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ABSTRACT 

Production scheduling has attracted the interest of production economics communities for decades, but there is still a gap 
between academic research, real-world problems, operations research and simulation. Genetic Algorithms (GA) represent a 
technique that has already been applied to a variety of combinatorial problems. Simulation can be used to find a solution to 
problems through repetitive simulation runs or to prove a solution computed by an optimization algorithm. We will explain 
the application of two special GAs for job-shop and resource-constrained project scheduling problems trying to bridge the 
gap between problem solving by algorithm and by simulation. Possible goals for scheduling problems are to minimize the 
makespan of a production program or to increase the due-date reliability of jobs or possibly any goal which can be described 
in a mathematical expression. The approach focuses on integrating a GA into a commercial software product and verifying 
the results with simulation. 

1 PROBLEM DESCRIPTION 

The resource-constrained project scheduling problem (RCPSP) is one of the classic scheduling problems of operations 
research. Already very simple special cases of the job-shop problem (JSP) which represents a special case of the RCPSP are 
ΝΠ-complete. An instance of JSP with ten jobs to be processed on ten resources (machines) formulated in 1963 remained 
open for more than 25 years. It was finally solved by a branch-and-bound algorithm.  

We explain different computed solutions by two GAs in relation to simulation results. The GAs were developed to find a 
solution with the maximum results for a given set of production logistical objectives. The GAs and their operators are tested 
on benchmark instances and real-world data from a one-of-a-kind manufacturing department of a major German company. 
To have the possibility to work with real-world data we extended Microsoft Project with GA and a range of other aspects: A 
new graphical user interface is introduced to support users with a guided wizard describing the problem for which an optimal 
schedule is to be found. It includes different aggregation operators for the combination of objectives. Furthermore, the effi-
ciency of the algorithm was compared to benchmark tests available in literature. 

1.1 Characteristics of resource-constrained project scheduling problems 

Many jobs in industry and elsewhere require a collection of activities to be completed while satisfying temporal, resource and 
precedence constraints. Temporal constraints demand some activities, or a set of them to be started or finished before or only 
after a certain point in time. Each activity uses an amount of renewable and non-renewable resources and is constrained by 
the fact that the total resource allocation per time-unit cannot exceed the total resource availability. Renewable resources 
include all resources of which a specified number of units is available for every period of the planning horizon (machinery, 
human resources) whereas non-renewable resources (such as material) are the ones of which only a fixed amount of units is 
available throughout the whole planning horizon. Precedence constraints refer to the technologically imposed winding-up of 
the operations (activities) within a production order (job). The objective is to create a schedule specifying when each opera-
tion within a production program is to begin (or finish) and what resources it will use in order to satisfy all constraints while 
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pursuing an objective, e.g., taking as little total time as possible for all jobs (makespan), minimizing the mean tardiness of 
jobs, minimizing the maximum tardiness and so on. 

The RCPSP belongs to the class of ΝΠ-complete optimization problems (Błażewicz, Lenstra, and Rinnooy Kan, 1983). 
This means that there is probably no efficient procedure for accurately finding the shortest schedule for arbitrary instances of 
this class of problems. 

1.2 The job-shop scheduling problem 

The JSP is an important and well-known special case of the RCPSP. A JSP consists of several sequences of operations so that 
each operation of a job has at most one successor and one predecessor. These jobs of a production program are connected by 
a common virtual starting and ending operation.  

Furthermore, each resource type is available exactly once and each operation in a JSP needs at most one unit of a single 
resource type. This basic model may be extended by adding characteristics such as buffers, transportation, setup times, time 
lags, etc. (ref. chapter 1.4.2), allowing practical scheduling problems to be modeled more precisely. 

