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ABSTRACT 

Agent-based simulation (ABS) is a recent modeling technique that is being widely used in modeling 

complex social systems. Forrester’s System Dynamics (SD) is another longstanding technique for model-

ing social systems. Several classical models of systems, such as the Kermack-McKendrick model of epi-

demiology, the Lotka-Volterra equations for modeling predator-prey relationships, and the Bass model for 

innovation diffusion are formulated as systems of differential equations and have corresponding System 

Dynamics representations as difference equations. The ABS and SD modeling approaches take funda-

mentally different perspectives when modeling a system, which can be characterized as bottom-up (ABS) 

versus top-down (SD). Yet many systems can be equivalently modeled by either approach. In this paper, 

we present a formal specification for SD and ABS models, use the specification to derive equivalent ABS 

representations, and present an example of an SIR epidemic model having SD and ABS counterparts. 

1 INTRODUCTION 

Forrester’s System Dynamics (SD) is a commonly used systems modeling technique with a long tradition 

of applications to social systems (Forrester 1961; Forrester 1971; Roberts et al. 1983, Sterman, 2000). 

Systems Dynamics models consist of a set of difference equations (similar to differential equations but 

with a fixed time step) that are recursively solved forward through time. In general, SD models consist of 

a relatively small number of state variables that completely define the state of the system being modeled, 

and a specification of the rate of change of each of the state variables, which depends on the previous sys-

tem state. SD has its roots in dynamic systems and control theory, and emphasizes the importance of 

feedback effects between aggregate level system components as strong determinants of system behavior. 

 Agent-based simulation (ABS) is a relatively recent modeling technique that is being widely used to 

model complex systems composed of interacting, autonomous “agents” (Epstein and Axtell 1996, Bona-

beau 2001, North and Macal 2007, Macal and North 2009). Agents have behaviors, which are often de-

scribed by simple rules. Agents interact with and influence each other, learn from their experiences, and 

adapt their behaviors so they are better suited to their environment. By modeling agents individually, the 

full effects of the diversity that exists among agents with respect to their attributes and behaviors can be 

observed as they give rise to the dynamic behavior of the system as a whole.  

 The ABS and SD modeling approaches take fundamentally different perspectives when modeling a 

system, which has been characterized as bottom-up (ABS), i.e., modeling a system by modeling the indi-

vidual entities that compose the system and their interactions, versus top-down (SD), i.e., modeling a sys-

tem by breaking it into its major components and modeling the component interactions. Yet many sys-

tems can be modeled by either the SD or ABS approach, as has been noted by several researchers. For 

example, Scholl (2001) describes agent-based modeling and System Dynamics as two prominent tech-

niques for modeling nonlinear systems and identifies areas in which the two modeling traditions overlap 

as well as complement each other, concluding with a call for more research on the subject. Comparing the 
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SD and ABS approaches to modeling the same problem has been addressed by Parunack (1998) in model-

ing supply chains, Marin et al. (2006) in work force modeling, and Norlin (2007) in modeling ecologies, 

among others.  

 Several classical system models, such as the Kermack-McKendrick model of epidemic dynamics 

(Kermack and McKendrick 1927), the Lotka-Volterra equations for modeling predator-prey relationships, 

the Bass model for innovation diffusion, chemical kinetics models, and many others are formulated as 

systems of ordinary differential equations and have corresponding System Dynamics representations as 

difference equations. It is well-known that the Kermack-McKendrick model in particular can be formu-

lated as an agent-based simulation also, and produces similar results to an SD formulation (Bagni et al. 

2002, Borshchev and Filippov 2004, Wakeland et al. 2004, Epstein et al. 2008, Rahmandad and Sterman 

2008). In this paper, we elaborate on this similarity and describe the specifics of how to transform a Sys-

tem Dynamics model into an “equivalent” ABS model. By equivalent, we mean that both models 

represent the same system down to its detailed specifications using the fullest capabilities that each ap-

proach can provide. The equivalent SD and AB models are different in form and do not necessarily pro-

duce the same numerical results given identical assumptions. We will illustrate and elaborate on this 

equivalency by describing how to transform the Kermack-McKendrick SIR model of epidemic dynamics 

into an agent-based simulation of the same system. The transformation process is a general one, however, 

and should be applicable to any SD model that has strong component, or agent, interactions.  

