
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

AN INTRODUCTION TO SYSTEMS MODELING AND SIMULATION WITH COLORED
PETRI NETS

Vijay Gehlot
Carmen Nigro

Villanova University

Center of Excellence in Enterprise Technology (CEET)
Department of Computing Sciences

800 Lancaster Avenue
Villanova, PA 19085, U.S.A.

ABSTRACT

Petri Nets provide a graphical notation for modeling systems and performing analysis. Colored Petri Nets
(CPNs) combine the strengths of ordinary Petri Nets with a high level programming language, making
them more suitable for modeling large systems. A CPN model is an executable representation of a system
that can be analyzed through simulation. CPN models are built using CPN Tools, a graphical software
tool and interface used to create, edit, simulate, and analyze models. This tutorial is meant to introduce
the reader to the vocabulary and constructs of CPNs and illustrate the use of CPN Tools in creating and
simulating models by means of a familiar, simple example. In particular, we show how to create a CPN
model of the call center example presented by White and Ingalls in their tutorial Introduction to Simula-
tion.

1 INTRODUCTION

Colored Petri Nets (CPNs) provide a modeling framework suitable for simulating distributed and concur-
rent processes with both synchronous and asynchronous communication. They are useful in modeling
both nondeterministic and stochastic processes as well. Simulation is experimentation with a model of a
system (White and Ingalls 2009). A CPN model is an executable representation of a system consisting of
the states of the system and the events or transitions that cause the system to change its state. Through si-
mulations of a CPN model, it is possible to examine and explore various scenarios and behaviors of a sys-
tem. The relatively small basic vocabulary of CPNs allows for great flexibility in modeling a wide variety
of application domains, including communication protocols, data networks, distributed algorithms, and
embedded systems (Peterson 1981, Jensen and Kristensen 2009).
 CPNs combine the graphical components of ordinary Petri Nets with the strengths of a high level
programming language, making them suitable for modeling complex systems (Jensen, Kristensen, and
Wells 2007). Petri Nets provide the foundation for modeling concurrency, communication, and synchro-
nization, while a high level programming language provides the foundation for the definition of data types
and the manipulations of data values. The CPN language allows the model to be represented as a set of
modules, allowing complex nets (and systems) to be represented in a hierarchical manner.
 CPNs allow for the creation of both timed and untimed models. Simulations of untimed models are
usually used to validate the logical correctness of a system, while simulations of timed models are used to
evaluate the performance of a system. Time plays an important role in the performance analysis of con-
current systems.

104978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Gehlot and Nigro

 CPN models can be constructed using CPN Tools, a graphical software tool used to create, edit, simu-
late, and analyze models. CPN Tools has a graphical editor that allows the user to create and arrange the
various Petri Net components. One of the key features of CPN Tools is that it visually divides the hierar-
chical components of a CPN, enhancing its readability without affecting the execution of the model. CPN
Tools also provides a monitoring facility to conduct performance analysis of a system. In addition, unlike
traditional discrete event systems, CPNs allow for state space based exploration and analysis, which is
complementary to pure simulation based analysis. State space analysis can be used to detect system prop-
erties such as the absence of deadlocks.
 This tutorial is intended to give the reader a basic introduction to CPNs, as well as CPN Tools, and
how they can be used in modeling and simulation. We will introduce the key concepts and vocabulary of
CPNs by means of simple illustrative examples. We then present the steps and creation of a CPN model
of the call center example discussed in White and Ingalls (2009). This tutorial requires no prior know-
ledge of Petri Nets, however, a basic understanding of modeling and simulation is assumed. Its emphasis
is on the practical use of CPNs and the CPN Tools environment in the simulation of various systems. For
sake of brevity, this paper does not discuss state-space based analysis. The rest of the paper will be orga-
nized as follows. In section 2 we introduce the details of Petri Nets and CPNs for the purposes of model-
ing and simulation. In section 3 we describe the CPN model of the call center example. Section 4 will be
devoted to the simulation and generation of statistics for the call center example. Details of interacting
with the CPN development environment (CPN Tools) are given in section 5.

2 ELEMENTS OF PETRI NETS AND COLORED PETRI NETS
CPNs are an extension of ordinary Petri Nets. Petri Nets can be used to model a wide range of various
systems. This section introduces the key components of CPNs and the underlying Petri Nets formalism.

