedures. The first framework is the
Indifference Zone (IZ) framework, which considers the worst-case performance of an R&S policy over a specific set of
configurations. The second framework is the Bayesian framework, which considers average performance under a prior
probability distribution. Each framework has advantages and disadvantages. The IZ framework provides a statistical
guarantee on performance that provides peace of mind, but is often extremely conservative in the number of samples
that it requires an R&S procedure to take. The Bayesian framework, in contrast, results in R&S procedures that perform
well in many cases, but might perform badly in certain configurations. The two frameworks seem to be at odds with
each other, presenting radically different approaches to the R&S problem.

In this paper, we introduce a new and more general theoretical framework that includes both the IZ and Bayesian
formulations of the R&S problem, as well as a continuum of other frameworks that strike a balance between the
conservatism of IZ and the Bayesian emphasis on average-case performance. This allows choosing, in a cohesive way,
among the enormous number of available R&S procedures. Surprisingly, this theoretical framework is structurally
similar to that of convex risk measures studied in mathematical finance.

We begin by investigating how the performance of selection policies can be studied using a three layer performance
evaluation process. We then, inspired by convex risk measures, introduce a new performance measure based solely
on the number of simulation iterations required for the policy to become acceptable to a decision maker. A decision
maker determines what performance standards an R&S policy should satisfy, and the set of policies that meet these
standards then comprise her acceptance set. When performance can be controlled by the total number of simulation
iterations budgeted, the smallest simulation budget for which a policy’s performance falls within the acceptance set
defines a new performance measure for R&S policies.

The existing literature on R&S policies is extensive. R&S problems have been heavily studied in sequential sta-
tistical testing and experiment design, see Santner and Tamhane (1984) and Bechhofer, Santner, and Goldsman (1995)
for overviews. In simulation literature, selection procedures are popular tools for simulation optimization prob-
lems (Boesel, Nelson, and Kim 2003) and discrete-event simulation problems (Swisher, Jacobson, and Yücesan 2003).
Malone (2004) provides an overview for the Bernoulli R&S problem. For the normal R&S problem, there exist mainly
two research sreams: one is the IZ approach (Kim and Nelson 2006), the other uses Bayesian methods (Chick 2006).
This paper focuses on the underlying performance evaluation for selection procedures and uses similar methods as in
statistical decision theory, see Berger (1985) and DeGroot (1970). By far the most popular performance measure for
selection procedures is the probability of correct selection (PCS), resp. its counterpart the probability of incorrect selec-
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tion (PICS). Chick (1997), Chick and Inoue (2001) and Chen et al. (2008) also consider other performance measures.
Branke, Chick, and Schmidt (2007) provided a comparison of existing R&S policies for the normal R&S problem
based on an extensive set of examples. Our idea is that performance measures used in quantitative finance, namely
convex risk measures, could prove effective for comparison of selection procedures, see Föllmer and Schied (2004)
and McNeil, Frey, and Embrechts (2005) for an introduction to risk measures used in finance, and Rockafellar (2007)
for use of convex risk measures in optimization.

The outline of this paper is as follows. Section 2 introduces the R&S problem and outlines the three-layer performance
evaluation process. Section 3 shows the unified representation for existing performance measures analogous to convex
risk measures. Section 4 introduces acceptance sets and the new performance measure based on computational cost. In
Section 5 the new performance measure is used to evaluate three popular R&S policies for independent normal systems
with unknown means and variances. Section 6 presents conclusions and future research directions.

2 PERFORMANCE EVALUATION FOR RANKING AND SELECTION PROCEDURES

In this section, we introduce the R&S problem and necessary notation. We then outline the performance evaluation
process for R&S policies and show how the Bayes and the IZ formulation fit into a decision theoretic framework.