1.3 Formal problem description 

An instance of the RCPSP we are targeting consists of a set of NOA activities i and a set of NOR renewable resource types n. 
In literature there is also the notion of a set of non-renewable resource types which we are not considering. Resource 
availability RAV is specified using the tuple  
 RAV = (RAV1, …, RAVn, …, RAVNOR) 
meaning RAVn units of resource type n are available. Resource requirements RRAi are specified per activity i using tuples 
 RRAi = (RRAi,1, …, RRAi,n, …, RRAi,NOR) 
where RRAi,n is the number of units of renewable resource type n required by activity i. In a JSP activities are aggregated 
into NOJ jobs or orders each of them comprising of activities with precedence constraints. The number of activities in job j is 
expressed by NAJj. Activity i of job j is noted using a tuple (j,i).  

The precedence constraints within job or order j describe the technological sequence (routing) of activities expressed by 
the set PRCj consisting of relations h   i denoting that activity i is a direct successor of activity h. An activity must be 
finished before each of its successors can be started. The technological sequence of job j can be expressed as:  
 PRCj = {(j,i)   (j,i+1) | i=1,  …, NAJj-1} 
meaning each activity i inside job j has activity i+1 as its only successor. Furthermore, every resource type is available ex-
actly once (RAV1, …, RAVNOR=1) and each activity requires exactly one unit of a single resource type during its entire exe-
cution. This means that two activities cannot be scheduled at the same time if they both require the same resource type. 

To form a contiguous graph of all NOJ jobs within a production program virtual activities a and e called source and sink 
are added. All activities without a predecessor are made the source's successor, whereas all activities without a successor are 
made the sink's predecessor. Temporal constraints which require a job j to be started after a certain point in time are repre-
sented by virtual activities rj which are inserted between the source a and job j. The scheduling problem of a production 
program can be represented by a graph as shown in Figure 1. In addition to the activity nodes and the source and sink nodes, 
it contains two dotted nodes called r2 and r3 which describe an imposed later start of jobs 2 and 3 relative to job 1.  
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Figure 1: Network representation of a JSP (Steininger 2007). 
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In Figure 1, the directed arcs running from the source node a, through each activity node (j,i) to the sink e describe the 

technological sequence of activities within job j based on the routing PRCj. Each node shows the job number j, the resource n 
needed and the operation time tji. There are also dotted directed arcs in the network linking all activities which require the 
same resource type and as such cannot be running in parallel. This kind of representation is called a disjunctive network. 

1.4 Classification of scheduling problems 

Classes of scheduling problems can be specified in terms of the three-field classification approach initially introduced by 
Conway, Maxwell, and Miller (1967, 2003). This classification was extended by Graham, Lawler, and Lenstra (1979), and 
later on by Brucker (2004). This three-field classification is described as α | β | γ, where α specifies the machine environment 
(resources), β specifies the job and activity characteristics and γ describes the objective function or a combination of 
objective functions. Literature shows that this classification is still under continuous reconsideration. 

Each symbol can be subdivided into more than one entry. If a symbol is subdivided, classification is separated with a 
comma and describes a more specific scheduling problem. It is also possible to leave every symbol but γ blank. A blank sym-
bol   identifies a default value. 

1.4.1 Machine characteristic 

The symbol α can be subdivided into α1 and α2. By subdividing α, the machine environment breaks up into different classes 
of scheduling problems. α1 describes kind, order and count of machines. Brucker (2004) references 12 values. Additionally 
Brucker et al. (1999) specify machine characteristics for project scheduling, so that the following values are possible: 
 α1 ∈ {  , P, Q, R, PMPM, QMPM, G, J, F, PF, O, X, FF, PS }. (1) 
Based on these works we can formally specify terms for the possible values (ref. Table 11). α2 specifies the number of 
machines (NOR) which could be defined as fixed value or left empty for all possible values, the default value  .  

1.4.2 Job characteristics 

Job characteristics are defined in many different details. Graham, Lawler, and Lenstra (1979) specify six possible values for 
β. Błażewicz et al. (2001) define eight possible values for β and Domschke, Scholl, and Voß (1997) subdivide β into ten 
possible values (ref. Table 22). 

