
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

ADAPTIVE FLOW CONTROL IN FLEXIBLE FLOW SHOP PRODUCTION SYSTEMS -
A KNOWLEDGE-BASED APPROACH

Mark Aufenanger
Hendrik Varnholt

Wilhelm Dangelmaier

Heinz Nixdorf Institute
Fürstenallee 11, University of Paderborn

33102 Paderborn, Germany

ABSTRACT

Today simulation is essential when researching manufacturing processes or designing production systems. But in the field
of manufacturing, simulation can not only be used for purposes of research or design, it can also be utilized by flow control
systems in order to make better and faster decisions. In this paper we focus on real-time scheduling in a special kind of
flexible flow shop systems. These consist of production stages, which represent groups of machines doing the same work,
but working at different speeds. Flow control in these flexible flow shop environments with uniform machines is exceedingly
complex and it is even more complex when uncertainties are taken into consideration. For this reason we develop an adaptive
scheduling heuristic, utilizing both simulation and artificial intelligence in order to make globally good decisions without
causing noticeable manufacturing delays.

1 INTRODUCTION

The more complex a system is, the less predictable is its behavior. For manufacturers this is a dilemma. They produce
increasingly sophisticated products, are trade partners in lengthening supply chains, and need to be competitive on a global
market. Requirements on production and logistics processes grow. This causes more and more complex plans. At the same
time an increasing accuracy should make cost-intensive time and capacity buffers dispensable. Hence, the requirements are
in conflict. Meeting them simultaneously can only be successful by utilizing substantially improved planning processes.

In recent decades this did not change despite of an enormous growth of computing power. Production planning is still
complex and for this reason time consuming. Solving typical production planning problems often takes hours or even days
(cf. Hopp and Spearman (2001)). Hence, most established scheduling methods can only be used if time is not critical. To
be able to immediately react to deviations which occur during a running production process other methods are needed.

For this reason, approaches to make planning more flexible moved to the focus of research on production planning.
Researchers no longer regard production processes as completely deterministic but as partially stochastic. They realized that
most often a production schedule cannot be executed as planned. Consequently researchers had to develop methods being
able to quickly react to changes while also being reliable. Such methods are described by Aytug et al. (2005). Among
other methods they review techniques which utilize data (knowledge) gathered prior to the production process. By using this
knowledge in combination with artificial intelligence algorithms the methods try to predict the outcome of different possible
decisions in a given situation.

The idea which Aytug et al. (2005) describe as predictive-reactive lead us to the adaptive scheduling framework which
is described in the fourth chapter of this paper. First work on this approach was presented in Aufenanger et al. (2008). In
the next section we give an overview of existing research on scheduling in flexible flow shop environments, in particular
such approaches dealing with uncertainties in production environments. We conclude with the description of a prototype
and present test results.

2164978-1-4244-5771-7/09/$26.00 ©2009 IEEE

Aufenanger, Varnholt and Dangelmaier

1.1 The Nature of Flexible Flow Shop Environments

Virtually all research on flexible production planning focuses on job shop scheduling problems or – in fewer cases – flow
shop environments. But there are other types of production environments, which are of the same or even greater importance
in practice. One of these is the flexible flow shop, which is considered in this paper.

To understand the nature of flexible flow shop environments it is important to first understand flow shops. These consist
of different machines, which are arranged in multiple stages. At each stage there is only one machine, and stages have to
be passed in a given order. In contrast to this, flexible flow shops have more than one machine at each stage. Hence, in
flexible flow shops jobs can pass others.

The machines at each stage of a flexible flow shop can be completely identical: they do the same work at the same
speed. Or they can among other possibilities be uniform: they do the same work but at different speeds. In this paper we
consider flexible flow shops with uniform machines.