 This paper is organized as follows. In Section 2 we provide useful definitions of SD models and the 

subset of the type of agent-based models considered in this paper. Section 3 describes the procedure for 

transforming an SD model into two equivalent ABS representations. Section 4 presents comparative 

model results, and we conclude with directions for further work in the area.  

2 DEFINITIONS OF SD AND ABS MODELS 

In this section we demonstrate the equivalence between a certain kind of agent-based model and a System 

Dynamics version of the model. First we establish a formalism for the two approaches.  

2.1 Definition of System Dynamics Model 

We formally define a System Dynamics model, SDM, as a triple: 

 

 SDM = {St, Rt(St-1), T} 

 

where: St is the set of state variables at time t, Rt(S) is the set of rate variables at time t, dependent on the 

state variables from the previous one (or possibly more) time periods, and T is the “temporal” simulation 

engine, the mechanism that steps the model through time. T is logically simplistic in that it simply im-

plements updating the simulation time (the simulation clock) from time t to (t+∆t) and updating the values 

of the state and rate variables. The standard SD specification also includes “auxiliary” equations and va-

riables defined for convenience by partitioning the space of rate variables. For purposes of this discussion, 

we assume the state equations are in reduced form, devoid of auxiliary variables and auxiliary equations. 

Implicitly throughout, we also assume that the SD models of interest here are ones that include some ele-

ments of decision making behavior, as opposed to models of purely physical processes, such as models of 

world weather systems or climate dynamics. Such SD models allow comparisons to be made with agent-

based models. 

Solving a System Dynamics model is equivalent to solving a set of ordinary differential equations us-

ing the forward Euler method in which the step size, ∆t, is set to one (Ascher and Petzold 1998). In gener-

al, the solution of a set of difference equations, such as comprising a System Dynamics model, is not 

equivalent to a solution obtained for the corresponding differential equation model, but there special cases 

exist in which the equivalence does hold (Mickens 2002, Letellier et al. 2004). We make these compari-

sons for the SIR epidemic model addressed later in the paper.  
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2.2 Definition of Agent 

Although there is not universal agreement on the definition of an agent, in part because it depends on the 

use of the model, from a practical modeling standpoint, agents have certain essential characteristics to 

qualify as agents (Macal and North 2010):  

 

• An agent is a self-contained, modular, and uniquely identifiable individual. The modularity re-

quirement implies that an agent has a boundary and one can easily determine whether something 

is part of an agent, is not part of an agent, or is a shared attribute.  

• An agent is autonomous and self-directed. An agent can function independently in its environ-

ment and in its interactions with other agents, at least over a limited range of situations that are of 

interest in the model. An agent has behaviors that relate information sensed by the agent to its de-

cisions and actions.  

• An agent has a state that varies over time. Just as a system has a state consisting of the collection 

of its state variables, an agent also has a state that represents the essential variables associated 

with its current situation. An agent’s state consists of a set or subset of its attributes. The state of 

an agent-based model is the collective states of all the agents along with the state of the environ-

ment. An agent’s behaviors are conditioned on its state.  

• An agent is social, having dynamic interactions with other agents that influence its behavior. 

 

 Agents may also have other optional but useful characteristics, such as being adaptive, goal-directed, 

and heterogeneous across the population of agents. For the purposes of the models discussed in this paper, 

in addition to the essential characteristics noted above, only the heterogeneity aspect of agents is needed.  