1.4.3 Objective function 

Many objective functions are possible for scheduling problems. The three-field classification notes γ as the objective function 
or a combination of objective functions. As mentioned earlier the most pragmatic function is minimizing makespan (Cmax), 
in other words the overall completion time of all jobs in a production program. For a selection of other possible objective 
functions, see Brucker (2004) and Steininger (2007). 

1.5 Problem class specification of the problem under examination 

Using the three-field classification to specify the problem instance of the JSP we are examining (ref. chapter 2), the following 
taxonomy is noted: 
 J |   | Cmax  (2) 
Formula (2) describes a class of scheduling problems as JSP (J) with a variable job and machine count. γ specifies the 
"traditional" objective function Cmax, which describes our goal as taking as little makespan as possible for the schedule of all 
NOA activities using NOR machines. 

According to Brucker et al. (1999), the RCPSP we are examining later (ref. chapter 4) can be specified using the 
following taxonomy: 
 PS | prec | Cmax  (3) 
Formula (3) describes a class of RCPSP with an unspecified number of machines, machine availability and machine require-
ments dependent on the actual input data. prec allows the job (order) to consist of a variable number of activities with prece-
dence constraints forming an arbitrary acyclic graph. 
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Table 1: Machine characteristic α1 (Steininger 2007; Brucker et al. 1999). 
 

1α  Terms for 1α  

  NOR = 1 1j J : t tj j∀ ∈ =   

P NOR > 1 j J ,n N : t tjn j∀ ∈ ∈ =  

J NORn <  

1n N : RAVn∃ ∈ >  

Q 
t jt jn vn

=  

R 
t jt jn v jn

=  

PMPM j J ,n N : t tjn j∀ ∈ ∈ =  

 
QMPM 

t jt jn vn
=  

G  ( ) ( ) ( )0j , ... j ,i ... j ,NAJ j     1NOR >  

1n N : RAVn∀ ∈ =  

J 1NAJ j >  

F or PF j ,k J : NAJ NAJj k∀ ∈ = , 

RRA RRAj k= ,

PRC PRCj k=  
 

O ( ) ( ) ( )0j , ,..., j ,i ,..., j ,NAJ j  

X 
( ) ( ) ( )0j , ... j ,i ... j ,NAJ j     

FF 1NOR >  1n N : RAVn∃ ∈ >  

PS g ,h,i I : g i,h i∃ ∈     1n N : RAVn∃ ∈ >  
Legend:     
Jn Set of jobs j requiring resource type n N Set of resource types n vjn Processing speed of job j on resource 

type n J Set of jobs j tjn Duration of job j on resource type n  
I Set of activities i tj Duration of job j vn Processing speed of resource type n 

 
Table 2: Job characteristic β (cf. Domschke, Scholl, and Voß 1997). 

 
β β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 

Characteristic Job 
count 

Preemption  
of job 

Precedence 
relations  
(routing) 

Release 
dates 

Activity  
duration  
(operation time) 

Setup 
time 

Resource 
restriction 

Due date 
(specified) 

Activity 
count 

Buffer 
capacity 

2 A GENETIC ALGORITHM FOR JOB-SHOP SCHEDULING 

2.1 General principle 

The term Genetic Algorithm (GA) describes a set of methods, which can be used to optimize complex problems. As the name 
suggests, the processes employed by GAs are inspired by natural selection and genetic variation. A GA uses a population of 
possible solutions to a problem and applies iterations in order to modify them. These iterations mimic those in nature in such 
a way that subsequent populations are fitter and more adapted to their environment compared to their predecessors. As gen-
erations progress over time, they become better suited to their environment and provide an advantageous solution in a given 
time.  

Since their development (Holland 1975) GAs have been used to find solutions for many types of complex problems. A 
unique characteristic of a GA is that the fundamental algorithm is unaware of the problem it is optimizing. All that is required 
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is that the parameters entered into the model can be efficiently transformed to and from a suitable GA chromosome format. 
Detailed introductions to GAs are given by Goldberg (1989) and Davis (1996).  

