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ABSTRACT

The Annealing Adaptive Search (AAS) algorithm searches the feasible region of an optimization
problem by generating candidate solutions from a sequence of Boltzmann distributions. However,
the difficulty of sampling from a Boltzmann distribution at each iteration of the algorithm limits its
applications to practical problems. To address this difficulty, we propose an approximation of AAS,
called Model-based Annealing Random Search (MARS), that samples solutions from a sequence of
surrogate distributions that iteratively approximate the target Boltzmann distributions. We present the
global convergence properties of MARS by exploiting its connection to the stochastic approximation
method and report on numerical results.

1 INTRODUCTION

Random search methods have been recognized as a class of useful and effective tools for optimization of
complex global optimization problems with little structure. Over the past few decades, various random
search algorithms have been developed, ranging from the classical methods such as simulated anneal-
ing (Kirkpatrick, Gelatt, and Vecchi 1983), pure/adaptive random search (Zabinsky and Smith 1992),
tabu search (Glover 1990), and genetic algorithms (Goldberg 1989), to the more recent ant colony
optimization (Dorigo and Gambardella 1997), nested partitions method (Shi and Ólafsson 2000), es-
timation of distribution algorithms (Larranaga and Lozano 2002), cross-entropy (CE) as in the work
(Rubinstein and Kroese 2004), andmodel referenceadaptive search (MRAS) (Hu, Fu, and Marcus 2007),
to name just a few. Because only the function values rather than structural information of the objec-
tive function such as continuity and differentiability are required, these methods are robust, easy to
implement, and can be applied to a broad class of optimization problems.

The Annealing Adaptive Search (AAS) was first proposed in Romeijn and Smith (1994a) as an
idealistic model to understand the behavior of simulated annealing. The algorithm samples candidate
solutions according to a sequence of Boltzmann distributions parameterized by time-dependent tem-
peratures. For a class of nonlinear optimization problems, AAS has the promising property that its
computational complexity increases at most linearly with the problem dimension (e.g., Zabinksy 2003).
However, what hinders its application to solving practical problems is that sampling exactly from a
Boltzmann distribution is known to be extremely difficult. In attempts at resolving this difficulty, prior
work has mostly focused on using Markov chain-based sampling techniques within the AAS frame-
work to sample asymptotically from a Boltzmann distribution (cf. e.g., Romeijn and Smith 1994b,
Zabinksy 2003). In this paper, we provide an alternative approach called Model-based Annealing
Random Search (MARS). The underlying idea is to use a sequence of easy-to-sample distribution
functions to approximate the target Boltzmann distributions and then use the sequence as surrogate
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distributions to generate candidate points. The approximation technique involved in MARS inherits
ideas from CE and MRAS, and is carried out by minimizing the Kullback-Leibler (KL) divergence
between a family of parameterized distributions and the target Boltzmann distribution. However, we
note that our approach does not require the quantile estimation of the distribution of the (unknown)
objective function, a critical component used in the selection step of both CE and MRAS.

We also discuss a natural connection between MARS and the well-known stochastic approximation
(SA) method (cf. e.g., Robbins and Monro 1951, Kushner and Yin 1997, Spall 2003). In particular,
we show that, regardless of the type of decision variables of the original problem, MARS can be
equivalently formulated into the form of a generalized stochastic approximation procedure on the
parameter space (of the parameterized distribution family) for solving a sequence of time-varying
stochastic optimization problems with differentiable structures. This viewpoint, which is new to this
type of random search algorithms, allows us to study the asymptotic performance of MARS for a
general class of global optimization problems, both continuous and discrete combinatorial, by using
existing theory and analytical tools from SA.

The outline of the paper is as follows. In Section 2, we describe the MARS algorithm and establish
its connection to SA. In Section 3, we present the global convergence property of MARS, followed by
an asymptotic normality result in Section 4. Preliminary numerical results are reported in Section 5
and concluding remarks are given in Section 6. Due to space limitation, most of the proofs are omitted.
A more comprehensive development of the approach and additional numerical results can be found
in Hu and Hu (2010).

2 THE MARS ALGORITHM

We consider the global optimization problem

x∗ ∈ arg max
x∈X

H(x), (1)

where H : X → ℜ is a deterministic bounded objective function, X ⊆ ℜn is a compact feasible region,
which may either be continuous or discrete. We assume the existence of a unique global optimal
solution x∗ to (1); however, there could be multiple local optima.