2.1 Mathematical Framework

We consider a setting with k independent systems. Each system i corresponds to a simulation experiment producing
iid random outcomes Yi. The distribution of these outcomes is described by a vector ψi, which is also called the
configuration of system i. From each configuration a corresponding performance parameter θi ∈ R may be computed.
In general, θi is unknown, and all or part of ψi is unknown as well. The performance parameters across all systems
are summarized in a vector (θ1, . . . ,θk) = θ ∈ Θ ⊂ R

k, where Θ denotes the corresponding parameter space, and the
underlying configurations are summarized (ψ1, . . . ,ψk) = ψ ∈ Ψ. We are interested in identifying the system with
the highest performance parameter θi, i.e., we want to select system i∗ where θi∗ = maxi∈{1,...,k} θi. For example, if
sampling distributions are normal, then we could take ψi = (µi,σ2

i ) to contain the mean and the variance of samples
from system i, and θi = µi to be the mean. Although θi is often taken to be the mean of the sampling distribution in
the R&S literature, our framework allows other choices as well. For example, in finance, one is often interested in a
portfolio composition with the highest Sharpe ratio, which can be estimated by θi = µi/σi. Because θ depends on ψ ,
we sometimes write θ(ψ) to emphasize this dependence. More often, however, we simply write θ when the context
is clear.

We denote by N the total number of measurements budgeted across all systems. For the moment, we assume that
the simulation budget N is given at the beginning of the experiment. In Section 4, we relax this assumption and use N
to control the performance of the policy. The goal of a selection procedure is to allocate these N measurements to the
k systems to best support the ultimate selection decision.

An R&S policy π consists of an allocation rule, which determines which systems to simulate, and a selection rule,
which determines which system to select based on the simulation results. We allow adaptive allocation rules. Formally,
for n = 1, . . . ,N, we define xn ∈ {1, . . . ,k} to be the system simulated at time n and yn(xn) ∈ R the corresponding
outcome. The decision xn depends upon the previously observed outcomes, i.e., xn(x1:n−1,y1:n−1), although we suppress
this in the notation. Define iπ ∈ {1, . . . ,k} to be the selection made once all N simulations have been carried out. This
decision is a function of all the observed outcomes y1:N , i.e., iπ(x1:N ,y1:N). A policy π can be written as π = (x1:N , iπ),
where we use the notation x1:n := (x1, . . . ,xn). Finally, let Π be the set of all possible policies π .

The essential question in R&S is this: which policy π should we use? The performance evaluation analysis in the
next section discusses the issues that arise in answering this question.

2.2 Three-Layer Performance Evaluation

When we use an R&S procedure, we hope that it selects the best alternative. Inevitably, however, it will sometimes fail
to do so. In this section, we discuss ways to measure the risk associated with this failure to select the best. Together,
there are three layers of analysis that determine this risk: the loss of the decision, the configuration-specific risk, and
the overall risk. In this section, we discuss and give examples of these layers of risk.

2.2.1 Loss of the Decision (Outcome-Specific Risk)

For a known θ , we can assign a quantity L(i,θ)∈R to decision i, which reflects the loss (cost) associated with choosing
system i given the true parameter θ . Examples of such loss functions L include:

1. L(i,θ) := {θi 6=θi∗}
. This is the 0-1 loss function, used throughout the R&S literature. It penalizes all incorrect

selections equally. The corresponding expected loss is the probability of incorrect selection (PICS).
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2. L(i,θ) := {θi≤(θi∗−δ )}, for δ > 0. This loss function only penalizes incorrect selection when the selected
alternative is more than δ worse than the best. This reflects the idea that we may be indifferent to differences
in performance of δ or less. This notion is similar to the IZ approach in R&S.

3. L(i,θ) := θi∗ −θi. This is the linear loss function used in Chick and Inoue (2001), and is also referred to as
regret. It is equal to the difference in performance between the best system and the selected system.

4. L(i,θ) := c−θi, where c ∈ R is a constant. This can be used when our loss depends not on the difference in
performance between the selected and the best, but between the selected and some known threshold. In some
cases, e.g., the Bayesian framework using expected loss, this induces the same preference order as the linear
loss function. In other cases, it does not.

5. L(i,θ) := f (θi∗ −θi), where f is a convex and increasing function on R. This generalizes linear loss, with the
function f modeling the risk aversion of the decision-maker. Possible choices for f include f (x) = {x≥0}xp

for some constant p ≥ 1 or f (x) = exp(x).

