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ABSTRACT

Over 5000 publications on parallel discrete event simulation (PDES) have appeared in the literature to date. Nevertheless,
few articles have focused on empirical studies of PDES performance on large supercomputer-based systems. This
gap is bridged here, by undertaking a parameterized performance study on thousands of processor cores of a Blue
Gene supercomputing system. In contrast to theoretical insights from analytical studies, our study is based on actual
implementation in software, incurring the actual messaging and computational overheads for both conservative and
optimistic synchronization approaches of PDES. Complex and counter-intuitive effects are uncovered and analyzed,
with different event timestamp distributions and available levels of concurrency in the synthetic benchmark models.
The results are intended to provide guidance to the PDES community in terms of how the synchronization protocols
behave at high processor core counts using a state-of-the-art supercomputing systems.

1 INTRODUCTION

A parallel discrete-event simulation (PDES) system consists of a collection of logical processes or LPs, each modeling a
distinct component of the system being modeled (e.g., router in a physical communications network). LPs communicate
by exchanging timestamped event messages (e.g., denoting the arrival of a new job at that server). The goal of PDES
is to efficiently process all events in parallel in global timestamp order. Two well-established approaches towards this
goal are broadly called conservative processing and optimistic processing.

The seminal parallel discrete-event processing approach, falling under the category of conservative processing, is
the Null Message algorithm developed by Chandy and Misra (Chandy and Misra 1979) and Bryant (Bryant 1977) (also
known as the CMB algorithm, based on the inventors’ names). In this algorithm, each logical process sends a “null
message” to its neighboring processes upon executing each event. The “null message” contains a timestamp 7' that
serves as a “promise” that the sending process will not later send a message with timestamp smaller than 7" to the
receiving process. At any process, if the next local event to be processed has a timestamp that is greater than any of
the received “null message” events, that process must wait until it receives the next wave of “null messages” such that
all “null message” timestamps are greater than the timestamp of the next event to be processed. It has been shown that
this algorithm avoids deadlock provided that there is no cycle in which a message could traverse without incrementing
its timestamp (i.e., timestamp increments must be non-zero).

Alternatives to the Null Message algorithm for conservative execution employ a “global synchronization” ap-
proach. Promiment examples arethe Bounded Lag algorithm (Lubachevsky, Shwartz, and Weiss 1991), Time Buck-
ets (Steinman 1993), YAWNS (Dickens et al. 1996), and more recently Composite Synchronization (Nicol and Liu 2002).
In its simplest approach, each LP is allowed to process events between the most recently computed “lower bound
timestamp” (LBTS), which is the smallest unprocessed event in the system, plus the global lookahead value among
all LPs. When no more local events can be processed, all LPs must determine via a reduction/barrier algorithm, such
as (Pancerella and Reynolds 1993), the next LBTS, disseminate it, and commence processing events.

In contrast to conservative approaches, Time Warp is a well-known optimistic synchronization mechanism, developed
by Jefferson and Sowizral (Jefferson 1985) used in the parallelization of discrete-event models. The Time Warp mechanism
uses a detection-and-recovery protocol to detect causality errors and synchronize the computation. Here, anytime an
LP determines that it has processed events out of timestamp order, it “rolls back”™ those events, and re-executes them
in the correct order. Analogous to the conservative LBTS computations, Time Warp systems execute a Global Virtual
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Time (GVT) algorithm which determines the smallest unprocessed or partially processed event in the system. The GVT
value is used to reclaim LP state and event memory which is retained for supporting the rollback operations.

It is interesting to note some relevant statistics of published research that can be uncovered by an on-line literature
search. Using the phrase “Time Warp, Optimistic Parallel Simulation” in the Google Scholar search engine, approximately
1970 results are returned, as of this writing. Similarly, the phrase “Conservative Parallel Discrete Event Simulation
returns over 5200 results. A large number of the articles are focused on demonstration of scaling results in one class of
synchronization protocol or the other. However, fewer than 10 results to date correspond to articles in which systems
using more than 1,000 processor cores are studied. The principal contribution of our present article is in providing
an experimental performance study to provide guidance to the PDES community in terms of how the primary PDES
algorithms behave at relatively high processor core counts on a state-of-the-art supercomputer system.