The idealistic AAS algorithm iteratively approximates the global optimal solution x∗ of (1) by
assuming that solutions can be sampled exactly from the Boltzmann distribution

gk(x) =
eH(x)/Tk

∫
X

eH(x)/Tkν(dx)
(2)

at each iterationk, whereTk is an iteration-dependent temperatureparameter andν is theLebesgue/discrete
measure on X. The idea is that as Tk decreases to a small constant T ∗ ≥ 0, the sequence of {gk}
will converge to a limiting distribution g∗ that assigns most of its probability mass around x∗, so
that near-optimal solutions will be sampled with higher probabilities as the search goes along. For
a class of Lipschitz optimization problems, AAS is known to have several important theoretical
properties, the most appealing of which is that its complexity increases at most linearly with the
problem dimension (Romeijn and Smith 1994b, Zabinksy 2003). Unfortunately, the algorithm is not
readily implementable to solving optimization problems, because the practical problem of sampling
exactly from the Boltzmann distribution gk is intractable in general. In the proposed MARS algorithm,
we address this implementation difficulty of AAS by sampling points from a surrogate distribution
that approximates gk. The idea is to select a family of (easy-to-sample) parameterized distributions
{ fθ ,θ ∈Θ} (Θ is the parameter space), and then project {gk} onto the parameterized family to obtain
a sequence of sampling distributions. In particular, we borrow ideas from CE and MRAS, and carry
out the projection at each iteration k of MARS by finding an optimal parameter θk that minimizes the
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KL divergence between the family { fθ ,θ ∈Θ} and gk, i.e.,

θk = arg min
θ∈Θ

D(gk, fθ ) := arg min
θ∈Θ

Egk

[
ln

gk(X)

fθ (X)

]
, (3)

where X denotes a random vector taking values in X, and Eg[·] denotes the expectation taken with
respect to the density/mass function g; also, throughout this paper, for a distribution parameterized by
θ , we use Eθ [·] to represent the expectation with respect to the underlying parameterized distribution.
The primary reason for adopting the KL divergence is that for the natural exponential family (NEF)
of distributions (cf. e.g., Morris 1982), the optimization problem (3) can be solved analytically in
closed form for an arbitrary gk, which makes the approach very convenient to implement efficiently.

Definition 1. A parameterized family of density/mass functions
{

fθ (·), θ ∈Θ ⊆ ℜd
}

on X is said
to belong to the natural exponential family (NEF) if there exist mappings Γ(·) : ℜn → ℜd and
K(·) : ℜd → ℜ such that

fθ (x) = exp
(
θ T Γ(x)−K(θ)

)
, ∀θ ∈Θ ,

where K(θ) = ln
∫
X

exp
(
θ T Γ(x)

)
ν(dx) is called the log partition function, and Θ = {θ ∈ ℜd :

|K(θ)| < ∞} is called the natural parameter space.

Let int(Θ) denote the interior of Θ . It is well-known (e.g., Morris 1982) that the function
K(θ) is strictly convex on int(Θ) with gradient ∇K(θ) = Eθ [Γ(X)] and Hessian matrix Covθ [Γ(X)].
Therefore, the Jacobian of the mean parameter function m(θ) := Eθ [Γ(X)] is strictly positive definite
and invertible. From the inverse function theorem, it follows that m(θ) is also invertible on int(Θ).

In MARS, instead of directly using the sequence {gk} to minimize the KL-divergence in (3), we
consider a general distribution sequence in the recursive form

g̃k+1(x) = αkgk+1(x)+(1−αk) fθk(x) with αk ∈ (0,1] ∀k = 0,1, . . ., (4)

where each g̃k+1 is a mixture of the Boltzmann distribution gk+1 parameterized by temperature Tk+1
(cf. (2)) and the sampling distribution fθk obtained at the kth iteration. Intuitively, such a mixture
g̃k+1 retains the properties of the Boltzmann distribution gk+1, while on the other hand, ensures that
it does not stay too far apart from the sampling distribution fθk .

When NEF is used to approximate the mixture distribution g̃k+1, the following lemma establishes
a key link between the two successive mean parameter functions.

Lemma 1. If fθ belongs to the NEF and the new parameter θk+1 obtained via minimizing D(g̃k+1, fθ )
satisfies θk+1 ∈ int(Θ) for all k, then

m(θk+1)−m(θk) = −αk∇θD(gk+1, fθ )|θ=θk ∀k = 0,1,2, . . . . (5)

Sketch of Proof: Since θk+1 ∈ int(Θ), it satisfies the first order necessary condition for optimality
of the optimization problem minθ∈Θ D(g̃k+1, fθ ). Thus, setting the gradient ∇θD(g̃k+1, fθ ) to zero
yields m(θk+1) = Eθk+1[Γ(X)] = Eg̃k+1

[Γ(X)]. It follows from (4) that

m(θk+1) = Eg̃k+1
[Γ(X)] = αkEgk+1[Γ(X)]+(1−αk)m(θk). (6)

Finally, the result follows by rearranging the terms in (6) and then applying the dominated convergence
theorem to switch the order of integral and derivative.