2.2.2 Configuration-Specific Risk

The loss L(i,θ) quantifies the risk associated with a single outcome of the selection decision iπ . However, this decision
iπ(x1:N ,y1:N) made by an R&S policy π depends on random simulation samples, and so L(iπ ,θ) is a random variable.
Thus, an additional source of risk is this randomness induced by stochastic simulation, given a single fixed configuration
ψ . We call this configuration-specific risk, and refer to it as R(π,ψ).

To quantify the configuration-specific risk, one possibility is to use the expected loss, R(π,ψ) = E[L(iπ ,θ(ψ))].
This is a reasonable measure when the policy is used repeatedly for R&S in a large number of similar situations, or by
a decision-maker with little aversion to risk. However, when selection errors are costly, or if a policy is only to be used
once or a small number of times (for example in medical trials), more conservative functionals of the loss distribution,
such as quantiles or expected loss above a given quantile, should be considered (Chick 1997). Generally, we write the
configuration-specific risk as

R(π,ψ) := r(L(iπ ,θ(ψ))), (1)

where r is a functional of the distribution of the random variable L(iπ ,θ(ψ)), given a fixed ψ .

2.2.3 Overall Risk

The configuration-specific risk R(π,ψ) defined in (1) is still dependent on the unknown underlying configuration ψ ∈ Ψ.
There is also risk associated with the fact that this configuration is unknown. A risk-averse decision-maker would
prefer a policy π that has moderately low R(π,ψ) across all possible configurations ψ . In contrast, a decision-maker
indifferent to risk might prefer a policy π with extremely low R(π,ψ) in most configurations, but high R(π,ψ) in a
certain few problematic configurations.

To quantify this risk, we use a functional ρ on the function ψ 7→ R(π,ψ). With a slight abuse of notation, we
write ρ(π) = ρ(R(π, ·)) ∈ R. This performance mapping ρ depends only on the policy π , and not on the configuration
ψ . It can then be used to compare different policies and induces a preference order on Π.

Depending on the risk tolerance of the decision-maker there are different ways to define ρ . Three popular choices
are:

1. Worst-Case Performance:

ρWC(π) := sup
ψ∈Ψ

R(π,ψ),

This performance measure prefers policies which perform well in the worst underlying configuration of the
experiment. This is the most conservative performance measure.

2. Indifference Zone:

ρIZ(π) := sup
ψ /∈IZ

R(π,ψ), (2)

This formulation is closely related to the worst-case performance measure. A set IZ ⊂ Ψ, the so-called
Indifference zone, is defined as a subset of the set of configurations. The IZ performance measure prefers
policies that perform well in the worst underlying configuration outside the Indifference zone. The intuition
behind this approach is that some configurations of the experiment have performance measures so close to
each other that it is not worth detecting the difference. This formulation is still quite conservative, but not as
restrictive as the worst-case analysis.

3. Bayes Risk: The Bayesian approach incorporates a prior distribution P0 on the configuration ψ ∈ Ψ. This
prior reflects a risk weighting on ψ and does not necessarily correspond to the prior belief regarding ψ or θ .
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In the Bayesian approach, ψ is considered to be a random vector so R(π,ψ) is a random variable. Different
functionals of the distribution of R(π,ψ) with respect to P0 can be used to quantify the performance of a
policy. The most popular approach is to use the expected value, i.e.,

ρBayes(π) := EP0 [R(π,ψ)].

In contrast to the worst-case and the indifference zone formulation, the Bayes formulation focuses on an
average performance rather than a conservative worst-case performance. When the risk weighting P0 is rather
diffuse, such an average case analysis might be too optimistic. One could introduce more risk aversion by
using a different loss function L, a more conservative risk weighting P0 or a different functional of R(π,ψ)
with respect to P0, e.g. quantiles or expected shortfall.

2.2.4 Decision-Theoretic Formulation for R&S Procedures

We briefly summarize the process needed to induce a preference order on the set of policies Π. To compare different
policies, three quantities must be defined:

1. The loss of a decision L(i,θ(ψ));
2. The configuration-specific risk R(π,ψ);
3. The overall risk ρ(π).

Figure 1 provides an overview of these three concepts and how they interact. There is no single best way to
define these quantities. Rather, they should be chosen carefully according to the decision-maker’s risk tolerance for the
particular problem instance addressed.

Figure 1: Quantities used to define a preference order on the set of policies.