2 STATE OF THE ART IN SCHEDULING FLEXIBLE FLOW SHOPS

2.1 Optimum Techniques

Many researchers who consider scheduling in flexible flow shop environments (Wang 2005) suggest algorithms following the
branch-and-bound approach. They argue that there is a more intelligent way than enumerating all possible solutions in order
to find an optimal production plan. The branch-and-bound approach (for details cf. for example Dakin (1965) or Brucker
(2007)) avoids enumerating all possibilities by calculating upper and lower bounds in order to prune possible solutions which
cannot be the optimum as early as possible. Hence, branch-and-bound techniques are methods for implicit enumeration. In
practice they are faster than completely enumerating the possible solutions. Nevertheless, their worst-case run-time is not
better.

2.2 Heuristics

Utilizing optimal solution techniques turned out to be impractical. Finding the best possible solution is still often a matter
of hours or days, even with nowadays computational power. However, an acceptable solution can often be found in seconds
when using heuristics (Wang 2005).

A basic heuristic for solving flexible flow shop scheduling problems can be derived from the branch-and-bound approach
Blazewicz et al. (2007): If not all generated branches of a decision tree are considered as starting points for a further search
for better solutions, the width of the tree and hence the complexity of the search will be significantly reduced. Anyway, the
solution quality strongly depends on the ”right” selection criteria for branches to explore.

An entire class of heuristics for solving flexible flow shop scheduling problems is based on a different idea, which was
first mentioned by Sriskandarajah and Sethi (1989). They divide a flexible flow shop problem in two kinds of sub problems:
First, a number of regular flow shop problem is build. Each of the machines on each stage of the flexible flow shop is
then assigned to one of these regular flow shops. After that, algorithms which are designed for solving regular flow shop
scheduling problems – for example the algorithm of Johnson (1954) (also described in Baker (1974)) – can be applied.

More sophisticated heuristics are needed when considering flexible flow shops with uniform machines. One of the few
researchers who developed methods for this kind of problems are Kyparisis and Koulamas (2006). They basically suggest
building partial schedules for each production stage by using techniques which are designed for parallel machines problems
and then combining these to a complete schedule for the original flexible flow shop problem.

2.3 Artificial Intelligence Techniques

To improve the solution quality heuristics can be enhanced by utilizing artificial intelligence techniques. The basic idea is
to imitate the human process of decision making, which is often based on experience. This can be achieved by machine
learning methods which create knowledge bases. A knowledge base contains decisions and the observed outcome together
with descriptions of the situations the decisions were made in. Scheduling methods can exploit such a knowledge base by
comparing the current situation with the situations stored in the knowledge base and determine which decision is the best.
Techniques following this approach are usually fast in decision making, but they need extra time prior to the production
process to build a knowledge base.

2165

Aufenanger, Varnholt and Dangelmaier

3 DEALING WITH UNCERTAINTIES

Uncertainties in a production environment are as numerous as the influences on the manufacturing process. Machine failures,
late material delivery and unavailable operators often make previously generated plans inapplicable and thus useless. For
that reason, useful methods for production scheduling need to incorporate uncertainties. Following the taxonomy of Aytug
et al. (2005) such approaches can be classified as predictive, reactive or predictive-reactive.

3.1 Predictive Scheduling

Predictive techniques try to anticipate all possible changes to the production parameters. They produce schedules which
should be applicable under all circumstances. If for example a processing time is subject to frequent changes, predictive
techniques will use the longest possible processing time to build plans. Therefore, the resulting plans are schedules for
worst-case scenarios. Relying on them is cost-intensive due to their inefficiency under normal circumstances. For specific
methods following the predictive scheduling approach cf. Kouvelis et al. (2000) or Mehta and Uzsoy (1998).

3.2 Reactive Scheduling

Completely reactive approaches on the other hand do not try to build a plan at all. They do not consider scheduling problems
from a long term perspective, but make decisions just for the immediate future. These decisions are only affected by local
parameters. For example, if currently a high utilization is observed on a particular machine, the next job is routed to another
machine. The results generated by reactive scheduling are often globally worse than those generated by globally oriented
techniques – especially if there are only a few uncertainties in a production system. Reactive techniques were nevertheless
dominant in production scheduling for many years (Baker 1974). The most important reason for this is that they do not
require much computational power (Günther and Tempelmeier 2005). Another reason is their flexibility, which is coming
to special importance when there is a significant amount of uncertainty in a production system.