Lemma 1 shows that by minimizing the KL divergence D(g̃k+1, fθ ), the mean parameter func-
tion m(θk+1) of the new sampling distribution fθk+1 can be viewed as an iterate generated by
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a gradient descent algorithm for solving the iteration-varying stochastic minimization problem
minθ∈Θ D(gk+1, fθ ) = minθ∈Θ Egk+1

[
ln gk+1(X)

fθ (X)

]
on the transformed parameter space Θ , whose so-

lution, as k goes to infinity, is an optimal parameter θ ∗ ∈ int(Θ) that provides the best possible
approximation to the limiting Boltzmann distribution g∗. We remark that this observation is indepen-
dent of the type of decision variables involved in the original optimization problem (1).

Note that in order to implement the above projection idea, we would still require the full information
about the Boltzmann distribution gk+1, which is generally unavailable unless the entire solution space
X can be enumerated. Therefore, a rational approach in practice is to use only a finite number of
samples generated at each iteration k to construct an empirical distribution ḡk+1, and then use ḡk+1
to approximate gk+1. This results in the following implementable version of MARS:
Model-based Annealing Random Search (MARS)

Step 0: Choose an initial density/mass function fθ̂0
(x) on X, θ̂0 ∈ int(Θ). Specify an annealing

schedule {Tk}, a step-size sequence {αk}, a sample size sequence {Nk}, and an exploration
parameter sequence {λk}. Set iteration counter k = 0.

Step 1: Independently generate a population of Nk candidate solutions Λk = {X1, . . . ,XNk} as
follows:

for i = 1 to Nk

generate a random number u ∼U [0,1].

if u < λk, then sample a solution Xi from fθ̂0
.

elseif u ≥ λk, then generate a solution Xi according to fθ̂k
.

endfor

Step 2: Compute the new parameter θ̂k+1 = arg minθ∈Θ D(ĝk+1, fθ ), where ĝk+1 is given in (7).
Step 3: If a stopping rule is satisfied, then terminate; otherwise set k = k +1 and go to Step 1.

In MARS, the initial density/mass function fθ̂0
can either be chosen based on prior knowledge of

the underlying problem or be chosen in a way that any region in the solution space will have a positive
probability of being sampled. In addition to the annealing temperature {Tk} and the step-size sequence
{αk}, the algorithm requires specifications of two parameter sequences {Nk} and {λk}, where Nk
specifies the number of candidate solutions to be generated at each iteration, and the exploration
parameter λk allows the algorithm to explore the entire feasible region so that there is a positive
probability for the algorithm to reach anywhere in X at each single iteration. At Step 2, the KL
divergence is with respect to ĝk+1, an estimate of g̃k+1 (cf. (4)) based on the sampled solutions in Λk,
i.e.,

ĝk+1(x) = αkḡk+1(x)+(1−αk) fθ̂k
(x), x ∈ Λk. (7)

Note that we have replaced the Boltzmann distribution gk+1 in (4) by an empirical distribution

ḡk+1(x) :=
e

H(x)
Tk+1 / f̂θ̂k

(x)

∑x∈Λk
e

H(x)
Tk+1 / f̂θ̂k

(x)
∀x ∈ Λk, (8)

where f̂θ̂k
(x) := (1−λk) fθ̂k

(x)+λk fθ̂0
(x) is the overall density/mass function that a candidate solution

will be sampled at Step 1 of MARS. Intuitively, the division by f̂θ̂k
in ḡk+1 is used to compensate

for solutions that are unlikely to be chosen, which makes ḡk+1 a good estimate of the Boltzmann
distribution gk+1.

Similar to Lemma 1, the following result shows the connection between the successive mean
parameter vectors obtained in MARS.
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Lemma 2. If θ̂k ∈ int(Θ) ∀k, then the mean parameter function m(θ̂k+1) of fθ̂k+1
satisfies

m(θ̂k+1)−m(θ̂k) = −αk

(
m(θ̂k)−Eḡk+1[Γ(X)]

)
∀k = 0,1,2, . . . . (9)

Proof. Similar to the proof of Lemma 1.