3 REPRESENTATION THEOREM FOR PERFORMANCE MEASURES

In the previous section, we described the process that underlies the performance evaluation of selection procedures.
We now focus on the connections between the three popular performance measures defined in Section 2.2.3. These
performance measures have a common representation analogous to convex risk measures studied in finance. This
representation then suggests other performance measures in-between the measures given in Section 2.2.3 that may
potentially overcome the drawbacks of these popular performance measures.

We first define convex risk measures as they are used in finance.

Definition 1. A mapping ρ : L2 → R is called a convex risk measure if it satisfies the following conditions for all
X ,Y ∈ L2 (L2 denotes the space of random variables with finite variance).

1. Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ).
2. Cash Invariance: If m ∈ R, then ρ(X +m) = ρ(X)−m.
3. Convexity: ρ(λX +(1−λ )Y ) ≤ λρ(X)+(1−λ )ρ(Y ), for 0 ≤ λ ≤ 1.
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Here the restriction to the L2 space is sufficient but not necessary. At a first glance, this definition of convex risk
measures does not seem related to our problem setting. However, a strong connection can be identified through the
following representation property of convex risk measures.

Theorem 1. Denote by Q the set of all finitely additive probability measures on a measurable space (Ω,F ). Let
α : Q → R∪{∞} be a functional with infQ∈Q α(Q) ∈ R. Then the mapping

ρ(X) := sup
Q∈Q

(EQ[−X ]−α(Q)), (3)

defines a convex risk measure on L2.

With further technical assumptions the reverse direction also holds, i.e., every convex risk measure has a representation
of the form (3). See Föllmer and Schied (2004) for more details and a proof of Theorem 1. We now state a similar
representation theorem for the performance measures used for R&S procedures.

Theorem 2. The Worst-Case, Indifference zone and Bayes formulations for Ranking and Selection procedures defined
in Section 2.2.3 can each be represented as

ρ(π) = sup
Q∈Q

(EQ[R(π,ψ)]−α(Q)) , (4)

where Q is some appropriate set of probability measures on Ψ and its associated Borel sigma-field, and α : Q 7→R∪{∞}
is some penalty function.

Proof. The representation (4) is not unique. We show two ways in which the performance measures in Section 2.2.3
can be represented according to (4). In the first method, we take Q to be the set of all probability measures on Ψ
and adjust the penalty function α accordingly. An unconstrained optimization problem must be solved to determine
ρ(π). In the second method, which may be more intuitive, we restrict the set of probability measures Q considered.
This approach has the advantage that the penalty function α is equal to zero, but it requires solving a constrained
optimization problem.

We first show the theorem using the first method. Let Q be the set of all probablity measures on Ψ.

• If the penalty function α is

αWC(Q) =

{

0, if Q is a Dirac point measure for ψ ∈ Ψ,
+∞, otherwise,

then ρ is the Worst-Case performance measure, i.e., ρ(π) = ρWC(π).
• If the penalty function α is

αIZ(Q) =

{

0, if Q is a Dirac point measure for ψ ∈ Ψ\IZ,
+∞, otherwise,

then ρ is the IZ performance measure, i.e., ρ(π) = ρIZ(π).
• If the penalty function α is

αBayes(Q) =

{

0, if Q = P0;
+∞, otherwise,

then ρ is the Bayes performance measure, i.e., ρ(π) = ρBayes(π).

We now show the theorem using the second method. Let α ≡ 0. Then

• the set QWC = {all Dirac point measures for ψ ∈ Ψ} yields ρ(π) = ρWC(π);
• the set QIZ = {all Dirac point measures for ψ ∈ Ψ\IZ} yields ρ(π) = ρIZ(π);
• the set QBayes = {P0} yields ρ(π) = ρBayes(π).