The flowchart for the GA developed here is given in Figure 2. First, an initial population of randomly generated feasible 
schedules of the operations in the production program is created. These individual schedules form chromosomes which are 
subject to evolution. Once an initial population has been formed, selection, crossover, and mutation operations are performed 
repeatedly until the fittest member of the evolving population converges to a near-optimal fitness value. Alternatively, the 
GA may run for a user-defined number of iterations (Goldberg 1989).  

The size of the population is user-defined and the fitness of each individual, in this case a schedule, is calculated ac-
cording to a fitness function, in our case the makespan or an additive combination of different goal functions. Hence, it is also 
possible to use a fitness function on other calculated values like maximum tardiness, mean tardiness, number of tardy opera-
tions or jobs, etc. The schedules are then ranked according to the value of their fitness function and, after that, selected for 
reproduction.  

 

 
 

Figure 2: Principal flow of a Genetic Algorithm (following Goldberg 1989). 

2.2 Schedule encoding and decoding 

GAs were derived from examining biological systems. In biological systems evolution takes place on chromosomes which 
are organic devices that program the structure of living beings. Following this line of argument, a living being is a decoded 
structure of all chromosomes. Natural selection is the link between chromosomes and the performance of the decoded struc-
ture. When implementing the GA, the variables that characterize an individual are represented in arrays (by index ordered 
lists). Each variable corresponds to a gene and the array corresponds to a chromosome in a biological system. 

We decided to use the encoding scheme introduced by Fan, Ross, and Corne (1993) to build the chromosomes (Stei-
ninger 2007). Chen, Gen, and Yasuhiro (1996) call this scheme "operation based representation". Encoding starts by 
specifying jobs and corresponding operations in a list. Each operation in a job is encoded with the numerical id of the job in 
which it resides. Following that description, all jobs and activities are encoded in one potential schedule for the problem. The 
result is a chromosome representing a potential schedule. 
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2.3 Genetic operators 

Genetic variation is indispensable for the progression of evolution. Genetic operators used in GAs are similar to those which 
occur in nature: asexual or sexual reproduction (crossover, also called recombination), mutation and survival of the fittest, or 
selection. 

Crossover is the most delicate operation of GA. In our case, it may lead to the production of irregular operation 
sequences within a job. The GA developed here uses crossover, where mating chromosomes are cut once. We use a corrected 
two-point crossover to avoid non-regular operation sequences of orders, which Goldberg (1989) refers to as a PMX-crossover 
operator (for detailed reference and example see Steininger 2007). 

Mutation is the process of randomly exchanging values of genes within a chromosome with small probability. It is not a 
primary operator, but it ensures that the possibility of searching any section in the problem space is never zero and prevents 
complete loss of genetic material through reproduction and crossover. We execute the mutation operator as a permutation by 
first picking (and deleting) a gene before reinserting it at a randomly chosen position of the chromosome (Steininger 2007). 

To selectively reproduce the population and to determine the next generation we use a hit and miss selection procedure 
based on the fitness function. This could be implemented using a roulette wheel approach. An imaginary roulette wheel is 
constructed with a segment for each individual in the population. An individual’s section size is based on the fitness value of 
the particular individual. A fit individual will occupy a larger slice of the roulette wheel than a weaker one (Steininger 2007,). 
Selection is made by rotating the roulette wheel a number of times equal to the population size. When the roulette wheel 
stops, the individual it points to is selected. This means that the more fit individuals will have a tendency to be selected more 
frequently than weaker ones.  

2.4 Fitness 

The fitness function evaluates the fitness of each individual in the population, it depends on the specific application. Since a 
GA proceeds toward more fit individuals and the fitness value is the only information available to the GA, the performance 
of the algorithm is highly sensitive to the fitness function. In case of optimization routines, the fitness is the value of the ob-
jective function to be optimized (Steininger 2007). 

3 IMPLEMENTATION AND PERFORMANCE TEST 

3.1 Implementation 

We implemented this scheduling algorithm in a software tool called REIMOS (German abbreviation for "Sequence planning 
for multi-product manufacturing systems"; Steininger 2007). In order to make use of existing industrial data, this software 
tool was integrated as an add-on into Microsoft Project 2003 (Figure 3). 