We conclude this section by relating MARS to stochastic gradient search. Note that (9) can be
rewritten as follows:

m(θ̂k+1)−m(θ̂k) = −αk

(
m(θ̂k)−Egk+1[Γ(X)]+Egk+1[Γ(X)]−Eḡk+1[Γ(X)]

)
,

= −αk∇θD(gk+1, fθ )|θ=θ̂k
−αk

(
Egk+1[Γ(X)]−Eḡk+1[Γ(X)]

)
. (10)

This becomes a Robbins-Monro type stochastic approximation algorithm in terms of the true gradient
and a noise term due to the approximation error between ḡk+1 and gk+1. Thus, with the help of existing
tools from stochastic gradient search and stochastic approximation, the asymptotic performance
analysis of MARS essentially boils down to the issue of inspecting whether the Boltzmann distribution
gk+1 can be closely approximated by its empirical estimate ḡk+1.

3 GLOBAL CONVERGENCE OF MARS

Since MARS is randomized, it induces a probability distribution over the set of all sampled solutions.
We denote by P(·) and E[·] the probability and expectation taken with respect to this distribution.
In the rest of the paper, probability one convergence is to be understood with respect to P. We also
define Fk = σ{Λ0,Λ1, . . . ,Λk−1}, k = 1,2, . . . as the sequence of increasing σ -fields generated by
the set of all sampled solutions up to iteration k−1. We use P̂θ̂k

(·|Fk) and Êθ̂k
[·|Fk] to denote the

conditional probability and expectation taken with respect to f̂θ̂k
.

To present the main convergence result, we make the following assumptions, where Assumptions
A1 and A2 are mild regularity conditions on the objective function, whereas A3−A5 are conditions
on the input parameters.

Assumptions:

A1. For any constant ε < H(x∗), the set {x ∈ X : H(x) ≥ ε} has a strictly positive Lebesgue or
discrete measure.

A2. For any δ > 0, supx∈Aδ
H(x) < H(x∗), where Aδ := {x ∈ X : ‖x− x∗‖ ≥ δ}.

A3. The mapping Γ(x) given in Definition 1 is bounded on X. Moreover, for any ξ > 0, there
exists δ > 0 such that ‖Γ(x)−Γ(x∗)‖ ≤ ξ whenever ‖x− x∗‖ ≤ δ .

A4. The step-size sequence {αk} satisfies αk > 0 ∀k, ∑∞
k=0 αk = ∞, and ∑∞

k=0 α2
k < ∞.

A5. (a) The annealing schedule {Tk} satisfies Tk > 0 ∀k and Tk → T ∗ ≥ 0 as k → ∞;
(b) The exploration parameter sequence {λk} satisfies λk > 0 ∀k and λk → λ ∗ ∈ [0,1) as
k → ∞;

(c) Moreover, e2H∗/Tk

Nkλk
→ 0 as k → ∞, where H∗ = H(x∗).

We have the following convergence theorem for MARS.

Theorem 3. If Assumptions A1 to A5 hold and θ̂k ∈ int(Θ) ∀k, then

m(θ̂k) → Eg∗[Γ(X)] as k → ∞ w.p.1,

where the limit is taken component-wise and g∗ is the limiting Boltzmann distribution parameterized
by T ∗ ≥ 0.
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The result of Theorem 3 is much stronger than it appears to be. Its interpretation depends on
the parameterized distribution family used in MARS and, in particular, on the specific form of the
function Γ(x). For example, in continuous optimization, if T ∗ = 0 and normal distributions are used
as parameterized family, then Theorem 3 implies that the sequence of sampling distributions { fθ̂k

} in
MARS will converge to a delta distribution with all mass concentrated at the global optimizer x∗, in
the sense that limk→∞ Eθ̂k

[X ] = x∗ and limk→∞ Covθ̂k
[X ] = 0 w.p.1. Another case of interest is when

independent univariate density/mass functions are used and the parameterized family takes the form
fθ (x) = ∏n

i=1 exp(xiϑi−K(ϑi)), where xi and ϑi are the respective ith components of x = (x1, . . . ,xn)
T

and the parameter vector θ = (ϑ1, . . . ,ϑn)
T , in which case, we have Γ(x) = x and m(θ̂k) = Eθ̂k