Theorem 2 suggests that the class of convex risk measures is helpful in analyzing the performance of R&S policies.
For example, if a decision-maker is interested in analyzing the performance of a policy under Bayes and IZ formulations
she could consider ρ(π) with α ≡ 0 and Q = QIZ ∪QBayes. Another decision-maker might be interested only in the
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performance of a policy under the Bayes formulation, but be unsure about how robust the performance is with respect to
the risk weighting P0. She could then use QC = {P : P = (1− ε)P0 + εC,C ∈ C }, for 0 < ε < 1 and a class of possible
’contaminations’ C . Such a class of ’contaminated’ priors is studied in Bayesian robustness theory, see Berger (1985).
A third decision-maker might put emphasis on average performance, but also be somewhat concerned about worst-case
performance. He might take Q = QWC ∪QBayes, α(Q) = 0 for Q ∈ QBayes, and α(Q) equal to a large strictly positive
constant c for Q ∈ QWC. With this large value of the penalty function on QWC, the performance measure ρ(π) would
be equal to the Bayes performance unless the worst-case performance was extremely bad, when ρ(π) would equal the
worst-case performance minus c.

4 ACCEPTANCE SETS AND A NEW PERFORMANCE MEASURE

In the previous sections we described how, given a fixed simulation budget N, the performance of a policy π can be
evaluated via a performance measure ρ . Another important aspect of R&S is controlling performance. By relaxing the
assumption of a fixed simulation budget we can use the “necessary” number of simulation iterations as a performance
control of the policy. To do this, we must first define what it means for a policy to be acceptable. We then quantify
the performance of a policy as the smallest simulation budget necessary to make the policy acceptable.

We use the representation of ρ in Theorem 2 to define an acceptable policy. While the IZ and Bayes formulations
are special cases of (4), this representation can be used to define much more general performance measures. Each
probability measure Q ∈ Q corresponds to a scenario of the underlying experiment configuration Ψ and Q is the set
of all scenarios considered. Examples of Q are QWC,QIZ , QP0 and QC as defined in Section 3. For this paper we
assume that |Q|= m < ∞. The extension to infinitely many scenarios is mathematically more challenging and left open
for future research.

For a given loss function L, a risk function R(π,ψ), and a number of measurements N, the risk of a policy πN that
takes N measurements can be represented as a mapping fπN : Q → R,Q 7→ EQ[R(πN ,ψ)]. The set of all risks generated
by arbitrary combinations of L, R(π,ψ) and N corresponds to the functional space G = { f : Q → R}, which can be
identified with R

m. The risk of a particular policy πN can then be represented as a risk vector

f (πN) =







fπN (Q1)
...

fπN (Qm)






=







EQ1 [R(πN ,θ)]
...

EQm [R(πN ,θ)]






∈ R

m.

To introduce the concept of acceptance sets, we take the viewpoint of a decision-maker. If the decision-maker
wants to use an R&S procedure, she should specify an acceptance set A ⊂Rm such that a policy π is acceptable if and
only if f (π) ∈ A . The acceptance set represents the decision-maker’s risk attitude towards different risk scenarios Q.
The set A should be defined in a coherent way, i.e., all reasonable acceptance sets should satisfy certain axioms after
being appropriately normalized. We assume that after normalization, fπ(Q) ∈ [0,1] for all Q in Q, where fπ(Q) = 0
corresponds to the minimal risk and fπ(Q) = 1 to the maximal risk. Further, we assume that the policy that randomly
chooses a system has risk 1− 1/k. Such a normalization is adapted to the PICS formulation. We propose that any
coherent acceptance set A should satisfy the following axioms:

Axiom 1: 0 ∈ A . A policy with no risk under any scenario should always be acceptable.
Axiom 2:

(

k−1
k ·1,1

]m
∩A = /0, where 1 represents a vector of ones in R

m. Any acceptable policy should be as good
as randomly identifying a system as the best. Clearly, this axiom depends on our choice of normalization.

Axiom 3: For any point q ∈ A , [0,q]m ⊆ A . All policies with risks smaller than some acceptable policy must also be
acceptable.

Note that vector notation is used to define subsets of R
m, e.g. for two vectors p,q ∈ R

m, we define the set
[p,q]m := [p1,q1]× [p2,q2]×·· ·× [pm,qm] ⊆ R

m.
Once a decision-maker has identified the acceptance set according to her risk tolerance, we can check whether or

not a given policy πN is acceptable. Now, instead of taking N as a predetermined simulation budget, we can treat N
as a control chosen by the decision-maker. This interpretation motivates the new performance measure

ρA (π) := inf{n ∈ N| f (πn) ∈ A } , (5)

which corresponds to the minimum number of simulation iterations required to make the policy acceptable to the
decision-maker.