1.1 Related Work

In the rich and colorful history of PDES, one of the well-known analytical results (by proponents of Time Warp)
appeared in 1990, in which Lipton and Mizell (Lipton and Mizell 1999) showed that Time Warp can, under certain
circumstances, outperform the Chandy/Misra/Bryant algorithms by an arbitrary amount. Given N processors, Time
Warp can outperform the Null Message algorithm by a factor of N, they further showed that the opposite is not true:
the Null Message algorithm can only outperform Time Warp by a constant factor. The key insight into this result
is the set of conditions in which Time Warp is able “uncover” N times more eligible events to process in parallel
than the CMB approach. However, this analysis does assume that rollback costs are fixed, which may not always
be the case. (Lubachevsky, Shwartz, and Weiss 1991) analyzed rolled-based parallel simulations and demonstrated the
possibility of a dangerous “phase-transition” from a well-behaved execution to an unstable execution whereby rollbacks
cascade without end. Here, an “echo” model is shown where the size of the rollback grows in time. From these early
results, there have been a series of improvements in both algorithms which we briefly summarize here. For conser-
vative protocols, there is: Bounded Lag (Lubachevsky, Shwartz, and Weiss 1991), YAWNS (Dickens et al. 1996), and
Critical Channel Traversing (Xiao et al. 1999), and Composite Synchronization (Nicol and Liu 2002). For optimistic
approaches, there is Periodic State Saving (Bellenot 1992), Incremental State Saving (Gomes 1996) and Reverse
Computation (Carothers et al. 1999) all which lower state-saving overheads. In terms of GVT/LBTS algorithms there
are: distributed snapshots (Mattern 1993), hardware assisted reduction (Pancerella and Reynolds 1993), shared mem-
ory approaches (D’Souza, Fan, and Wilsey 1994, Fujimoto and Hybinette 1997, Gomes, Unger, and Cleary 1995), and
clock/cycle counter-based approach (Bauer et al. 2005). The LBTS/GVT algorithm of (Perumalla and Fujimoto 2001)
provided a unified algorithm to encompass the cross product of (reliabile,unreliable) x (events,messages), and was
eventually used in the psik system to scale to hundreds of thousands of processors (Perumalla 2007).

However, in terms of results on modern supercomputer class systems (e.g. systems still in service and on the
TopS00 supercomputer list), there are relatively few results. The first PDES performance study to focus on the Blue
Gene supercomputer platform is (Perumalla 2007). Here, PHOLD performance results for conservative, optimistic
and mixed-mode PDES protocols on the Blue Gene/L are presented using psik parallel discrete-event simulator. The
next two Blue Gene/PDES performance studies (Holder and Carothers 2008, Bauer Jr., Carothers, and Holder 2009)
demonstrates the performance of their Time Warp simulator, ROSS, being the first to demonstrate that event-rates from
the 100’s of millions of events-per-second to even billions of events-per-second are possible and scalability out to
65,536 processors are possible. Most recently, it has been demonstrated that is possible to execute epidemic outbreak
models (Perumalla and Seal 2010) using 65,536 Cray XTS5 processors and in (Perumalla 2010) that modeling massively
parallel MPI programs (with multiple millions of virtual MPI ranks) is possible using over 216,000 CrayXT 5 cores
using the pum. These are the largest core-counts any PDES model has efficiently executed on to date.

This performance study adds to these previous results by demonstrating how model lookahead and event timestamp
distribution impacts conservative and optimistic performance and provides model developers some guidance on when
and where each protocol might provide a performance advantage over the other on supercomputer systems.

1.2 Performance Study Approach

The merits and shortcomings of optimistic and conservative execution have been well studied in the past. Nevertheless,
a comparative study on their performance on large parallel computing platforms has remained relatively unexplored
in the literature. Here, we design a set of experiments to uncover some of the important factors underlying their
performance effects when executed with various event workloads on increasingly larger numbers of processor cores.