The most common way to implement a technique based on the completely reactive approach is to use priority rules.
This simply means to sort a given set of jobs or machines by certain parameters. Some popular priority rules are listed in
Table 1 (see for example Panwalkar and Iskander (1977) for other rules).

Table 1: Often used priority rules

Abbreviation Priority rule
FIFO First In First Out
FOFO First Off First On
SPT Shortest Processing Time
LPT Largest Processing Time
SRPT Shortest Remaining Processing Time
LRPT Largest Remaining Processing Time
EDD Earliest Due Date

3.3 Predictive-Reactive Scheduling

The third type of techniques incorporating uncertainties can be described as predictive-reactive. As well as completely
predictive methods these techniques build initial plans. But the resulting plans incorporate less uncertainty and are therefore
more likely to turn out as inapplicable if parameters change. If this happens, the predictive-reactive approach changes the
plan. To make these changes while the production process goes on, fast decision making is required. Thus, usually heuristics
are used. The process of adapting an existing schedule to changing circumstances is often referred as rescheduling. For
specific methods for predictive-reactive scheduling cf. Church and Uzsoy (1992), Alagöz and Azizoglu (2003) or Unal,
Uzsoy, and Kiran (1997).

2166

Aufenanger, Varnholt and Dangelmaier

4 METHODOLOGY

4.1 Assumptions

Whether a predictive, a reactive or a predictive-reactive approach is preferable, differs from application scenario to application
scenario. Thus, it is important to more precisely describe the production environment our approach should be applied to.
The environment is considered to have the following characteristics:

• Flexible flow shop with more than one production stage and more than one machine at each of these stages
• Uniform machines at each production stage
• Highly flexible production environment with negligible set-up times
• High amount of uncertainty. An initial production plan has to be revised frequently during the production process
• Capital-intensive production of complex and usually high-priced products as they can be found in the semiconductor

industry

4.2 Discussion of Scheduling Approaches

Using completely predictive techniques is not advantageous in the described production environment. The high amount of
uncertainty would cause large buffers and hence significant inefficiency. This is of special importance if the buffered products
lock up a large amount of capital. Incorporating all possible changes to the production parameters is just too expensive in
the described environment.

Predictive-reactive approaches turned out to be beneficial in many different production environments. This however
supposes a moderate amount of uncertainty. The more often unpredicted changes happen, the more often predictive-reactive
techniques need to reschedule, and the less efficient they are. Lawrence and Sewell (1997) state predictive-reactive techniques
are only advantageous over completely reactive methods, if the amount of uncertainty does not rise over a certain level. In
the case of the described environment it can therefore be doubted that predictive-reactive approaches will turn out to be most
efficient.

Completely reactive approaches have the ability to react quickly to frequent changes. They therefore appear to be suitable
for the described environment with a high amount of uncertainty. A severe disadvantage of completely reactive approaches
is however that they do not consider global results and therefore often produce unpredictable results of low quality. This
problem is tackled in the residual paper.

4.3 Partly Reactive and Partly Predictive-Reactive Scheduling

Our approach does not fit well in the described classification of scheduling techniques as predictive, reactive and predictive-
reactive. It should follow an approach which could be classified as partly reactive and partly predictive-reactive. Hence, the
method should be able to immediately make decisions by considering local parameters only, and it should at the same time
be globally oriented.

We made a central assumption: The described goal can be achieved by adapting the human process of decision making.
Human planners would, if time is critical, not consider all parameters influencing a production process, but would partly
decide by intuition. Humans learn by experience and therefore often know what is best in a situation even when there is no
time for precisely calculating the outcome of the decision.