The intuition behind this performance measure stems from the fact that the cost of a simulation can be measured as
the number of iterations required to achieve a certain confidence level. If an infinite number of simulations is allowed,
then any reasonable policy can be satisfactory. Here a reasonable policy refers to an algorithm that converges to the
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right answer, i.e., f (πN)→ 0 as N → ∞. A performance measure for an R&S policy should depend on the convergence
rate of that policy.

Figure 2 shows conceptually how the risk measure ρA can be interpreted for two policies π(1) and π(2), where
the grey area A represents a possible acceptance set. We consider only two scenarios, Q1 and Q2. Assume that the
decision-maker wants to compare policy π(1) and π(2). As N varies between 0 and ∞, each policy traces out a trajectory
in R

2 indicated by the dashed arrows. When the trajectory crosses the boundary of the acceptance set A for the first
time, the corresponding number of iterations N is precisely the performance measure ρA .

Figure 2: Possible acceptance set A and trajectories of two policies π(1) and π(2). The trajectories outline the function
f (πN) for N → ∞. Note that the trajectories are not continuous curves as N ∈ N, but we drew them continuously here
for simplicity.

The IZ and Bayesian formulations can be combined effectively in this framework. Consider scenarios Q1 = LFC
and Q2 = P0, where LFC represents the least favorable configuration of the experiment where the supremum in (2)
is attained. It is not clear whether such a configuration can always be identified and in many cases the LFC may
depend on the policy itself. For illustrative purposes, we can think of the LFC as one single challenging configuration.
To be more rigorous one should use QIZ defined in the proof to Proposition 2. Figure 3 shows the acceptance set
A1 of a decision-maker using the Bayes formulation, as well as the acceptance set A2 of a decision-maker applying
the IZ formulation. A decision-maker who wants to satisfy both the IZ and the Bayesian formulation would use the
intersection of A1 and A2 as her acceptance set. The dashed arrows indicate possible trajectories of two R&S policies.

Figure 3: Acceptance sets corresponding to Bayes and IZ formulations.
It is instructive to analyze the connection between the performance measure ρ(π) = supQ∈Q EQ[R(π,θ)]−α(Q)

defined in Theorem 2 and the new performance measure ρA (π) = inf{n ∈ N| f (πn) ∈ A } introduced in (5). For
simplicity, consider the case where Q encompasses all relevant scenarios so the penalty function in (4) can be ignored,
i.e., ρ(π) = supQ∈Q EQ[R(π,Q)]. An acceptance set can then be defined directly by setting a bound on ρ(π), i.e.,
ρ(π) ≤ c for some c ∈ R, and this corresponds to a hypercube in R

m with side-length c. On the other hand, if an
acceptance set A is defined independently of ρ , then ρ(πρA

) corresponds to the maximal risk among all scenarios as
the policy trajectory enters the acceptance set A .

Remark 1. ρA does not directly induce a preference order on the set of policies. In R&S algorithms, not only the rate
of convergence needs to be considered, but also the cost of determining the measurement allocation rule. For example,
complex sequential R&S procedures require extensive computation at each allocation step, whereas a simple equal
allocation does not require any computation between simulations. If simulation of the systems is relatively inexpensive
compared to the computation of the allocation rule, an equal allocation policy is most likely preferred. If it is possible
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to determine a cost cπ for an allocation decision of policy π , then a preference order can be formed via the quantity
cπ ρA (π), i.e., a policy π1 is preferred to a policy π2 if and only if cπ1 ·ρA (π1) ≤ cπ2 ·ρA (π2). If all the allocation
costs are equal, or negligible compared to simulation costs, then the risk measure ρA itself induces a preference order
on the set of policies.

The cost of simulating each individual system should also be considered. If the systems require different computational
budget, different allocations should be considered and policies that spend too much time on expensive systems should
be penalized. This aspect has been considered in some policies in Chick and Inoue (2001).

Remark 2. In order to extend the present framework so that policies with random stopping times can also be compared,
the assumption of a fixed simulation budget N needs to be relaxed. This could be done by considering the expected
running time. Although it is possible to determine whether or not a policy is acceptable to a decision-maker based on
the expected running time, it is not obvious how these policies can be controlled. For policies with fixed simulation
budgets, the parameter N provides this important control and can be used as a performance measure in (5). For policies
with random runlength, a different control such as a confidence parameters can be used.