A few, simplified insights on the relative performance of conservative and optimistic execution have been well known
for a long time. For example, it is well known that low lookahead values can make conservative execution perform
exceedingly poorly. Similarly, optimistic execution overheads may be high when compared to excellent performance
of conservative execution with high lookahead values. However, relative performance in the intermediate range of the
lookahead spectrum, and in relation to several other important parameters, is not well understood.
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Moreover, the specific characteristics of the hardware can have a significant impact on the runtime efficiency of
either synchronization method. For example, the very high speed of global reductions afforded by special hardware (as
the collectives network in the Blue Gene machines) can be expected to make conservative execution stay competitive
with optimistic execution even with low lookahead scenarios. The high speed of communication can also, similarly,
help optimistic execution by helping to keep the working set small (countering the increased memory use for optimistic
processing). The reduced working set can help optimistic execution stay within the cache size, to make the event cost
sufficiently low to compete well with conservative execution even with large lookahead.

Also, the amount of blocked time spent in synchronization depends on the time the last processor joins the collective
synchronization. Such an imbalance is in turn affected by timestamp distribution, the number of events, and the event
granularity. Note that the imbalance is not in terms of the number of available events per processor, but in fact in the
number of processable events within a given simulation time window.

The effectiveness of using special hardware support, such as the collectives network in the Blue Gene machines,
may be reduced due to the staggered event timestamp distributions.

With strong scaling, increasing the number of processors has the effect of increasing the minimum timestamp in
the priority queues across processors. This indirectly affects the relative goodness of a given lookahead value, since
the lookahead becomes smaller relative to the simulation time window defined by the combined set of all minimum
timestamps across all processors.

1.3 Study Outline

It is the net, empirical results of all the aforementioned effects that are quantitatively explored here. Specifically, the
following factors are considered in our study:

Lookahead: Here, we experiment with increasing values of lookahead (LA). We defined four values for lookahead,
to which we will refer as little LA, small LA, medium LA, and large LA. For the specific benchmarks used in the
experiments, they are 0.01, 0.1, 0.5, and 0.9, respectively. Note that lookahead values must be viewed relative to event
time distribution. It is not sensible to evaluate as an absolute value, but it is only important as a quantity relative to
the minimum timestamp in the priority queues of each processor.

Event timestamp distribution: This has a direct effect on the amount of concurrency presented to the simulation
engine. To evaluate its effect, event timestamp distribution across processors is varied across processors within any given
simulation time window. Two distinct distributions are exercised, to which we will refer as staggered and non-staggered.
These two workloads are described later in the benchmark descriptions.

Processor core count: The effect of increasing the number of processor cores in strong scaling experiments is
evaluated in three processor configurations, namely, small, medium, large. For the experiments, we used 1,024 cores for
the small configuration, 8,192 cores for medium, and 16,384 for the large configurations. Although supercomputers with
even larger configurations are indeed in existence, 16,384 processor cores represents a sufficiently large configuration
on which detailed comparative performance is to be explored in parallel discrete event simulation.

Performance effects: The effect on overall performance by the speed and cost of synchronization (global virtual
time or lower bound on timestamp) computations is also instrumented and analyzed in the experiments. When a
good amount of concurrency is inherently available within the model, then, the specific synchronization scheme used
can directly determines the parallel runtime performance, and poor performance often is reflected in the observed
synchronization cost.

The metrics of interest in the experiments include the following: (i) Aggregate event rate, (ii) Global synchronization
frequency, (iii) Blocked time spent in synchronization, (iv) Rollback efficiency of event processing (optimistic only),
and, finally, (v) Parallel speedup and overall efficiency.