 

 
 

Figure 3: Microsoft Project 2003 showing the Gantt chart of a JSP optimized using REIMOS. 
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3.2 Benchmark test 

Early on, research of scheduling problems started a competition on the "best schedule" of a specific problem. For that reason 
some researchers designed scheduling problems which were difficult to solve, as so called "benchmark instances". Some 
modern benchmark instances are distributed by Taillard (2008) and called JSP-15-15, JSP-20-15, and JSP-50-20. The name 
of the benchmark is derived from the scheduling of a specific problem, in this case of the underlying problem class 
J |   | Cmax. JSP-50-20 stands for 50 jobs on 20 machines and so on, in this example 
J, NOR=20 | NOJ=50, NOA=1000 | Cmax. This author also is publishing the list of best results for each scheduling problem 
instance, allowing our own results to be compared with those of other researchers. 

We used the named three benchmark instances to model Microsoft Project 2003 files as input for REIMOS and started a 
GA run with the parameter values mentioned above. Our algorithm for benchmarking was modified to write a so-called 
"debugging output", which allows us to know specific values for the GA at every step. For example, these values are: number 
of iterations, schedule with the lowest makespan calculated so far and so on. We compared the best schedule found thus far 
with the best known schedule of Taillard (2008) and calculated a quality level of our GA-derived schedule as percentage of 
the best known. 

For all three benchmark instances we attained a quality level of around 92 % of the best known solution calculated over 
1,000 generations GA runtime. On a so-called standard PC, one calculation ran around 10 to 20 minutes, which corresponded 
to our time goal for planning a real-world schedule. We could have gone even further and let it run for hours or days, but we 
wanted to have a realistic industrial scenario. The problem with the best known solution by Taillard (2008) is that its runtime, 
implementation of algorithm, computer, etc. is not specified. This makes it hard to determine "how good was best" from an 
economical point of view. 

4 ENHANCEMENT OF THE GENETIC ALGORITHM TO RCPSP 

A subsequent project was dedicated to the enhancement of the concept developed by Steininger (2007) to enable solutions to 
RCPSPs. The main differences to be found consist in the different structure of the production program which, in contrast to 
JSPs, may consist of any directed, acyclic graphs, allows for several parallel resources for each resource type, and therefore 
offers the possibility to assign more than one resource to each activity (operation) which are required simultaneously. 

4.1 Schedule encoding and decoding 

As there is no direct correlation between the position of an operation in the chromosome and the technological sequence of 
the operations in the job for higher degrees of cross linking of a net graph, the encoding of chromosomes chosen according to 
Bean (1994) is floating-point and priority based. Each activity is given a random priority represented by a floating point 
number between 0 and 1. Given the fact that the actual planning sequence of activities is not immediately apparent from this 
representation of chromosomes, it needs to be set up during a decoding phase prior to the use of the fitness function. In the 
literature two Schedule Generation Schemes (SGS) are known with regards to this matter, i.e. the serial and the parallel SGS 
(Kolisch and Hartmann 1999).  

Taking a gradual approach, the serial SGS assigns the earliest possible starting point to each unscheduled activity with-
out violating precedence and resource constraints. The "scheduled set" SST includes all initialized operations, whereas the 
"eligible set" EST includes all operations which can be initialized in the following step as all their predecessors are already in 
SST. During each step the activity with the highest priority is chosen from EST. Once the earliest possible starting point has 
been determined for this activity, it is deleted from EST and added to SST. Each of its successors – which now can be planned 
as all its immediate predecessors have already been initialized – is then added to EST. The process begins with 
EST={source}, SST=Ø and terminates as soon as the end activity has been planned and EST=Ø. 