2.3 Definition of Agent-based Model 

We define an Agent-based Simulation model, ABSM, as a triple: 

 

 ABSM = {At, M(At-1)t, I }, 
 

where: At is the set of agents including their states at time t, M(At-1) is the set of mechanisms that operate 

on the agents in groups or individually at time t, which is specified as dependent on the states of the 

agents from the previous time period(s), and I is the agent interaction protocol. An example of I would be 

the procedure for determining which agents act and interact at any point in time. It should be noted that 

this particular specification ABSM is not meant to be a completely general specification for all ABS; 

here, we only consider the subclass of ABS in which agent actions and interactions occur at fixed time in-

tervals (i.e., time-stepped simulation) for purposes of more direct comparison with the SD approach. A 

more general agent interaction protocol would be one in which agents actions and interactions occur in 

response to certain endogenous conditions in the simulation. There are many agent-based simulation in 

which these complexities are essential parts of the agent model. 

 We next state a formal result on the relationship between SD and ABS models reproduced from Mac-

al (2006). 

2.4 Equivalence Theorem 

Agency Theorem for Systems Dynamics: Let S be the set of all System Dynamics models SDM = {St, 

Rt(St-1), T} and let St+1 = ESDM[St] be the equivalent iterated map representation for SDM. Assume 

ESDM is invertible. Let A be the set of all Agent-based Simulation models ABS = {At, Mt(At-1), I }. 

Then, S is a strict subset of A such that S� A . 

Proof: First, we note that assuming invertibility of ESDM, any system of state and rate equations can be 

resolved explicitly for the subset of variables that are agent decision variables as functions of the remain-
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ing system state variables. If agent decision variables are not explicitly defined, they may be introduced 

into the model through the use of auxiliary variables. To prove the theorem it suffices to note that the set 

of agent interaction mechanisms that define agent interactions at specific discrete times, I, includes the 

time advancement mechanism T. 

 The theorem simply states that every well formulated SD model has an equivalent formulation as an 

ABS model of the class of time-stepped ABS models considered here. In the following section, we derive 

two corresponding agent-based models from an SD formulation of the Kermack-McKendrick SIR model.  

3 TRANSFORMING AN SD MODEL INTO AN EQUIVALENT ABS 

3.1 The SIR Model 

The SIR model was originally proposed by Kermack and McKendrick (1927) and has been used widely to 

understand and predict the spread of actual epidemics. The population is divided into three groups or 

compartments consisting of susceptible individuals, denoted by S, infected individuals, denoted by I, and 

recovered individuals, denoted by R (thus S-I-R):  

 

 

dS

dt
= −β S I / N

dI

dt
= β S I / N −γ I

dR

dt
= γ I

Initial conditions : S0 = N −1, I0 =1, R0 = 0.

 (1) 

 

where β is related to the number of contacts an individual has with other individuals and the likelihood 

that an infected individuals transmits the infection to a susceptible individual upon contact, γ is the rate at 

which infected individuals recover from an infection, which is taken as 1/(mean duration of illness), and 

N is the population size, assumed to be constant in this basic representation. In the standard SIR model, 

the initial conditions for the population consist of one infected individual and no recovereds. 

 The SIR model is also referred to as the homogeneous mixing model because of three implicit as-

sumptions in the formulation: 1) the population is fully mixed, meaning that individuals with whom a 

susceptible individual has contacts are chosen at random from the whole population, 2) all individuals 

have approximately the same number of contacts in the same period of time, and 3) all contacts transmit 

the disease with the same probability. All infected individuals are assumed to transmit the disease to the 

same number of people, and the all susceptible people have the same chance of becoming infected. A 

number called the basic reproduction number R0, which is the initial value of dI/dt, is often used to indi-

cate the initial severity of an epidemic. 

 Equation system (1) represents the number of susceptibles that become infected in the time interval 

∆t. Let ∆S be the number of susceptibles becoming infected in ∆t. Then, ∆S = (number of susceptibles, S) 

× Pr[Susceptible becomes infected in ∆t], where Pr[Susceptible becomes infected] = Pr[Susceptible con-

tacts an infected] × Pr[infection is transmitted from an Infected to a Susceptible upon contact], where 

Pr[Susceptible contacts an infected] = (Number of contacts per individual) × Pr[A contacted individual is 

infected], where Pr[A contacted individual is infected] = I / (Number of individuals in the population, N). 