2 IMPLEMENTATION
2.1 Hardware Platform

For this performance study, we use the 32,768 processor Blue Gene/L system. Currently, this system ranks #80 on
the Top500 Supercomputer List (see www . top500 .org). What makes the Blue Gene system unique relative to other
supercomputer systems, like the Cray XT series, is that the Blue Gene/L architecture balances the computing power of
the processor against the data delivery speed of the network (Adiga and et al. 2002). This design goal led designers to
create smaller, lower power compute nodes comprising two 32-bit IBM PowerPCs running at only 700 MHz each, with
a peak memory of 1.0 GB per node. Each Blue Gene rack is composed from 1,024 nodes consisting of 32 drawers with
32 nodes in each drawer. Additionally, there are specialized I/O nodes that perform all file I/O. Nominally, there is one
I/O node for every 32 compute nodes. Interconnecting both drawers of nodes and racks are five specialized primary
networks. The most relevant for PDES implementations are the point-to-point and the global collective networks. The
point-to-point network is a 3-D torus consisting of 12 bi-directional links with a bandwidth of 175 MB/s each in the X,
Y and Z directions. The global collective network enables data collection, reduction and redistribution to all nodes (or a
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subset) with a latency of 5 us. As we will see in the performance results, this collective network is critical to efficiently
computing GVT and LBTS. The interface for sending data over the Blue Gene network is MPI (Adiga and et al. 2002).

2.2 Simulation Software

Figure 2.2(a) shows the high-level algorithm for ROSS’ implementation of Time Warp. The first action in the scheduler
is to process network event communication (sends and receives). Events are sent and recieved using MPI_Isend and
MPI_Irecv respectively. These are asynchronous routines in that message send requests and recieve requests are
posted to the underlying message transport layer but not necessarily complete when either of these routines returns.
The simulation engine must determine if these message requests have completed before reusing the buffers holding
the message data. The frequency at which this polling is done is directly affected by the number of events processed
during the batch of events executed. In order to poll frequently, a small batch_size, as low as 1, can be selected.

A GVT computation is initiated each time the main event scheduler loop (see below) executes GVT_interval
iterations. Typically values for GVT_interval range from 512 to 2048 and GVT_interval *batch_size number
of events are processed between successive GVT computations. These two parameters can have a significant impact
on model performance as they help to indirectly “throttle” overly optimistic execution by either increasing the GVT
frequency or increasing the polling frequency for off-processor messages. Once a GVT computation is instantiated, the
first step is to account for all events in the system. This is accomplished by computing a reduction on the difference in
the number of events sent and received by each processor, and calls the MPI_Allreduce function for this computation.
For a more detailed description of ROSS we refer the reader to (Bauer Jr., Carothers, and Holder 2009).

1: while do

2:  process network queues

3 if IGVT_interval- - then 1: while do

4 start GVT computation 2:  process network queues

5:  end if 3:  process inbound event queue

6:  process inbound event queue 4:  if smallest event >= LBTS + Lookahead then
7:  process canceled event queue 5: compute new LBTS

8:  if GVT computation started then 6: end if

9: compute GVT 7. if simulation end time reached then

10: reset GVT_interval 8 break

11:  end if 9:  end if

12:  if simulation end time reached then 10:  process batch_size events suject to event.ts <
13: break LBTS + Looahead

14:  end if 11: end while

15:  process batch_size events
16:_end while

(a) Optimistic (b) Conservative

Figure 1: (a) Implementation of the Time Warp event scheduler loop. The key parameters are GVT_interval and
batch_size. (b) Implementation of the conservative event scheduler loop. The key parameters are Lookahead.

The conservative event scheduler is shown in Figure 2.2(b). The core part of the scheduler is very similar to
that of Time Warp. First, the network queues are read for any new incoming messsages followed by inqueuing those
new events in the priority queue. Next, a check is made to ensure that the next event to be processed is earlier than
LBTS + Lookahead; otherwise, an LBTS computation is initiated and completed. If the computed LBTS is beyond the
end time, then the simulation terminates, otherwise it enters the “batch” processing loop and stays there for batch_size
events unless one of them falls outside the LBT'S + Lookahead time window. The same MPI_Allreduce reduction
algorithm is used to compute LBTS as GVT.

2.3 Benchmarks

The benchmark used in our performance study is PHOLD. Here, PHOLD is configured with 10% remote messages
with any-fo-any inter-LP event communication schedule, with no specific neighborhood bias. A total of 1,048,576
LPs are used where each LP has 10 initial start events. This configuration is consistent with previous performance
studies (Perumalla 2007, Bauer Jr., Carothers, and Holder 2009). Lookahead for PHOLD is configured to be one
of 0.01, 0.01, 0.25, 0.5, and 0.90 but Time Warp is not configured to leverage the lookahead directly, but
naturally gets exploited by the GVT computation due to event timestamps being later in time. From this the mean
of the exponential distribution is set to 1 — Lookahead. For optimistic event processing, reverse computation is
used (Carothers, Perumalla, and Fujimoto 1999).
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Figure 2: 1024 processor performance as a function of lookahead, and staggered vs. non-staggered variants of PHOLD
models, with conservative and optimistic synchronization.