2.1 Places, Transitions, and Arcs

Places, transitions, and arcs are the basic Petri Net components. A Petri Net can be thought of as a bipar-
tite graph consisting of two types of nodes, places and transitions. Places are displayed pictorially as cir-
cles (or ovals) and transitions are displayed as rectangles. An example Petri Net consisting of two places
P1 and P2 and one transition T2 is shown in Figure 1. Note that arcs connect a place to a transition or a
transition to a place, but they do not connect two places or two transitions.

Figure 1: Basic Petri Net configuration

The interpretation of places and transitions depends on the system being modeled. Places could

represent resource status or operations. Arcs often represent the flow of data or resources. Transitions
could represent the start/finish of processes. In terms of simulations, transitions can be used to model both
activities and events. Activities can be thought of as the processes and logic of the system, while events
occur at a single point in time and cause a change in the state of a system (White and Ingalls 2009). In
fact, a transition may act as a super-process consisting of many sub-processes. This is where hierarchical
nets come into play (which we will explain later). Often transitions can change the state of a net through
the manipulation of tokens via the firing rule which is explained next.

2.2 Tokens and the Firing Rule
Tokens are used to indicate whether certain conditions have been met so that a transition may fire. The
marking of the net is defined by the distrubution of tokens, which are contained by places. In a pictorial

105

Gehlot and Nigro

representation, tokens are indicated by black dots. For example, the net of Figure 1 has one token in place
P1. Arcs may be labeled by weights which can specify the number of tokens needed for a transition to
fire. If omitted, a value of one is assumed which is the case for the net in Figure 1. Access to tokens is
controlled by the structure of the net. When the conditions on the incoming arc of a transition are met by
its preplaces, the transition is said to be enabled. When a transition is enabled it may be fired. The firing
of a transition causes a redistribution of tokens, creating a new marking (or state of the system). The
number of tokens removed from a place is determined by the label on its outgoing arc and the number of
tokens added to a place is determined by the label on its incoming arc when the associated transition fires.
As an example, consider the marked net in Figure 2. The net represents the chemical reaction necessary
to make water. The firing of transition MoleculesReact removes two tokens from place Hydrogen and one
token from place Oxygen and adds two tokens in the place Water, thus capturing the reaction 2H2 + O2 ��
2H2O.

Figure 2: Marked net before (left) and after (right) firing of transition

Petri Nets provide a framework for modeling distributed and concurrent systems systems with

synchronous and asynchronous communications and resource sharing.. Petri Nets also allow for mutual
exclusion which can be used in representing resource constrains. This flexibility of Petri Nets renders
them useful for modeling a variety of systems and situations. Figure 3 below shows some net
configurations that can be useful in modeling a variety of systems.

Figure 3: Some useful net configurations

106

Gehlot and Nigro

2.3 Colored Petri Net Extension

Colored Petri Nets (CPNs) extend the vocabulary of ordinary Petri Nets and add features that make them
suitable for modeling large systems. CPNs combine the strengths of ordinary Petri Nets with the strengths
of a high-level programming language called CPN ML which is based on the functional language SML
(Ullman 1998). Petri Nets provide the primitives for process interaction, while the programming language
provides the primitives for the definition of data types and the manipulations of data values. Thus in a
CPN model, tokens can be coded as data values of a rich set of types (called color sets) and arc incriptions
can be computed expressions and not just constants. Figure 4 displays the CPN equivalent of the water
example from Figure 2.

2`W

2`H++1`O

MoleculesReact

ResultingCompound

MOL

ReadyToReact

3`H++2`O

MOL

Figure 4: CPN model of the water example

 In this example, the initial state ReadyToReact contains three H tokens and and two O tokens, which
are labeled on the top right of the place. The ++ operator is used to represent a multi-set union operation.
The weight on the arc signifies that two tokens of hydrogen and one token of oxygen are needed for the
MoleculesReact transition to be enabled and fire. Once the transition is fired, the tokens are taken from
the preplace and two W, or water, tokens are put into the ResultingCompound place.
 In an ordinary Petri Net, tokens are indistinguishable, while in CPN all tokens are assigned a value.
The values of tokens have a type and can be manipulated through the use of a high level programming
language. For each state of a net, the type of contents must be specified. In Figure 2, each place has the
type of token (MOL) labelled on the bottom right. MOL is a datatype which can be defined using the high
level language CPN ML. In CPN ML all datatypes are referred to as color sets. We can define a color set
as follows:

colset MOL = with H | O | W;
The above declaration indicates that the MOL color set (an enumeration type) can be made up of val-

ues H, O, and W. Note that since tokens are allowed to have separate identities; we no longer need to keep
the place for Oxygen separate from place for Hydrogen. Even in this simple example, we see that CPN
models tend to be much more compact when compared to their Petri Net counterpart.