The parallel SGS, in turn, uses a method similar to discrete event simulation. Each planning step is determined by a 
planning point in time PPT and the "completed set" CST, "running set" RST and EST sets of activities completed, running and 
ready to be initialized at this point in time. The process starts with CST=Ø, RST=Ø, EST={source} and PPT=0. At the begin-
ning of each planning step, all activities completed at time PPT are deleted from RST and added to CST; in addition, all suc-
cessor activities whose predecessors are now completed are added to the eligible set EST. Subsequently, as many activities as 
possible are deleted from EST, initialized at point PPT and added to RST under the condition of not violating any resource 
constraints. High-priority activities take precedence over those rated with lower priorities. If no other activity from EST can 
be initialized at the current planning point, the next planning point PPT will be calculated as the earliest possible time an 
operation from the running set RST will be completed. The process terminates with planning of the sink activity.  

Both SGSs only identify admissible planning solutions. Kolisch (1996) shows that the solution space identified by a par-
allel SGS is nothing but a sub-space contained in that of a serial SGS, and consequently, depending on the objective, does not 
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necessarily include the optimal solution. Therefore a serial SGS was chosen for our GA implementation. The method thus 
corresponds to the Priority Value Based Genetic Algorithm developed by Hartmann (1998). 

4.2 Genetic operators 

As the priorities are selected randomly with the initiation of the GA, there is only a limited number of priority conflicts. In 
case there are two or more operations of the same priority in the eligible set EST at the same time, this conflict will be solved 
by having one of the operations selected randomly. This approach simplifies the use of genetic operators.  

Mutation can be implemented by replacing one gene of the chromosome with a newly generated random priority. By 
solving conflicts in the above-described manner, the correction phase following crossover in the formerly used GA is no 
longer required, and a simple two-point crossover is used. 

4.3 Comparison with benchmarks 

A benchmark test with the RCPSP instances of the Project Scheduling Problem Library (PSPLIB; Kolisch and Sprecher 
1996) was performed in order to verify the algorithm. These automatically generated instances (Kolisch, Sprecher, and Drexl 
1995) represent the standard for comparison of algortihms solving RCPSPs. The instances consist of three sets and include 
either 30, 60 or 120 activities each of which could be interpreted as an operation inside a job. For each of the instances the 4 
resource types and their availability varies. The problem sets with 30 and 60 operations consist of 480 problem instances, 
whereas those with 120 operations have 600. Thus using the classification introduced by Brucker et al. (1998) a problem 
instance of the set with 30 operations could be classified as PS,4 | prec, NOA=30 | Cmax. For each of the instances, 10 runs 
of the enhanced REIMOS procedure were performed and the mean of makespans of all individual solutions was computed.  

The results can be seen from Table 3. For the problem set with 30 operations each, the average deviation describes the 
standard deviation of the mean solution calculated with the enhanced REIMOS procedure compared to the optimal solutions 
of the benchmark instances, whereas for all other problem sets it describes the standard deviation from the lower bounds of 
the critical path of the production programs, as their optimal solutions are not known. The values in the column "best known" 
are calculated in the same fashion but show the deviation of the makespans calculated by the currently best known algorithms 
for each of the problem sets (cf. Kolisch and Hartmann 2006).  

When comparing the above-described enhanced REIMOS procedure with the other algorithms presented by Kolisch and 
Hartmann (2006), it only falls within the lower midrange in terms of benchmark results. It must be taken into consideration, 
however, that the development of this procedure was not geared towards the solution of theoretical benchmarks but was con-
ceived with real-world problems in mind. Along the same lines it is worth mentioning that in real life the volume of the data 
material is considerably larger and accompanied by the inclusion of large data sets.  

 
Table 3: Best benchmark results for problem sets with 30, 60 and 120 operations (following Kolisch and Hartmann 2006). 