To properly exercise the potential variation of timestamp distribution across processors, we introduce a new parameter
into PHOLD, we call “stagger”. Here, event timestamps are drawn similar to the non-staggered (normal) case, except
for one variation, which is that the initial timestamps (for all the PHOLD message population) are staggered in time
across processors. The staggering is achieved by adding a varying amount of initial delay to the event timestamps
generated in the initialization routine. This has the effect of varying the event timestamp distribution across processors
(more precisely, LPs) within any given simulation-time window. In the non-staggered (normal) case, event timestamps
are computed as TS = Lookahead + EXP(1 — Lookahead) as previously indicated.

3 EXPERIMENTAL RESULTS
3.1 Observed Performance - 1K Cores

Figure 2(a) shows the observed event rates on 1,024 cores. As expected, conservative execution suffers poor performance
with low lookahead values, while optimistic execution delivers excellent event rates even with the low lookahead setting.
This is due to the fact that conservative execution must synchronize very frequently across all processors. The fact
that synchronization cost is the underlying reason for poor performance is evident from the synchronization statistics
plotted in Figure 2(b). With low lookahead, conservative execution results in over one million GVT computations,
consuming majority of overall execution time in the time spent in GVT computations.

The poor performance of conservative execution with low lookahead, and the excellent performance of optimistic
execution with the same lookahead, are both expected results. However, a remarkable observation is that the conservative
execution recovers much of the performance loss even with a minor increase in lookahead. It is seen that, while the
aggregate event rate is a low 50 million events per second with the low lookahead 0.01, it leaps to a high event
rate even with small lookahead of 0.1, making it competitive with optimistic execution. Also interesting is the fact
that conservative execution continues to deliver improvements in event rate with increasing lookahead values, while
optimistic execution does not improve its performance equally faster with increasing lookahead values. This can be
explained by noting the time spent by optimistic execution on GVT computations with increasing lookahead. With
increased lookahead, event timestamps are scattered a bit further in simulation time, making it possible for optimistic
execution to be ill balanced (in simulation time) across processors. This ill balance makes the slower processor arrive
at the GVT computation later than all others, thus making every processor incur the cost of blocked time. The increase
in the total time spent in GVT computation (even while the frequency of GVT computation remains relatively constant)
is evident in Figure 2(b), showing the increasing blocked time per GVT computation in optimistic execution. This
observation is further supported by the fact that rollback cost does not contribute to this overhead: Figure 5 shows that
the cost of rollbacks is negligible for 1K processor cores, giving close to 100% efficiency of event computation.

Note that optimistic execution also improves its performance with increasing lookahead (e.g., improving the event
rate when moving from lookahead of 0.5 to 0.9). However, with large lookahead, the combination of the GVT
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Figure 3: 8,192 processor performance as a function of lookahead, and staggered vs. non-staggered variants of PHOLD
models, with conservative and optimistic synchronization.

computation overhead and other minor rollback-support cost contributes to a slightly lower (20%) performance of
optimistic execution compared to conservative execution. With larger number of processors, however, we see (later in
this section) that conservative execution fails to improve upon optimistic execution even with large lookahead.

The effect of staggered vs. non-staggered execution is observed to be insignificant in the 1K processor configuration.
For conservative execution, this can be attributed to the fact that: (a) with low lookahead, both staggered and non-
staggered executions offer little concurrency, resulting in very poor performance in both cases, and (b) with larger
lookahead values, GVT is computed sufficiently fast to be able to exploit even small amounts of concurrency (only
a few events per GVT per processor) enabled by the lookahead for the non-staggered case. Similarly, for optimistic
execution, the amount of concurrency (in terms of the number of events available to safely process between two GVT
computations) is sufficiently large even with staggered workload, making the benefits from higher concurrency in the
non-staggered case insignificant compared to the staggered case.