In simulations tokens can be used to specify both entities and attributes. Entities effect the changes in
the state of the system, while attributes are characteristics of a given entity (White and Ingalls 2009).
Entities can be declared as a product of several attributes. An example of defining a compound type color
set is shown below:

colset EMPLOYEE = ID*RATEOFPAY;

107

Gehlot and Nigro

The above declaration describes an employee data type, consisting of an identification and pay-rate.

ID and RATEOFPAY are also color sets. ID, in this case, is made up of a string and RATEOFPAY is
made up of an integer. Their declarations are as follows:

colset ID = STRING;
 colset RATEOFPAY = INT;

CPNs provide a rich set of constructs to create many different compound types including enumerated,
subrange, product, record, union, and list types. Tokens can also be used to represent resources. In a simu-
lation, resources can be any good that is available in a limited quantity. Resources may be shared amongst
or consumed by entities. The flow and consumption or creation of resources is represented by the struc-
ture of the net.

2.4 Inputs, Outputs, and State

The input to a CPN simulation is the initial marking of the net. CPNs provide a localized view of a sys-
tem. Inputs change the individual states of the system. Transitions change individual states as well as the
overall state of the system. The combination of the states, or the final marking of the net, can be consi-
dered the output of the simulation.

2.5 Variables

CPN allows for variables in various net inscription expressions. All variables must be declared with their
type (color set). For example,

var count: INT;
declares a variable named count of type INT. Variables can be of simple or compound types. Variables
are bound to values from their declared color set by the simulator as it attempts to determine if a transition
is enabled. The scope of a variable is local to the transition and there can be multiple bindings simulta-
neously active on different transitions. These bindings can exist simultaneously because they have differ-
ent scopes. The extent of a CPN variable binding is the firing of a particular transition. In addition, CPN
allows for global variables (called ref variables) as well as constants. The former are declared using the
globref keyword whereas the latter are declared using the val keyword.

2.6 Random Number Generator

CPN Tools ������	
���

������������	���	�	���������������������������������	���This can be particularly
useful in simulations to represent delays of an unknown period of time. CPN Tools provides several dif-
ferent random distribution functions including discrete, exponential, and uniform. A complete list can be
found at:
 http://wiki.daimi.au.dk/cpntools-help/random_distribution_funct.wiki.
For example, the role of a die may be represented by a call to the discrete function:

discrete(1,6);
The above function call can be used to generate a random integer between one and six.

2.7 Clock and Calendar
In CPN simulator the clock is represented as an integer counter. The internal type of this counter allows
arbitrarily large integer values and is not restricted to, say, a 32-bit representation. Depending on the sys-
tem being modeled, the clock value may be interpreted as milliseconds, or seconds, or minutes, etc. The
calendar is represented by the distribution of tokens with their time stamps and associated transitions in a
timed model. The time stamp represents the earliest possible time that a specific token may be consumed
by a transition. This may depend on the execution of other events as well. Since, it is possible for models
to be untimed, one may think of calendar as a list of events that can occur in some order that is not neces-
sarily determined by time.

108

Gehlot and Nigro

2.8 Statistics Collectors

CPNs provide a very extensive set of facilities to monitor a net during execution and extract relevant data
(Lindstrøm and Wells 2002). In its simplest form, one can record every transition that fires and associated
bindings of variables together with step and time. In most cases, however, we need to associate monitors
selectively to a net or a subnet or a part thereof. CPNs include four categories of monitors:

� Breakpoint monitors: useful for stopping simulation based on certain conditions or criteria.
� Data collector monitors: useful for extracting numerical data during simulations. The numerical

data is used in automatically calculating statistics, and the data is also saved in data collector log
files for other processing. There are several predefined data collection monitors available.

� Write-in-file monitors: allows extraction and recording of generic (not necessarily numeric) da-
ta.

� User-defined monitors: allows creation of custom data collection monitors.