[X ].
Thus, if T ∗ = 0, then the result of Theorem 3 reduces to limk→∞ Eθ̂k

[X ] = x∗ w.p.1, i.e., the means of
the sequence of sampling distributions converge to x∗ w.p.1. As a third example, consider a discrete
optimization problem with a feasible region X that contains m distinct values. To approach the
problem, we can specify an m-by-1 probability vector Q, whose ith entry qi indicates the probability
that a solution will take the ith value xi ∈ X. When parameterized by Q, the probability of sampling
a solution x can be written as

fθ (x) =
m

∏
i=1

qI{x=xi}
i := eθ T Γ(x),

where θ = [lnq1, . . . , lnqm]T and Γ(x) = [I{x = x1}, . . . , I{x = xm}]T . Note that Γ(x) satisfies As-
sumption A4. Thus, when T ∗ = 0, a straightforward interpretation of Theorem 3 yields

lim
k→∞ ∑

x∈X

m

∏
i=1

(
qk

i

)I{x=xi}I{x = x j} = I{x∗ = x j} ∀ j w.p.1,

where qk
i is the ith entry of the vector Qk obtained at the kth iteration of MARS. This implies that

limk→∞ qk
i = I{x∗ = xi} w.p.1 ∀ i. In other words, the sequence of probability vectors Qk will converge

to a limiting vector that assigns unit mass to the global optimum x∗.

Proof Sketch of Theorem 3: Since the function D(gk+1, fθ ) may change shape with k, our convergence
proof is based on the analysis of a time-varying SA recursion given in Evans and Weber (1986). To
proceed, we rewrite (9) in the form

ηk+1 = ηk −ξk,

where ηk := m(θ̂k)−Eg∗[Γ(X)] and ξk = αk
(
m(θ̂k)−Eḡk+1[Γ(X)]

)
. To show the desired result, it is

equivalent to show that ηk → 0 as k → ∞ w.p.1.
Let Mk = Êθ̂k

[ξk|Fk] and Zk = ξk −Mk. We establish that the multivariate versions of conditions
(i)-(iv) in Evans and Weber (1986) hold.

[i] First we show that for every ε > 0, P(‖ηk‖ > ε, ηT
k Mk < 0 i.o.) = 0. By the definition of Mk, it

is easy to see that

Mk = αk
(
m(θ̂k)−Eg∗[Γ(X)]+Eg∗[Γ(X)]−Egk+1[Γ(X)]+Egk+1[Γ(X)]−Êθ̂k

[
Eḡk+1[Γ(X)]

∣∣Fk
])

. (11)

Therefore,

ηT
k Mk = αk

(
‖ηk‖2 +ηT

k

(
Eg∗[Γ(X)]−Egk+1[Γ(X)]

)
+ηT

k

(
Egk+1[Γ(X)]− Êθ̂k

[
Eḡk+1[Γ(X)]

∣∣Fk
]))

.

Since ηk is bounded, by A1 and A2, it can be seen that the sequence of Boltzmann distributions {gk}
converges to g∗ in the sense that limk→∞ Egk [Γ(X)] = Eg∗[Γ(X)]. Moreover, by A3 and A5, it can
be shown that the third term (i.e., the noise term) in the parenthesis above also vanishes to zero as
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k → ∞ w.p.1. Therefore, for almost every sample path generated by MARS, we must have ηT
k Mk > 0

whenever ‖ηk‖ > ε for k sufficiently large, i.e., P(‖ηk‖ > ε, ηT
k Mk < 0 i.o.) = 0.

[ii] Since the mapping Γ is bounded on X by A3, both m(θ̂k) and Eḡk+1[Γ(X)] are bounded. Moreover,
we have from Assumption A4 that αk → 0 as k → ∞. Therefore, ‖Mk‖(1 +‖ηk‖)−1 → 0 as k → ∞
w.p.1.

[iii] By the definition of Zk, we have

∞

∑
k=1

E[‖Zk‖2] =
∞

∑
k=1

α2
k E

[(
Êθ̂k

[
Eḡk+1[Γ(X)]

∣∣Fk

]
−Eḡk+1[Γ(X)]

)T (
Êθ̂k

[
Eḡk+1[Γ(X)]

∣∣Fk

]
−Eḡk+1[Γ(X)]

)]
< ∞,

since Γ is bounded and ∑∞
k=1 α2

k < ∞ by A4.

[iv] Finally, we show that P
(

liminfk→∞ ‖ηk‖ > 0, ∑∞
k=1 ‖Mk‖ < ∞

)
= 0. From (11), we have

‖Mk‖ ≥ αk

(
‖ηk‖−‖Eg∗[Γ(X)]−Egk+1[Γ(X)]‖−

∥∥Egk+1[Γ(X)]− Êθ̂k

[
Eḡk+1[Γ(X)]

∣∣Fk
]∥∥

)
.