3.2 Observed Performance - 8K Cores

Figure 3(a) shows the observed event rates on 8,192 cores. Unlike the case with 1K cores, the results show clear
effects of staggered vs. non-staggered workloads and optimistic vs. conservative execution across all lookahead values
(except for the degenerate case of conservative execution with low lookahead). First, the improvement in conservative
execution performance from low lookahead to small lookahead is not as dramatic. This is due to the fact that the
workload is divided across eight-fold as many processors as in the 1K case, thereby reducing the concurrency even
with increased lookahead. The effect of reduced concurrency with conservative execution continues even to medium
lookahead (0.5), and it finally attains the full potential performance reaching that of optimistic execution only on the
largest lookahead (0.9). Another difference is that the difference in performance between conservative and optimistic
execution becomes insignificant even with the largest lookahead.

The effects of staggered vs. non-staggered event workloads (that were negligible in the 1K case), however, begin
to appear with 8K cores. Staggered case, as expected, constrains the overall concurrency offered by the model, thereby
translating to reduced performance, compared to non-staggered (normal) event timestamp distribution. Optimistic
execution incurs larger inefficiency from rollbacks, as evident in the 8K Proc/Stag case in Figure 5, showing a drop to
85% efficiency. Conservative execution, analogously, suffers increased GVT cost, as Figure 3(b) shows increasing time
spent per GVT computation. Although the total time spent in GVT computation is the same across lookahead values of
0.5 and 0.9, the frequency is lower for lookahead of 0.9, indicating that each GVT computation more expensive with
the larger lookahead.

Overall, optimistic execution sustains high event rates across all lookahead values, showing the well-known resilience
to lookahead values. Also observed is a slight increase in performance with larger lookahead values with normal (non-
staggered) workload, since optimistic execution also is capable of benefiting from timestamps being farther into the
future due to larger lookahead values. Conservative execution improves in performance (nearly linearly), starting from

683



Carothers and Perumalla

almost zero with low lookahead, all the way to exceeding the performance of optimistic execution (by up to 15% on
staggered case) with high lookahead.

3.3 Observed Performance - 16K Cores

Figure 4(a) shows the observed event rates on 16,384 cores. The performance trends are almost similar to those in the
case of 8K cores, with the only major difference being that conservative and optimistic executions are roughly identical
with the largest lookahead, while optimistic execution performs better than conservative with all lower lookahead values.

The highest aggregate event rate observed in all the experiments in over 3 billion events executed per wall-clock
second, with optimistic execution on 16K cores with a lookahead of 0.9 on the non-staggered workload. Event efficiency,
however, is observed to be lower on the staggered workload on 16K cores, but not lower than 70% for any scenario. The
GVT statistics reflect relatively well-balance and consistent event execution. Figure 4(b) shows the GVT computation
statistics for the 16K cores case. For optimistic execution, the trend of increased blocked-time per GVT computation with
increased lookahead values is observed. For conservative execution, the dramatic reduction in GVT computation time
is also observed when lookahead is slightly improved (from 0.01 to 0.1), with less dramatic, but nearly linear, reduction
in the number of LBTS computations. This implies that with higher lookahead and associated less frequent LBTS
computations, that the model’s execution become de-synchronized in simulated time across processors. Thus, there are
some processors who are late to the global reduction operations which results in the increase time per LBTS. This is very
to the OS lJitter problem encountered on supercomputer systems (Beckman, Iskra, Yoshii, Coghlan, and Nataraj 2008).
A similar phenomenon is observed for optimistic.

4 OVERALL QUALITATIVE SUMMARY

The quantitative results provided in the earlier section may be summarized in a qualitative manner as follows. Ignoring
the precise quantiative levels of performance variation, and, instead, focusing on relative performance, Table 1 shows
the performance of conservative execution relative to optimistic execution for the same benchmarks.