The numerical data that is extracted is used to calculate statistics. The statistics that are calculated for a
particular data collector will be either untimed statistics or timed statistics (that is, time-dependent
weighed statistics). The statistics that are computed and can be accessed from each data collector monitor
are: count (number of data observations), minimum, maximum, sum, average, confidence intervals for
average, variance, standard deviation, sum of squares, sum of squares of deviation, first value observed,
and last value observed. There is also a facility to run any number of simulation replications, collect data,
and calculate, among other values, 90%, 95%, and 99% confidence intervals for averages.

2.9 Advantages

CPNs provide a unified approach for analysis of both functional/logical properties as well as perfor-
mance properties through their support for both timed and untimed activities within a single formalism.
Thus one does not have to create two separate models to carry out such analyses. Furthermore, unlike
many discrete event simulation systems, CPNs provide a set of state space methods for verification of
system properties. The state space approach complements analysis that can be performed based on pure
simulation. For example, the state space approach can be used to identify system deadlock states.

From a practical applications point of view, CPNs support a mechanism of modules for construction
of large system models in a hierarchical manner. The hierarchy and module concept of CPNs permit dif-
ferent levels of abstraction that are inherent in most complex systems. The graphical representation makes
it easy to see the basic structure of a complex CPN model and understand the interaction of individual
sub-components. CPNs can be used in modeling a wide variety of application domains including com-
munication protocols, data networks, distributed algorithms, embedded systems, business process and
workflow, manufacturing systems, and agent systems (Jensen et al. 2007).

We illustrate timed CPNs and the hierarchical construction in the next section with an example. A list
of large-scale practical models created using the CPNs is available at
http://www.daimi.au.dk/CPnets/intro/example_indu.html.

3 CPN MODEL OF THE CALL CENTER EXAMPLE
To illustrate the details of model creation using CPNs, we consider the call center example from White
and Ingalls (2009). The description of this system as given in the aforementioned paper is as follows:

���������	
��

�
�����
�������
��
�
��
������
�������
��
���
������
��
��

�
�������
�
��
��
�
��
	���t-
er than ten, the caller receives a busy signal and immediately hangs up. Other-wise, the call is delivered
��
��
���������
 �����������
�����
��������
����
�����
!��
��

��
 ��
��"��
 ��#
�$��

���
 ���
���-stereo
��������%
���

���
���
�

�����
��������&
���
���
��

��
routed accordingly. The call then waits in the
appropriate queue (listening to classic rock) until the first sales representative servicing the identified

109

Gehlot and Nigro

�������
 ����
 �������
 ����
��
��
 '���

�
 ���
 ��

 ��
 ���������
 ���
 ���
 ��

��
 ���	�
 ����&

Figure 5 below from the same paper shows the logic flow of the call center example.

Figure 5: Call center example from White and Ingalls (2009)

Our approach is to use hierarchical CPNs to model this example. Creation of hierarchical nets is

based on the idea that a transition can be replaced or substituted by a (sub) net that details the activities
underlying the associated transition. Such transitions are called substitution transitions in the CPN par-
lance. Pictorially, a substitution transition is drawn with double rectangles. At an abstract level, we can
view a call center as comprising of two sets of activities, namely, next call and process call. This view is
captured and depicted by the top level net of our model shown in Figure 6.

ProcessCall

ProcessCall

NextCall

NextCall

IncomingCall

ReqType

Customers

1`RCar

ReqType

NextCall

ProcessCall
Figure 6: Top net of the CPN hierarchical model of the call center

The color set ReqType labeling the two places denotes the types of incoming requests. For the call
center example there are only two requests: car stereo and other. Since no other attributes need to be
represented with each request, the color set ReqType has been defined as an enumerated type. Further-
more since the requests need to carry a timestamp, it is declared as a timed color set as follows:

colset ReqType = with RCar| ROther timed;

110

Gehlot and Nigro

The initial marking inscription 1`RCar indicates that the system will start with an initial car stereo

call. In CPN it is possible to read initialization values from a file or network. Details of activities asso-
ciated with the substitution transition NextCall are shown in Figure 7.

rt

rt

nextReqType() @+ nextArrival()

NextCall

IncomingCall
Out ReqType

Customers
I/O ReqTypeI/O

Out

Figure 7: Details of next call generation

The example in White and Ingalls (2009) gives formulas for computing various random values. These

are defined in our CPN models as the following functions:
 fun rollTwoDice() = discrete(1,6) + discrete(1,6);
 fun nextArrival() = round (real(rollTwoDice()) * 0.333);
 fun ivrDelay() = round (real(rollTwoDice()) * 0.3);
 fun procDelayCar() = rollTwoDice() * 2;
 fun procDelayOther() = rollTwoDice();
 fun nextReqType() = if discrete(1,10) <= 4 then RCar else ROther;