 

Number of operations NOA Average deviation of makespans (in %) 
Enhanced REIMOS Best known 

30 0.50 0.00 
60 12.94 10.71 

120 41.36 31.24 

4.4 Practical example 

In real-life situations, additional constraints often need to be added to the list of temporal, precedence and resource con-
straints already mentioned. When planning the sequence of orders (jobs), for example, the work shifts of the operators and 
the available operating times of the machines need to be considered in more detail, which further restrict the availability of 
resources. If the interaction between operators and machines is taken into account, the problem becomes even more complex. 
In addition, there are often relations between the orders of a production program which go beyond the theoretical end-to-start 
relation without time lags. For this reason the SGS of the enhanced GA has been designed to additionally consider start-to-
start, start-to-end and end-to-end relations with optional minimum time lags. This problem class can be noted as follows 
according to Brucker et al. (1999): 
 PS | prec, temp, rj | Cmax  
In this taxonomy, temp notes any random start-to-start time lags, whereas rj describes the possibility to select different points 
of initialization for incoming orders.  
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The enhanced REIMOS procedure was tested with data from the production program of a one-of-a-kind production at a 

major German company. The sequence problem under examination included 41 different products with a total of approx. 
4,500 individual operations. The production system consisted of 30 different resource types and, taking into consideration 
parallel resources, a total of 41 machines and work stations. For confidentiality reasons, the model mix, job and operation 
data are under a non-disclosure agreement and therefore cannot be published here. 

5 SIMULATION STUDY AND COMPARISON OF RESULTS 

The following simulation study was aiming at the comparison of the results gained by the enhanced REIMOS procedure and 
those from a series of simulation runs. For the latter the organization-oriented simulation procedure FEMOS was used. 
FEMOS (German acronym for "Manufacturing and assembly simulator"; see for details Zülch and Grobel 1996; Zülch and 
Brinkmeier 1998) has been developed at the ifab-Institute of Human and Industrial Engineering of the University of 
Karlsruhe (Germany) and has proved itself in many transfer projects. The FEMOS procedure has been used to analyze not 
only organizational changes in the manufacturing area and in areas preceding manufacturing but also organizational forms 
along the entire production-logistical process chain have been investigated (cf. Zülch and Greinke 2004; Zülch and Warrisch 
2004; Zülch 2008). 

5.1 Data base and initialization policies 

The data for this comparison is based on empirical values. The influencing factors, which are to change in the course of the 
simulation study, include the planned starting date (point of entry into the production system), the planned finish date and the 
sequence of production orders or orders of a product group, respectively, plus different priority rules. The term product group 
refers to a combination of individual products with similar work content. The priority rules comprise a selection of rules 
available within the FEMOS simulator: first come first served, shortest operation time, longest operation time, slack time, 
and earliest due date.  

Furthermore, 8 order initialization policies were looked into. Initialization policy P1: sequence of order initialization as 
specified by experts of the industrial partner; P2: initialization according to product groups with increasing work content (the 
higher the work content the later the point of initialization), individual products from the product group initialized equidis-
tantly; P3: initialization of individual products in equidistant intervals, product groups mixed; P4: product groups initialized 
in equidistant intervals, the lower the work content the later the point of initialization, individual products initialized equidis-
tantly; P5: product groups initialized one after the other, the higher the work content the later the point of initialization, indi-
vidual products initialized at the same point in time; P6: initialization of product groups in equal intervals, product groups 
mixed; P7: product groups initialized one after the other, the lower the work content the later the point of initialization, indi-
vidual products initialized at the same point in time; P8: block initialization of all products at point zero.  

According to this test plan, individual order initialization policies were simulated first, followed by the simulation of 
order initialization policies in combination with priority rules. The second test plan used the mean value analysis to identify 
those resources constituting bottleneck resources due to their high utilization. They were then examined by means of several 
specific order initialization policies by choosing processing- and arrival time-based priority rules for them as opposed to the 
date-based priority rules used for all other resources. In the third test plan, the most important operations of the conclusive 
assembly processes were given higher priorities than the preceding assembly operations. This means that the operations rated 
with high priority were those at the end of the manufacturing process which would – according to the hypothesis – prove 
most effective with regards to the reduction of makespan and an increase in reliability of delivery.  