 Therefore, ∆S = (Number of susceptibles, S) × (Number of contacts per individual) × I / (Number of 

individuals in population, N) × Pr[infection is transmitted from an infected individual to a susceptible in-

dividual upon contact] ∆S = S × (number of contacts per individual) × I / N × Pr[infection is transmitted 

from an infected individual to a susceptible individual upon contact] ∆S = (Number of contacts per indi-
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vidual) × Pr[infection is transmitted from an infected individual to a susceptible individual upon contact] 

× S I / N.  

 Hence, as noted by Sterman (2000), β in (1) is a composite of two factors, the number of contacts per 

individual, βc, and the probability that the infection is transmitted from an infected individual to a suscept-

ible individual upon contact, βI, as in: 

    β = βc βi (2) 

 

Whereas, in (2) the composite of βc and βi appears in the standard SIR model (1), βc and βi are treated 

separately in the agent-based SIR model, Model 2, as described below. 

Note, in this derivation the number of contacts per individual is assumed to be a constant for all disease 

states. That is, an infected individual has as many contacts with others as does a susceptible individual. 

For a constant population size, N = S + I + R. The output of a typical solution of the SIR model in (1) is 

shown in Figure 1. The three population states (numbers of susceptible, infected, and recovered individu-

als) are shown as they vary over time. The output shows an epidemic, as the entire population of agents 

becomes infected and the number of susceptible individuals declines to zero over the course of the simu-

lation. Note, the smooth nature of the curves due to the deterministic nature of the model and the mean-

field characterizations of agent interactions. Key statistics that one might be interested in from such a si-

mulation are the peak number of infected individuals and the time at which the peak occurs. For this si-

mulation run with a population size of 1000, the peak number of infected individuals is 593 occurs at time 

21. 

 
Figure 1: Typical SIR model solution showing progression of population disease states for susceptible, in-

fected, and recovered compartments. In this example, the entire population becomes infected and even-

tually recovers. 

3.2 The System Dynamics SIR Model 
The System Dynamics version of the SIR model is derived by substituting into (1): 

 

dS

dt
=

∆St +1 − ∆St

∆t
 

 

which results in a system of difference equations: 
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St +1 = St − β St It / N( )∆t

It +1 = I t + β St I t / N −γ I t( )∆t

Rt +1 = Rt + γ It( )∆t

Initial conditions : S0 = N −1, I0 =1, R0 = 0.

 (3) 

 

 System (3) has a solution for ∆t = 1, which is a common setting for a System Dynamics model, that is 

reasonably close to the solution of the original differential equation system (1); and as ∆t → 0, the solu-

tion of (3) approaches the solution of (1). For small ∆t, solving (3) recursively for t = 0, 1, 2,… is equiva-

lent to applying the forward-Euler method to (1), a common method of solving ordinary differential equa-

tions numerically.  

3.3 Agent-based SIR Model 1 

We will consider two formulations of the agent-based SIR model, the compartmentalized ABS model, 

Model 1, and the individual-based ABS SIR Model, Model 2. Model 1 is something of a “naïve” agent-

based model. Although the agents in Model 1 satisfy the criteria for it to be an agent-based model as 

stated in Section 2.2 and provides equivalent results to the SD model (results from all models are com-

pared below), it provides no additional information or implementation advantages over the SD model. It 

is included here for the sake of illustration. (Model 2 is a fully individual-based agent model and provides 

additional information over the SD model.) 

 In the following description, we specify the models in pseudo-code, taking a decidedly object-

oriented programming approach, in which agent types are defined as classes. Agent interactions are speci-

fied by methods defined at the class level. Methods operate on the agent instances in the corresponding 

agent classes to model agent interactions (in the case of the SIR model agent interactions are contacts) 

and to update the agent states through time. 