Thus, when transition NextCall fires, it removes a token representing next call and adds a token returned
by function nextReqType()with a time stamp given by adding the nextArrival() delay to the
current simulation clock (denoted by @+ operator).
 Figure 8 shows the subnet (or module) associated with the substitution transition ProcessCall. The
net configuration clearly shows that there are three choices associated with an incoming call: HangUp,
Process CarRequest or ProcessOtherRequest. To simplify the picture a bit, we have omitted the IVR Unit
stage and factored in the delay associated with IVR Unit into the processing time for a request.

ProcessOtherRequest

ProcessOtherRequest

HangUp

HangUp

ProcessCarRequest

ProcessCarRequest

IncomingCall
In ReqTypeIn

ProcessCarRequest HangUp ProcessOtherRequest
Figure 8: Subnet (module) for processing calls.

Next we detail the activities associated with module HangUp and ProcessCarRequest. We skip the
details of ProcessOtherRequest since, in this example, it is similar to ProcessCarRequest except for the
values of random delays and number of service representatives. The subnet detailing the hang up process
is shown in Figure 9.

111

Gehlot and Nigro

q1q

rt

HangUp

[length(q)+length(q1)>=10]

CarStereoQueue
Fusion 2

1`[]

RequestQ

OtherQueue
Fusion 3

1`[]

RequestQ

IncomingCall
In ReqTypeIn

Fusion 3Fusion 2

Figure 9: Subnet for hangup process

As specified in the paper, if there are already 10 calls waiting to be serviced, a busy signal is issued

and the caller hangs up. This condition is checked by the guard [length(q)+length(q1)>=10] as-
sociated with the transition HangUp. CPN firing rules guarantee that this transition will not fire if the
condition is not met. Figure 10 shows the subnet associated with the ProcessCarRequest transition.

q1

q

q

SCar

s

(r,s)

(r, SCar) @+ procDelayCar()

r::q

q^^[(RCar, currentTime())]

RCar

Done

GetNextInQueue

AcceptCarRequest

[length(q)+length(q1)<10]

OtherQueue
Fusion 3

1`[]

RequestQ

ProcessCarRequest

Process

CarStereoQueue
Fusion 2

1`[]

RequestQ

SalesRepAvail

2`SCar

ServiceType

IncomingCall
In ReqTypeIn

Fusion 2

Fusion 3

Figure 10: Subnet detailing steps of processing car stereo request

A call is accepted if it is a request for car stereo (denoted by arc inscription RCar) on the outgoing arc
of IncomingCall place and the maximum on hold limit is not reached, that is,
length(q)+length(q1)<10. If this condition is met, the transition fires and the new request with
its start time is added to the CarStereoQueue. This is achieved by the arc inscription q^^[(RCar,
currentTime()] of the incoming arc to CarStereoQueue place. If there is a sales representative
available (denoted by arc inscription SCar on the arc from place SalesRepAvail to transition NextIn-

112

Gehlot and Nigro

Queue) the call from the front of the queue, if any, is removed and added as a token representing a pair
consisting of the request and the representative handling the request. The firing rules of CPN ascertain
that a call cannot be serviced if, for example, the place SalesRepAvail is empty, that is, both representa-
tives are busy handling other calls. This token also receives a timestamp that represents a processing de-
lay as given by the function procDelayCar(). When the simulation clock advances to a value that
makes this token available, the transition Done gets enabled and fires, and the representative (as a re-
source) is returned to the available pool.

4 CALL CENTER MODEL SIMULATION AND OUTPUT STATISTICS

CPN supports automatic as well as interactive simulation. The interactive mode also allows the user to
pick a transition as well as variable bindings. This mode is useful for debugging the model. In the auto-
matic mode, the simulation can be run in either play mode or fast forward mode. In the former, after each
step of execution, various markings are displayed whereas in the latter mode no intermediate markings
are shown until the end of simulation. End of a simulation run is determined by simulation stop criteria
which could be a number of steps, or the clock reaching a certain value or other conditions as specified by
a breakpoint monitor. Figure 11 shows an intermediate marking for the subnet associated with processing
a car stereo request.