Remark 3. R&S procedures can also be useful for infinitely many systems, especially in continuous simulation
optimization problems. In this case, the convergence f (πN) → 0 as N → ∞ is often not guaranteed. However, our
framework can still be used by setting ρA = ∞ if the trajectory f (πN) does not reach the acceptance set A .

5 SIMULATION EXAMPLE

In this section, we show via a small simulation example how the performance measure ρA can be used to induce a
preference order on a set of policies for the independent normal R&S problem with unknown means and variances.
Since explicit calculations of ρA can be quite challenging, we rely on estimation procedures.

We consider k = 10 systems with independent normal output Yi ∼ N(µi,σ2
i ), i = 1, . . . ,k, where the underlying

configuration of the experiment is ψi = (µi,σ2
i ) and we are interested in identifying the system with the highest mean,

i.e., θi = µi. This problem has been studied extensively in the R&S literature and there exist many competing policies.
Branke, Chick, and Schmidt (2007) compared different policies for this problem. We follow their outline but use the
new performance measure introduced in (5) to induce a preference order on Π.

An extensive comparison of existing policies would go beyond the scope of this paper. Instead, we compare
three popular policies, namely the equal allocation policy, the optimal computing budget allocation policy (OCBA),
and the (0− 1)(S) expected value of information policy. The equal allocation policy simply allocates the allowed
measurements equally among the k systems, OCBA is a policy introduced in Chen (1996) that dynamically allocates
simulation replications, thereby essentially screening out bad systems, and (0−1)(S) is a Bayesian policy introduced
in Chick and Inoue (2001). For detailed descriptions of these policies, see Branke, Chick, and Schmidt (2007). We
explore whether or not our framework can give insights regarding their relative performance.

First, it is necessary to define the considered set of scenarios Q. For illustrative purposes we only consider two
scenarios, the IZ formulation (Q1) and the Bayes formulation (Q2). As mentioned earlier, infinitely many scenarios must
be considered in order to properly capture the IZ formulation. Instead we only focus on one challenging configuration
of the experiment and refer to it as LFC even though it is not necessarily the least favorable configuration. We define
the two scenarios as

Q1 := A point mass at {ψ1 = (0.4,1),ψi = (0,1) for i = 2, . . . ,10} , and

Q2 := {ψi = (µi,σi), where µi (iid) ∼U(0,2),σi (iid) ∼U(0.2,1) for i = 1, . . . ,10} .

Scenario Q2 is approximated by 100 independent random replications of ψ . We choose the 0-1 loss function
L(i,θ) := {θi 6=θi∗}

and the risk mapping R(π,ψ) = E[L(iπ ,θ(ψ))] which corresponds to the PICS for a single
configuration ψ .

Based on these assumptions, we first analyze the performance under IZ and Bayes formulations. Figure 4 shows
the estimated trajectories of the three policies as N increases from 40 to 530. Throughout we use a batchsize of 10, i.e.,
the policy is updated after 10 simulation runs. Batching speeds up the simulations since some allocation rules require
significant computation and updating the allocation after each single observation would be too time consuming. The
dashed line indicates the acceptance set for a decision-maker adopting an IZ approach and the dotted line indicates
the acceptance set for a decision-maker adopting a Bayes approach. The confidence level is set to be c = 0.22, i.e.,
a policy is acceptable if and only if ρIZ(π) ≤ c resp. ρBayes(π) ≤ c. A preference order among these three policies
cannot be deduced based on the trajectories alone. Table 1 gives the estimation results for the performance measure
ρA . Figure 5 shows the convergence towards the acceptance set for each of the two scenarios.

Let us now consider a decision-maker who seeks good performance in both scenarios Q1 and Q2. Figure 6 shows
four possible acceptance sets that combine the two scenarios. The set A1 is most conservative, where the decision-maker
requires that both the IZ and the Bayes performances are bounded by a certain confidence level c. The set A4 is the
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Table 1: Estimated performance measures ρA (with standard deviations) for a decision-maker with IZ or Bayes
acceptance set. We used bootstrapping techniques to estimate ρA and its standard deviations based on a sample of 100
trajectories. The standard deviation for the Bayes scenario is larger than that for the LFC. This is due to the fact that
the slope at the entry point of the trajectory in the Bayes scenario is much smaller than the slope for the LFC scenario,
see Figure 5.