5.2 Comparison of results achieved with the enhanced REIMOS procedure and with the simulator FEMOS 

The FEMOS simulation runs were evaluated based on the target parameters makespan, delivery reliability and resource utili-
zation. For the comparison the lowest makespans of the REIMOS procedure and those of the FEMOS simulator achieved 
with order initialization policies P1 and P8 were used. The reasons for choosing these policies for further analyses were that 
policy 1 was the best policy identified by the industrial partner up to that point and that policy P8 allowed for the highest pos-
sible degree of flexibility as all orders are initialized at point zero. This ensures a solid basis for the comparison of results 
from both procedures. Out of the two initialization policies, those with the best result in combination with the priority rules 
were selected, namely shortest operation time (SOT) and longest operation time (LOT). In addition, the simulation results 
were compared with regards to the respective makespan of the product groups (block makespan). Figure 4 sets the makespans 
of the sequences identified by means of the REIMOS planning method alongside those gained by the FEMOS simulation 
runs. The strategies used were the priority rule SOT in combination with order initialization policy P1 and LOT in 
combination with order initialization policy P8 respectively.  
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Figure 4: Comparison of makespans identified by means of FEMOS using order initialization policies and priority rules and 
those generated with the enhanced REIMOS planning procedure.  
 
Within the simulation study, the comparison of makespans gave the best result for order initialization policy P1 in combina-
tion with the SOT rule, whereas order initialization policy P8 proved to be most effective when combined with the LOT rule.  

The comparison with the FEMOS results shows that REIMOS gives better results for both order initialization policies. 
The makespan achieved with REIMOS is approx. 11 % lower for order initialization policy P1 and almost 7 % lower for 
policy P8 compared with sequence planning on the basis of priority rules.  
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Figure 5: Comparison of makespans of production groups when using simulation with priority rules and when using the 
enhanced REIMOS planning procedure. 

 
The diagrams illustrated in Figure 5 are the product of a comparison of makespans for production orders of the 5 product 
groups generated with the REIMOS planning procedure and the simulation of priority rules with FEMOS respectively. When 
the makespans of individual product groups for order initialization policy P1 are compared it turns out that the values are 6 % 
higher with REIMOS than when the priority rules using FEMOS were applied. A comparison of the makespans of the prod-
uct groups for order initialization policy P8 delivers the similar key figures: The values of the REIMOS planning procedure 
are approx. 21 % higher than those generated with the simulated use of priority rules. The individual makespans of orders 
within one product group do not vary strongly from the group's mean value. This gives rise to assumptions as to the positive 
correlation between an equidistant or almost equidistant spacing of inter-arrival times within a product group and an 
improvement of makespans.  

All of the above proves that the makespan results delivered by the use of simulation with priority rules fall short of those 
delivered by the Genetic Algorithm within the enhanced REIMOS planning procedure. This proves that the more complex 
Genetic Algorithm is superior to the priority rule-based simulation approach. 
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6 CONCLUSIONS AND FURTHER DEVELOPMENTS 

A comparison of the best FEMOS results of the simulation study at hand with the best results of REIMOS shows that the 
more complex REIMOS planning procedure generates lower makespans than the use of priority rules in the simulation runs. 
But the comparison also proved that the individual makespans of the product groups show higher values for REIMOS than 
when using FEMOS with priority rules. Depending on the target of optimization, the approaches lead to diverging conclu-
sions. As far as multi-target optimization tasks are concerned, simulation therefore represents a means to verify the results 
with respect to the weighting factors of the objective function.  

When using heuristics and suboptimal methods such as GAs, it is often crucial to implement these criteria separately. 
These enhancements can be facilitated by combining simulation and optimization procedures from operations research. One 
concrete scenario would be the use of the simulation tool as a fitness function of the GA in order to allow for more complex 
weighting functions to be taken into account. 

It should also be noted that disturbances, decisions, material flow, etc., can be taken into consideration when the values 
of a fitness function are calculated from simulation runs. The next step would be to focus on another reduction of the calcu-
lating time of such a method. One possibility might be to distribute the calculation of the fitness functions to different proces-
sor cores or to different computers (grid computing). All these ideas are reason to engage in further research in this field. 
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