q1

q

q

SCar

s

(r,s)

(r, SCar) @+ procDelayCar()

r::q

q^^[(RCar, currentTime())]

RCar

Done

GetNextInQueue

AcceptCarRequest

[length(q)+length(q1)<10]

OtherQueue
Fusion 3

1`[]

RequestQ

ProcessCarRequest

Process

CarStereoQueue
Fusion 2

1`[]

RequestQ

SalesRepAvail

2`SCar

ServiceType

IncomingCall
In ReqTypeIn

Fusion 2

Fusion 3

1
1`[(ROther,21),(ROther,26),(ROther,3
7)]

2
1`((RCar,15),SCar)@44+++
1`((RCar,24),SCar)@56

1 1`[(RCar,28),(RCar,32),(RCar,34)]

1 1`RCar@39

Figure 11: An intermediate marking during interactive simulation

In this marking, we see that the next incoming call is for a car stereo with time stamp 39. The simula-

tion clock (not shown) is at 39. Thus this token is available and the associated call will be accepted and
queued since there are only three calls waiting in the car queue and (coincidentally) only three calls wait-
ing in the other queue and therefore the busy signal will not be generated. This fact is indicated by the
green highlight on the transition AcceptCarRequest which means this transition is ready to fire next.

We associated several monitors to collect data and compute statistics from this model. For example,
there is a Count Transition Occurrences monitor associated with transition AcceptCarRequest that keeps

113

Gehlot and Nigro

track of how many times this transition fires. This number tells us the number of car stereo requests that
were received during simulation. Similarly there is a Count Transition Occurrences monitor associated
with transition Done that keeps track of how many car stereo requests were served during simulation. A
List Length monitor is associated with place CarStereoQueue that is used in computing average queue
length. When transition GetNextInQueue fires, a user defined data collector monitor computes the wait
time by subtracting the start time from the current simulation clock value. Table 1 and Table 2 summarize
the various statistics that were automatically computed for a sample simulation run consisting of 1000
steps with a simulation clock end reading of 845.

Table 1: Time dependent statistics from a sample run

Timed statistics

Name Count Avrg Min Max

Car_Stereo_Queue_Size 409 0.639053 0 6

Other_Queue_Size 446 8.789349 0 10

Table 2: Untimed statistics from a sample run

Untimed statistics

Name Count Sum Avrg Min Max

Car_Queue_Wait_Time 56 540 9.642857 0 51

Completed_Car_Calls_Count 56 56 1.000000 1 1

Completed_Other_Calls_Count 92 92 1.000000 1 1

Excessive_Wait_Car_Queue_Count 56 22 0.392857 0 1

Excessive_Wait_Other_Queue_Count 93 92 0.989247 0 1

HangUps_Count 192 192 1.000000 1 1

Incoming_Call_Count 352 352 1.000000 1 1

Other_Queue_Wait_Time 93 6940 74.623656 0 100

Note that these are auto-generated and not all statistics are meaningful in all situations. For example,
for Completed_Car_Calls_Count, only the sum is meaningful. As suggested in White and Ingalls (2009),
30 simulation replications were run using the CPN built-in function CPN'Replica-
tions.nreplications that can be used to automatically run a given number of simulations. Confi-
dence intervals for the average of a set of data values, assumed independent and identically distributed
(IID), are automatically computed at the end of replication run. Table 3 summarizes a portion of this auto-
generated report.

5 THE CPN TOOLS INTERFACE
CPN Tools has an intuitive graphical user interface that is useful for creating and simulating CPN models.
Figure 12 contains a snapshot of the CPN Tools interface for the call center example net.