In the table, X>>>Y indicates X performs significantly better than Y, X>>Y indicates X performs noticeably
better than Y, X>Y indicates X performs slightly better than or comparably to Y, X<Y indicates X performs slightly
worse than Y, X=Y implies X’s performance is roughly the same as that of Y within the margin of experiment error,
and, similarly, X<<Y indicates that X performs poorly compared to Y.

In Table 2, the differences in the performance between the staggered and non-staggered cases are shown, for
conservative and optimistic execution separately. The relative comparison operators for this table are similar to the ones
used for Table 1 described earlier.

16,384 Processor Performance 16K Processors: GVT/LBTS Frequency vs. Time Spent
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Figure 4: 16,384 processor performance as a function of lookahead, and staggered vs. non-staggered variants of PHOLD
models, with conservative and optimistic synchronization.
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Optimistic Event Efficiency
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Figure 5: Optimistic event efficiency as a function of lookahead, and staggered vs. non-staggered variants of PHOLD
models.

Lookahead || 1K cores 8K cores 16K cores

Low Opt >>> Cons || Opt >>> Cons || Opt >>> Cons
Small Opt > Cons Opt > Cons Opt >> Cons
Medium Opt < Cons Opt > Cons Opt > Cons
Large Opt << Cons Opt < Cons Opt = Cons

Table 1: Qualitative summary of relative performance between conservative and optimistic execution

1K cores 8K cores 16K cores
Lookahead | Conservative | Optimistic || Conservative | Optimistic || Conservative | Optimistic
Low S = NS S = NS S = NS S < NS S = NS S << NS
Small S = NS S = NS S < NS S < NS S < NS S << NS
Medium S = NS S =NS S < NS S < NS S << NS S << NS
Large S = NS S = NS S < NS S < NS S << NS S << NS

Table 2: Qualitative comparison of relative performance on staggered (S) vs. non-staggered (NS) benchmarks

It is also important to note that the synchronization (GVT) frequency for optimistic execution can be relaxed up to
the level allowed by available memory. Even with Blue Gene’s low memory size, the memory seems to be sufficient
to offset the larger blocked time (during GVT computation) relative to conservative synchronization.

5 CONCLUSIONS

We have attempted to provide guidance here to the greater PDES community on the conservative vs. optimistic
execution performance on extant supercomputing systems. As our performance data suggest, the question of deciding
on which parallel synchronization strategy to employ for discrete-event models depends on a number of factors and
whose answer may not be immediately obvious. In particular, the model’s inherent lookahead, how events are scheduled,
event destination, and supercomputer hardware (network and processor performance) all come into play to determine
performance.

Although clear winning arguments are difficult to make in general, a few inferences such as the following may be
made based on the performance results reported here from the synthetic benchmarks:

e Low lookahead can make conservative execution perform very poorly (as one expects), with performance
degrading significantly with increasing numbers of processors.
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e Even with low lookahead, however, conservative execution may be acceptable for certain applications in which
optimistic execution is either infeasible or prohibitively expensive to develop. From the experiments, optimistic
execution is observed to be only 30x faster than conservative execution on 16,384 processors in the worse
case.

e Investment of effort in identifying/increasing lookahead in the model can provide significantly higher payback
in terms of runtime performance, especially on a few thousand processors. From the experiments, the largest
gain in performance for a small increase in lookahead was observed on 1,024 and 8,192 processors.

e The amount of additional gain from investments in identifying ever greater values of lookahead may not be
sufficiently justified by the smaller increases in performance that would be obtained in return, unless the very
highest performance levels are desired, regardless of the model development cost.

e For fine-grained models, it appears that optimistic execution is a clear winner, almost independent of the
amount of lookahead in the application. This appears to hold regardless of the timestamp distribution across
processors, as long as there is sufficient concurrency inherent in the application/model itself. Thus, if efficient
rollback support is possible to develop for an application (e.g., using either incremental state saving, or using
reverse computation), optimistic execution is a good choice for obtaining good runtime performance.

For the future, we plan to extend our performance study to include larger processor counts and different supercomputer
systems, such as the Cray XT3, which has a significantly faster processor than the Blue Gene/L but without a dedicated
global reduction network. This architectural difference may be expected to affect the phase-performance points for both
conservative and optimistic protocols.
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