Let Ω1 = {liminfk→∞ ‖ηk‖ > 0} and Ω2 = {∑∞
k=1 ‖Mk‖ < ∞}. For every sample point ω ∈ Ω1, we

can find a δ > 0 such that liminfk→∞ ‖ηk‖ > δ > 0. This implies that there exists a Kδ (ω) such that
‖ηk‖ ≥ δ ∀k ≥ Kδ (ω). In addition, let Ω3 = {

∥∥Egk+1[Γ(X)]− Êθ̂k

[
Eḡk+1[Γ(x)]

∣∣Fk
]∥∥ → 0}. It can be

shown that P(Ω3) = 1 and Egk+1[Γ(X)] → Eg∗[Γ(X)] as k → ∞. Therefore, there exists a K̄δ/2(ω) for
every ω ∈ Ω3 such that

∥∥Eg∗[Γ(X)]−Egk+1[Γ(X)]
∥∥+

∥∥∥Egk+1[Γ(X)]− Êθ̂k

[
Eḡk+1[Γ(X)]

∣∣Fk
]∥∥∥ <

δ
2

for all k ≥ K̄δ/2(ω). Consequently, we have for every ω ∈ Ω1∩Ω3, ‖Mk‖> δ
2 αk for all k ≥ K∗(ω) :=

max{Kδ (ω), K̄δ/2(ω)}. Thus by A4,

∞

∑
k=1

‖Mk‖ ≥
∞

∑
k=K∗(ω)

‖Mk‖ ≥
δ
2

∞

∑
k=K∗(ω)

αk = ∞ ∀ω ∈ Ω1 ∩Ω3.

This implies P(Ω1 ∩Ω2 ∩Ω3) = 0. Thus, it follows that P(Ω1 ∩Ω2) = P(Ω1 ∩Ω2 ∩Ω3)+ P(Ω1 ∩
Ω2 ∩Ωc

3) ≤ P(Ωc
3) = 0.

Finally, combining [i]−[iv] and directly applying the result of Evans and Weber (1986), we have
ηk → 0 as k → ∞ w.p.1, which completes the proof of the theorem.

4 ASYMPTOTIC CONVERGENCE RATE

To fix ideas, we consider a sample size sequence Nk = O(kβ ) and a step-size sequence of the form
αk = c/kα for some constants β > 0, c > 0, and α ∈ (1

2 ,1). Note that such a choice of αk satisfies A4.
In addition, we require that {Tk} and {λk} satisfy the following strengthened version of Assumption
A5.

Assumption B1. For a given sample size sequence Nk = O(kβ ) and a step-size sequence αk = O(k−α),

the sequence {Tk} satisfies Tk > T ∗ > 0 ∀k and limk→∞ k
α+β

2
( 1

T ∗ − 1
Tk

)
= 0, and the sequence {λk}

satisfies λk > 0 ∀k, λk → λ ∗ ∈ [0,1) as k → ∞, and λk = Ω(k−γ) for some positive constant γ < β
2 .

It is easy to see that Theorem 3 still holds true with Assumption A5 replaced by B1. Thus, by the
invertibility of m(·), the sequence of parameters {θ̂k} generated by MARS converges to a limiting
parameter θ̂ ∗ w.p.l. Throughout this section, we should also assume that that θ̂ ∗ ∈ int(Θ), i.e., the
convergence of {θ̂k} occurs to a limiting point that lies in the interior of Θ . Since m(·) is continuously
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differentiable on int(Θ), this assumption implies that the Jacobian of m(·) at θ̂ ∗ is strictly positive
definite. Therefore, by inverse function theorem, there exists an open neighborhood of m(θ̂ ∗) such
that m−1(·) is continuously differentiable on that neighborhood. This, together with the boundedness
of Γ, further implies that the sequence of sampling distributions { fθ̂k

} converges point-wise to a
limiting distribution fθ̂∗ w.p.1.

We have the following asymptotic convergence rate result for MARS.

Theorem 4. Let αk = c/kα and Nk = O(kβ ) for constants c > 0, α ∈ (1
2 ,1), and β > α . Assume

Assumptions A1−A3 and B1 hold, θ̂k ∈ int(Θ) ∀k, θ̂ ∗ ∈ int(Θ), then

k
α+β

2

(
m(θ̂k)−Eg∗[Γ(X)]

)
dist−−−→ N

(
0,Σ

)
as k → ∞,

where Σ = ϒĈovθ̂∗

[(
Γ(X)−Eg∗[Γ(X)]

)
g∗(X)/ f̂θ̂∗(X)

]
for some constant ϒ > 0, and Ĉovθ̂∗[·] repre-

sents the covariance under f̂θ̂∗ .