114

Gehlot and Nigro

Table 3: Confidence Intervals after 30 simulation replications
Statistics

Name Avrg 90% Half
Length

95% Half
Length

99% Half
Length StD Min Max

Car_Queue_Wait_Time

count 65.333333 3.155314 3.797892 5.118332 10.172083 43 83

max 33.400000 4.687077 5.641597 7.603052 15.110170 13 62

min 0.000000 0.000000 0.000000 0.000000 0.000000 0 0

sum 569.633333 118.877302 143.086570 192.834517 383.235903 134 1830

avrg 8.349415 1.469671 1.768968 2.383998 4.737915 2.442623 22.317073

Car_Stereo_Queue_Size

count 414.166667 0.710548 0.855251 1.152602 2.290661 409 418

max 4.533333 0.585914 0.705235 0.950429 1.888866 2 9

min 0.000000 0.000000 0.000000 0.000000 0.000000 0 0

avrg 0.715616 0.152250 0.183255 0.246969 0.490822 0.162424 2.322335

Completed_Car_Calls_Count

count 64.266667 3.069607 3.694730 4.979303 9.895779 43 82

max 1.000000 0.000000 0.000000 0.000000 0.000000 1 1

min 1.000000 0.000000 0.000000 0.000000 0.000000 1 1

sum 64.266667 3.069607 3.694730 4.979303 9.895779 43 82

avrg 1.000000 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000

Completed_Other_Calls_Count

count 87.700000 0.647344 0.779176 1.050077 2.086905 84 92

max 1.000000 0.000000 0.000000 0.000000 0.000000 1 1

min 1.000000 0.000000 0.000000 0.000000 0.000000 1 1

sum 87.700000 0.647344 0.779176 1.050077 2.086905 84 92

avrg 1.000000 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000

Other_Queue_Size

count 437.366667 3.129075 3.766308 5.075768 10.087491 420 459

max 10.000000 0.000000 0.000000 0.000000 0.000000 10 10

min 0.000000 0.000000 0.000000 0.000000 0.000000 0 0

avrg 8.648859 0.165822 0.199592 0.268985 0.534577 6.996193 9.286061

Other_Queue_Wait_Time

count 88.533333 0.670425 0.806956 1.087516 2.161311 85 93

115

Gehlot and Nigro

max 103.833333 1.934730 2.328736 3.138385 6.237171 94 123

min 0.000000 0.000000 0.000000 0.000000 0.000000 0 0

sum 6560.933333 163.475232 196.766834 265.178187 527.010432 5005 7237

avrg 74.094265 1.730942 2.083447 2.807814 5.580201 58.882353 84.151163

Figure 12: The CPN Tools interface

The left column is called the index. The index contains a hierarchical list of objects including tools
and colored Petri Nets. Expanding the tool box gives a list of all the available CPN Tools. We will not go
into detail for all the tools, but a complete list of all the tools and their functions can be found on the CPN
Tools website (http://wiki.daimi.au.dk/cpntools-help/cpntools-help.wiki). Any
of these tools can be dragged to the section on the right, called the workspace. Dragging an item into the
workspace creates a view of its contents. The views of the Create Tool, the Hierarchy Tool and of the Si-
mulation Tool can be seen at the top of Figure 12. Expanding a net on the index displays all the informa-
tion associated with that net, including all declarations and monitors.

The Create Tools are used to create and edit the basic components of a CPN including places, transi-
tions, and arcs. It also consists of guideline tools for easy alignment of net structures and tools for cloning
and deleting net components.

The Simulation Tools are used for running interactive or automatic simulations. It contains video tape
player-like controls used to manipulate the model. Next Frame allows the user to select a transition to fire.
Play randomly fires enabled transitions until the end of the simulation is reached or the user hits the stop
button. Fast-forward runs the simulation for a specified number of steps set by the user, while rewind re-
sets the simulation to its initial state.

116

Gehlot and Nigro

In CPN Tools a net is organized into binders that contain pages. Each page can contain a single sub-

net. Figure 12 shows the overall net contained in four binders. Multiple nets and binders may be open at
the same time. Pages may be dragged from binder to binder without changing the execution aspect of the
model. Dragging a page into the workspace will create a new binder for that page.

The page named Top is the top-level page and contains two subpages, each represented as a transition
on the page. Each of the subpages is given a page in a binder. These subpages may have subpages of
their own and so on. The various page relationships are depicted in the index via the indentation of the in-
dex entry. Hierarchy is an important feature in CPN Tools, because it allows for complex systems to be
divided up and represented as several sub-models. CPN Tools supports both a bottom-up approach as
well as a top-down approach for creating hierarchical net models.