LFC Bayes
Equal 360 (1.0) 464 (63)
OCBA 278 (4.6) 207 (33)

0−1(S) 323 (4.8) 259 (49)

Figure 4: Trajectories for the Equal, OCBA and VIP policies, along with the IZ and Bayes acceptance sets.

least conservative, where the decision-maker requires that at least one performance measure satisfies a given confidence
level c. Table 2 summarizes the estimation results for the performance measure ρA defined in (5) and the corresponding
estimated performance measure ρ = ρ(πρA

) defined in (4) from Proposition 2.

Table 2: Estimated risk measures ρA (along with standard deviations) for different acceptance sets. We used bootstrapping
techniques to estimate ρA and its standard deviations based on a sample of 100 trajectories. The corresponding risk
measures ρ defined in (4) are also given. We omit standard deviations for ρ because they were small (< 5%).

A1 A2 A3 A4

ρA1 ρ ρA2 ρ ρA3 ρ ρA4 ρ
Equal 473 (68) 0.22 385 (20) 0.24 382 (17) 0.24 358 (10) 0.25
OCBA 280 (5.4) 0.21 259 (9) 0.24 258 (10) 0.24 207 (31) 0.31

0−1(S) 332 (14) 0.22 308 (13) 0.23 306 (14) 0.23 256 (42) 0.29

From these results we may conclude that OCBA outperforms the other policies on these scenarios and acceptance
sets. Having said that, our primary goal is to indicate how a comprehensive performance analysis might be carried out.

6 CONCLUSIONS AND FURTHER RESEARCH

We presented a performance-analysis process for Ranking and Selection procedures. This process states all assumptions
needed to incorporate a preference order on the set of policies. The three most popular approaches have a common
representation analogous to convex risk measures used in mathematical finance. Based on the performance evaluation
process, we introduced a new performance measure using computational cost and the definition of acceptable policies.
This easy-to-interpret performance measure can be used to compare selection procedures for different acceptance sets
specified by the decision-maker.

Extensions to this framework involve the treatment of infinitely many scenarios in the scenario approach and the
analysis of policies with random simulation lengths. Analogous to Branke, Chick, and Schmidt (2007), a comprehensive
comparison of existing R&S policies using different acceptance sets would be helpful in identifying robust selection
procedures. This paper provides a framework regarding how such a comparison could be carried out, but we have yet
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Figure 5: Convergence in terms of N for each scenario separately.

Figure 6: Trajectories for Equal, OCBA and VIP policy and different acceptance sets A1 through A4.

to identify good or optimal policies for specific acceptance sets. The computation required for the illustrative example
was nontrivial, which suggests that efficient computation of these performance measures should also be explored.

ACKNOWLEDGMENTS

This research was supported, in part, by National Science Foundation Grant CMMI-0800688.

REFERENCES

Bechhofer, R., T. Santner, and D. Goldsman. 1995. Design and analysis of experiments for statistical selection, screening,
and multiple comparisons. Wiley series in probability and statistics.

Berger, J. 1985. Statistical Decision Theory and Bayesian Analysis. Springer.
Boesel, J., B. Nelson, and S. Kim. 2003. Using Ranking and Selection to “Clean Up” after Simulation Optimization.

Operations Research 51 (5): 814–825.
Branke, J., S. Chick, and C. Schmidt. 2007. Selecting a selection procedure. Management Science 53 (12): 1916–1932.
Chen, C. 1996. A lower bound for the correct subset-selection probability and its application to discrete-event system

simulations. IEEE transactions on automatic control 41 (8): 1227–1231.
Chen, C., D. He, M. Fu, and L. Lee. 2008. Efficient simulation budget allocation for selecting an optimal subset.

INFORMS Journal on Computing 20 (4): 579.
Chick, S. 1997. Selecting the best system: A decision-theoretic approach. In Proceedings of the 29th conference on
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