 For Model 1, we define two agent classes in pseudo-code consisting of the population, with popula-

tion parameters, and agent compartments consisting of all individuals in a particular disease state: 
 

Agent_Class = population[population_size,βc, βi, γ] 
 

Agent_Class = agentCompartment[agent_disease_state (compartment),  

     number_of_individuals_in_compartment] 

 

For agent compartments, the state of an agent at any time is the number of agents in the particular disease 

state. The agent compartment state is the only information in the model that is dynamically updated. All 

other parameters are static.  

 Based on the agent class definitions above, there is one population instance, with total population N, 

and three agent compartment instances, corresponding to disease states S, I, and R: 
 

Population = population[N, βc, βi, γ] 
 

Susceptible_Agent = agent[“S”,N-1] 

 

Infected_Agent = agent[“I”,1] 

 

Recovered_Agent = agent[“R”,0] 

 

 We define the following class-specific methods that operate on the instances, one method per term in 

the disease state transition equations, to complete the model specification. The following pseudo-code de-

fines these methods. 
 

Method_Susceptible_To_Infected (remove βIS/N individuals from S)=( 
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 setNumberOfIndividualsInCompartment[Susceptible_Agent] = getNumberOfIndividual-

sInCompartment[Susceptible_Agent] - getβ[Population] * getNumberOfIndividualsIn-
Compartment[Susceptible_Agent]* getNumberOfIndividualsInCompart-

ment[Infected_Agent] / getN[Population] 

) 

 

Method_Infected_From_Susceptible (add βIS/N individuals to I)=( 
 incrementNumberOfIndividualsInInfectedCompartment1 = getNumberOfIndividualsIn-

Compartment[Infected_Agent] + getβ[Population] * getNumberOfIndividualsInCom-
partment[Susceptible_Agent]* getNumberOfIndividualsInCompart-

ment[Infected_Agent] / getN[Population] 

) 

 

Method_Infected_To_Recovered (remove γI individuals from I)=( 
 incrementNumberOfIndividualsInInfectedCompartment2 = getNumberOfIndividualsIn-

Compartment[Infected _Agent] – getγ[Population] * getNumberOfIndividualsInCom-
partment[Infected_Agent] 

) 

 

Method_Recovered_From_Infected (add γI individuals to R)=( 
 setNumberOfIndividualsInCompartment[Recovered _Agent] = getNumberOfIndividual-

sInCompartment[Recovered _Agent] + getγ[Population] * getNumberOfIndividualsIn-
Compartment[Infected_Agent]  

) 

 

Method_Update_Infected(increment number of I individuals) =( 

 setNumberOfIndividualsInCompartment[Infected _Agent] = getNumberOfIndividual-

sInCompartment[Infected _Agent] + incrementNumberOfIndividualsInInfectedCom-

partment1+ incrementNumberOfIndividualsInInfectedCompartment2 

) 

 

 In the agent-based formulation Model 1, the methods essentially define agent compartment behaviors, 

but the behaviors are rather vacuous. For example, the behavior for the susceptible compartment agent, 

Method_Susceptible_To_Infected, simply reduces the number of susceptible agents in the susceptible 

agent compartment. Implicit in this formulation is the connectivity between compartments. That is, S 

sends individuals to I, I receives individuals from S, I sends individuals to R, and R receives individuals 

from R. 

 To complete the description of Model 1, we would set up a time-stepped simulation in which the me-

thods operate on the agent instances at each time step and all the agent compartment states are updated.  

 We assert without proof that the ABS Model 1 produces exactly the same results for S, I, and R over 

time as does the SD model for a fixed-time step, ∆t, of length one.  

 In addition, we note that ABS Model 1 is easily extensible to finer and finer levels of granularity with 

respect to the compartments specified. For example, one may want to include activity states (home, 

school, work, travel, etc.) as well as disease states for the agents and specify compartment-specific con-

tact and transmission rates. One would then define activity-disease state compartments accordingly. Add-

ing compartments to the model would correspond to adding equations to the SD formulation.  