6 CONCLUSIONS

The focus of this paper has been to introduce the audience to modeling and simulation with Colored Petri
Nets. We presented the major concepts, vocabulary and constructs of a CPN model and their use in build-
ing executable models for system
������������	
�	���
��explained the flexibility of CPNs and many of
���

 important features including hierarchy, color sets, various net configurations, and both timed and
untimed nets. We have also addressed the practical applications of CPNs and how their flexibility allows
for their use in modeling a variety of systems including communication protocols, business processes and
workflow, manufacturing systems, and embedded systems (Jensen et al. 2007). Stepping through the call
center example from White and Ingalls (2009), we were able to present the modeling and execution of a
CPN simulation that could be put to practical use. We illustrated the use of monitoring facilities for auto-
matic data collection and statistics computation. Unlike many discrete event simulation tools, CPN Tools
does not provide built-in facilities for the visualization of data. There is an indirect support for visualiza-
tion through GNU Plot scripts that the tool is capable of generating automatically. Finally, we gave a brief
introduction to CPN Tools, an intuitive software tool used to create and execute CPN models. A larger
example appears in Gehlot and Hayrapetyan (2006). The paper does not focus on state-space based analy-
sis. A high-level introduction to state-space analysis and its use can be found in Jensen, Kristensen, and
Wells (2007). Details of theoretical foundations including formal definitions are described in Jensen
(1994).

CPN Tools was created by the CPN Group of the University of Aarhus in Denmark. It can be ob-
tained free of charge by agreeing to their license. The license application is available at
http://www.daimi.au.dk/~cpntools/bin/license/apply.php.

The practical application of CPNs is contingent on automatic and interactive simulation, visualiza-
tion, state space analysis, and performance analysis. All of these help in the verification and validation of
a modeled system. CPN models can be used to validate both the logic of a system and its performance,
saving the need to create two independent models, making CPN a powerful modeling tool.

REFERENCES

Gehlot, V., and A. Hayrapetyan. 2006. A CPN model of a SIP-based dynamic discovery protocol for
webservices in a mobile environment. In Proceedings of the 7th Workshop on Practical Use of Co-

�����
(����
)���
�*()+,- , 197�216.

Jensen, K. 1994. An introduction to the theoretical aspects of coloured Petri nets. In: J.W. de Bakker, W.-
P. de Roever, G. Rozenberg (eds.): A Decade of Concurrency, Lecture Notes in Computer Science
803:230-272, Springer-Verlag.

Jensen, K., and L.M. Kristensen. 2009. Coloured Petri Nets. Modelling and Validation of Concurrent
Systems. Springer.

Jensen, K., L.M. Kristensen, and L. Wells. 2007. Coloured Petri nets and CPN Tools for modelling and
validation of concurrent systems. International Journal on Software Tools for Technology Transfer
(STTT), 9(3�4):213�254.

117

Gehlot and Nigro

Lindstrøm, B., and L. Wells. 2002. Towards a Monitoring Framework for Discrete Event System Simula-
tions. In (��������	�
��
���
-��
������������

.��"����
��
$�������
/����
0������
�.1$/0+,2 .

Peterson, J.L. 1981. Petri Net Theory and the Modeling of Systems, Prentice-Hall.
Ullman, J.D. 1998. Elements of ML Programming, Prentice-Hall.
White, K.P., Jr. and R.G. Ingalls. 2009. Introduction to Simulation, In Proceedings of the 2009 Winter

Simulation Conference, eds. M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls,
12-23. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES

VIJAY GEHLOT is Associate Professor and Graduate Program Director in the Computing Sciences De-
partment at Villanova University. He received a Bachelors of Engineering (Hons.) in Electrical and Elec-
tronics from Birla Institute of Technology and Science (BITS), Pilani, India, a Masters of Engineering in
Automation from Indian Institute of Science (IISc), Bangalore, India, and a Ph.D. in Computer and In-
formation Science from University of Pennsylvania (UPENN), Philadelphia, Pennsylvania. His research
interest are in the area of systems modeling and analysis, formal methods, and applications of colored Pe-
tri nets. He has used CPNs to model a large scale multi-channel SOA system for the US Air Force. In ad-
dition he was also involved in creation and integration of an agent-based economic model into an asset
planning tool for the US Army. He has used CPN modeling to identify patient safety issues in wireless
medical device networks in hospitals. He is a member of the ACM and Sigma Xi. His email address is
<vijay.gehlot@villanova.edu>.

CARMEN NIGRO is a junior in the Bachelor of Science in Computer Science program at Villanova
University. He has been accepted into the five year BS/MS program at Villanova and plans to work to-
wards a Masters degree at Villanova. His research interest include modeling and simulation with CPNs.
He has been actively involved in a project for the US Army to create a Drupal-based asset planning tool
and integrate it with CPN Tools for modeling and analysis. His email address is <car-
men.nigro@villanova.edu>.

118