Proof Sketch of Theorem 4: Given the specific forms of Nk and αk, we can rewrite (9) in the form
of a recursion in Fabian (1968):

ηk+1 = (1− ck−α)ηk + k−(2α+β )/2Rk + k−(3α+β )/2Wk,

where ηk = m(θ̂k)−Eg∗[Γ(X)],

Rk = ckβ/2
(

Eḡk+1[Γ(X)]−Êθ̂k

[
Eḡk+1[Γ(X)]

∣∣Fk
])

, Wk = ck(α+β )/2
[
Êθ̂k

[
Eḡk+1[Γ(X)]

∣∣Fk
]
−Eg∗[Γ(X)]

]
.

Under conditions A1-A3 and B1, it can be verified that the term Rk satisfies the following two properties:
(1) Êθ̂k

[RkRT
k |Fk]→Σ as k →∞ w.p.1, where Σ is given in the statement of the theorem; (2) the sequence

{Rk} is uniformly square integrable in the sense that limk→∞ E
[
I{‖Rk‖2 ≥ rkα}‖Rk‖2

]
= 0 ∀r > 0.

Moreover, the term Wk satisfies k(α+β )/2Wk → 0 as k → ∞ w.p.1. The desired result then follows from
Theorem 2.2. in Fabian (1968).

It is interesting to note that in contrast to general stochastic approximation algorithms, which have
an optimal asymptotic rate of O(1/

√
k), Theorem 4 states that the asymptotic rate of convergence for

MARS is at least O(1/
√

k) (i.e., when the values of α and β are chosen close to 1/2). Moreover, this
rate can be made arbitrarily fast by using a sample size sequence {Nk} that increases sufficiently fast
as k → ∞. However, increasing sample sizes too fast may have a negative impact on the algorithm’s
practical performance, as the normality result is expressed in terms of the number of algorithm
iterations, not the sample size. Therefore, there is a trade-off between the need for large values of β
to increase the algorithm’s (asymptotic) convergence speed and the desirability of using small values
of β to reduce the per iteration computational cost.

5 NUMERICAL EXAMPLES

We illustrate the performance of MARS on multi-modal optimization problems and compare its
performance with those of simulated annealing (SAN) and the Hide-and-Seek (HAS) algorithm (cf.
e.g., Romeijn and Smith 1994b, Zabinksy 2003). The following four benchmark functions, taken
from Hu, Fu, and Marcus (2007), are used in our experiment. The problem dimensions vary from
4 to 100. In particular, H1 is low dimensional with only a few local optima; however, the maxima
are separated by relatively flat regions and are far apart from each other. Functions H2 has many
wide-spread local optima, and the number of local maxima increases exponentially with the problem
dimension. H3 is a well-known badly-scaled problem, whereas H4 is both highly multimodal and
badly scaled.
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(1) Shekel’s function (n = 4, 0 ≤ xi ≤ 10, i = 1, . . . ,n)

H1(x) =
5

∑
j=1

( 4

∑
i=1

(xi −Ai, j)
2 +B j

)−1
−10.1532,

with B = (0.1,0.2,0.2,0.4,0.4)T , A1 = A3 = (4,1,8,6,3), and A2 = A4 = (4,1,8,6,7), where
Ai represents the ith row of A. The function has a global maxima x∗ = (4,4,4,4)T and
H1(x∗) = 0.

(2) Trigonometric function (n = 100, −10 ≤ xi ≤ 10, i = 1 . . . ,n)

H2(x) = −1−
n

∑
i=1

[
8sin2 (

7(xi −0.9)2)+6sin2 (
14(xi −0.9)2)+(xi −0.9)2

]
,

where x∗ = (0.9, . . . ,0.9)T , H2(x∗) = −1.
(3) Powell function (n = 100, −10 ≤ xi ≤ 10, i = 1 . . . ,n)

H3(x)=−1−
(n−2)/2

∑
i=1

[
(x2i−1+10x2i)

2+5(x2i+1−x2i+2)
2+(x2i−2x2i+1)

4+10(x2i−1−x2i+2)
4
]
,

where x∗ = (0, . . . ,0)T and H3(x∗) = −1.
(4) Pinter’s function (n = 50, −10 ≤ xi ≤ 10, i = 1, . . . ,n)

H4(x) = −
n

∑
i=1

ix2
i −

n

∑
i=1

20isin2 (
xi−1 sinxi − xi + sinxi+1

)

−
n

∑
i=1

i log10

(
1+ i(x2

i−1 −2xi +3xi+1 − cosxi +1)2)−1,

where x0 = xn, xn+1 = x1, x∗ = (0, . . . ,0)T , H4(x∗) = −1.