 If the transitions of agents between compartments are specified probabilistically, however, ABS 

Model 1 is readily extended to a be stochastic model. If compartment (state) transitions are probabilistic 

and not conditioned on past states, ABS Model 1 becomes a sort of Markov chain model. This is a model-

ing approach similar to that of Larsen (2007) for modeling heterogenous populations, and adopted by 

Aleman, Wibisono, and Schwartz (2009) in their recent agent-based model of pandemic influenza.  

3.4 Agent-based SIR Model 2 

 For Model 2, we define a single agent class in pseudo-code that covers any individual in the popula-

tion: 
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Agent_Class = agent[agent_unique_identifier,agent_disease_state, 

     time_of_recovery (if agent is in disease state “I” or“R”, if agent  

     is in disease state “S” is ∞)] 

 

 The state of an agent at any time is its particular disease state. The agent state is the only information 

in the model that is dynamically updated. All other parameters are static. Comparing with Model 1, in 

Model 2, the number of individuals in the population (in each disease state) is implied by the number of 

agents (in each disease state).  

 Based on the agent class definitions above, there are N agent instances in various disease states of S, 

I, and R, where N is the total population size. For example, denoting a list of items as enclosed in braces, 

an example of agent instances at initial time t0 is: 
 

Agents = { 

 agent[“agent 1”,“I”], 

 agent[“agent 2”,“S”], 

 agent[“agent 3”,“S”], 

  … 

 agent[“agent N”,“S”] 

} 

 

 In Model 2, the process for updating the agent states is more complex than in Model 1. At each time 

step, each agent’s disease state is updated by application of the method Me-

thod_Update_Agent_Disease State to each agent. The logic within the update method is shown in 

Figure 2. 

 

Figure 2: Logic of update method in AB Model 2 for updating the agent disease states at each time step 
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4 RESULTS  

4.1 Model Comparison 

In this section we compare the results from the differential equation, System Dynamics and agent-based 

SIR models. Figure 3 shows the comparison of the results for the number of infected individuals over 

time. Note the results from the modeling approaches are similar but not exact. The mean of the ABS 

Model 2 runs deviates considerably from the median results from Model 2 as well as the results from the 

other models. This is due to the fact that Model 2 is able to explicitly capture the inherent stochasticity of 

the system that is embedded in SIR formulation, specifically in the parameters βc,βi, and γ that are treated 

as random variables in ABMS Model 2.  

 
Figure 3: Comparison of model solutions for the SIR model 

4.2 Stochastic Variability 

Model 2 is stochastic in nature, in contrast to the differential equation, System Dynamics and agent-based 

Model 1, which are all deterministic. The range of stochastic variation in the results of the agent-based 

Model 2 for the number of infected individuals is shown in Figure 4, and compared to the deterministic 

solutions from the other modeling approaches. There is sizable variation across the Model 2 runs. A 70% 

envelopes contains the results from both the differential equation and System Dynamics models.  

 
Figure 4: Variability in number of infected individuals across 1000 runs of the ABS SIR Model 2 

379



Macal 

 

Figures 5 and 6 further elaborate and explain these results. Figure 5 shows the distribution of the peak 

numbers of infected individuals is bi-modal. This is because in some simulation runs of Model 2, an epi-

demic does not occur. In a small but significant number of cases, the number of contacts and the number 

of infecteds are not large enough to cause an increasing number of infected individuals, and the number of 

infections dies away before time 10 (Figure 6). 

 

 
 

Figure 5: Distribution of Peak Infected Individuals 

 
 

Figure 6: Distribution of Peak Infect Times 

CONCLUSION 

In this paper we have shown how to translate a System Dynamics model, which is deterministic, into an 

equivalent time-stepped, stochastic agent-based simulation. Specifically, probabilistic elements in the 

System Dynamics model are identified, isolated and translated into probabilities that are used explicitly in 

the agent-based model. For the SIR epidemic model considered here, the two probabilities were related to 

agent contact and to agent transmission of infection. The equivalency of the model results is not exact in 

terms of numerical accuracy for the reasons noted. We have shown that the agent-based model is able to 

provide additional information over what the System Dynamics model provides due to the explicit sto-

chastic nature of the agent-based model.  
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