In our implementation of MARS, we have used the independent multi-variate normal distributions
as the parameterized distributions. Specifically, at the kth iteration of the algorithm, the parameterized
sampling density takes the form

fθ̂k
(x) =

n

∏
i=1

1√
2π(σ i

k)
2

exp
(
− (xi −µ i

k)
2

2(σ i
k)

2

)
,

where the initial means are uniformly selected from the feasible region and initial variances (σ i
0)

2

are set to 100 for all i = 1, . . . ,n. It is easy to verify that the new parameters are updated at Step 2 of
MARS as

µ i
k+1 = αk

∑x∈Λk
e

H(x)
Tk+1 / f̂θ̂k

(x)x

∑x∈Λk
e

H(x)
Tk+1 / f̂θ̂k

(x)
+(1−αk)µ i

k

(σ i
k+1)

2 = αk
∑x∈Λk

e
H(x)
Tk+1 / f̂θ̂k

(x)(x−µ i
k+1)

2

∑x∈Λk
e

H(x)
Tk+1 / f̂θ̂k

(x)
+(1−αk)

(
(σ i

k)
2 +(µ i

k+1 −µ i
k)

2),
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Figure 1: Averaged performance of MARS, HAS, and SAN on test functions H1 to H4.

for all i = 1, . . . ,n. In our implementation of SAN, we have used the following neighborhood structure:
N (x) = {y ∈ X : ‖x−y‖∞ ≤ 1}, which yields reasonable performance for all test problems. In HAS,
the Markov chain sampler is implemented using a hyperspherical direction (e.g., Zabinksy 2003).

We consider two different annealing schedules in all three algorithms: (1) a polynomial schedule
(PS): Tk = 10−5+|H(x∗k)|/(1+k0.6); and (2)a logarithmic schedule (LS):Tk = 10−5+0.1|H(x∗k)|/ log(1+
k), where x∗k signifies the current best solution at the kth iteration of an algorithm, and the scaling
factor |H(x∗k)| is introduced to counterbalance the effect of the magnitude of H in the term eH(x)/Tk .
Note that since H is bounded, both schedules PS and LS satisfy condition A5(a).

As in a typical stochastic approximation algorithm, we found empirically that the performance
of MARS is primarily determined by the choice of the step-size sequence {αk}, but is insensitive to
the choices of {Nk} and {λk}. So a relatively conservative step-size αk = 1/(k +100)0.501 is used in
all four test cases, where the constant 100 is used to keep initial step sizes small in early iterations
of the algorithm to prevent unstable behavior, whereas a slow decay rate 0.501 is used to produce
non-negligible step sizes and prevent slow improvement in later iterations; see, e.g., Spall (2003)
for a detailed discussion of step-size sequences of such a form. The other parameters in MARS are
chosen as follows: λk = 1/(1+k)0.5 and Nk = max{10,⌊k0.502⌋}, where ⌊a⌋ is the largest integer no
greater than a. Note that the above parameter settings satisfy the relevant conditions in Theorem 3
for convergence.

For each test case, we performed 50 independent replication runs of all three algorithms. The
performances are shown in Figure 1, which plots the averaged function values at the best solutions
found by the three comparison algorithms as a function of the number of function evaluations consumed
thus far. Numerical results clearly indicate convergence of MARS with both annealing schedules
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as well as its superior performance over both SAN and HAS. Since SAN combines local search, it
shows a fast initial improvement, but the algorithm frequently stagnates at solutions that are far from
optimal, especially in higher-dimensional cases. However, we note that the performance of both SAN
and HAS may be improved by careful selections of neighborhood structures and adaptive annealing
schedules tailored to specific problems.

6 CONCLUSIONS

In this paper, by combining ideas from AAS, CE, and MRAS, we have presented an algorithm
called Model-based Annealing Random Search (MARS) for solving general global optimization
problems with little structure. In addition, we have established a novel connection between the
proposed algorithm and the well-known stochastic approximation method. This connection allows
us to analyze the asymptotic performance of the algorithm for a general class of global optimization
problems. Preliminary numerical results on high-dimensional multi-extremal benchmark problems
show that MARS may yield high-quality solutions within a modest number of function evaluations.
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