The system to be developed in this paper uses artificial intelligence in order to imitate the human process of decision
making. It tries to gather as much experience as possible by a simulation process, done prior to the production process.
During the running production it does not revert to a plan to make decisions, but uses the built knowledge base to classify the
current situation and make the globally most promising decision. Thus, the system is on the one hand completely reactive
(its decisions are only based on local and current parameters) and on the other hand predictive-reactive (its decisions are
based on the process of knowledge gathering, which is done prior to the production process).

2167

Aufenanger, Varnholt and Dangelmaier

5 IMPLEMENTATION FRAMEWORK

5.1 Simulation System

To quickly and reliably gather information prior to the production process is of great importance for the success of the
considered method. This is done by simulation. The simulation system used is d3FACT insight, which has been developed
by our institute since approximately seven years (see for example Dangelmaier et al. (2005); Dangelmaier et al. (2006) and
Aufenanger et al. (2008)). The specific flexible flow shop for which a scheduling has to implemented is modeled in the
simulation system. Then, many different – how many solely depends on the time being available prior to the production
process – decisions are made randomly and their outcome is simulated. Subsequently, the decisions are classified as good
(promising) or bad (non-promising) according to the global scheduling result.

5.2 Decisions to be Made

There are two kinds of decisions which have to be made during production in a flexible flow shop: First, when a job is
ready to be processed at a certain stage, it has to be decided on which of the machines of the stage it should be processed
(machine decision). And second, if there is more than one job ready to be processed at the stage, it has to be decided which
of these jobs should be processed first (job decision).

To generalize the process of decision making, the technique which is to be developed should revert to the concept of
priority rules. But, and that is an important difference to completely reactive scheduling in the traditional way, it should
decide which priority rule is most likely to make the globally best decision in the current situation.

Because there are two kinds of decisions, we need to define two classes of priority rules from which the technique can
choose. For the purpose of describing an example implementation framework we suggest to use the priority rules

• SPT: Shortest Processing Time first
• LPT: Longest Processing Time first

as possible priority rules for the job decision and

• Fastest: Fastest machine first
• Slowest: Slowest machine first

as possible priority rules for the machine decision. Since we present first results, we only use a few rules. The selection
has to be enhanced in the future. The last decision is of special importance because of considering uniform machines, which
work at different speeds. When considering identical machines, a machine can be selected randomly without harm. If the
machines are unrelated, the priority rules as well as the process of generating conflict sets have to be adapted.

5.3 Building Conflict Sets

Building groups of jobs and machines from which the system to be developed is able to choose, is not trivial. In terms of
job decision, a job which is currently ready to be processed does not only compete against other currently ready jobs for
processing on the considered stage, but it also competes against jobs which would get ready to be processed during the time
itself would be processed. In other words, it can be advantageous not to decide for processing a currently ready job, but to
wait for another job to be ready.

Building conflict sets, out of which a priority rule (which is selected dynamically in our case) can choose, has been
formalized by Giffler and Thompson (1960). As part of their algorithm to build all active schedules in a job shop environment
they suggest to first select the job with the earliest possible finishing time C j∗ at the considered stage and then add to the
conflict set all jobs with earliest possible start times r j < C j∗ .

To decide if the heuristic presented by Giffler and Thompson (1960) can be used to build conflict sets in our case, it
is important to answer two questions: Is the method applicable in flexible flow shop environments with their two kinds of
decisions? And is it applicable in cases of reactive (and not only predictive) scheduling?

Giffler and Thompson (1960) partly answer the first question by themselves when stating: ”Suppose that there are k
machines available (...). Then (...) we can permit conflict sets to be as large as k without harm.” This implicitly suggests to
randomly allocate jobs to all available machines. Doing this does not cause any harm as long as the machines considered are

2168

Aufenanger, Varnholt and Dangelmaier

identical. If they are uniform (doing the same work but at different speeds), this is not necessarily true. Therefore, machine
allocation must not be done randomly.

Important hints on adapting the method of Giffler and Thompson (1960) to flexible flow shop scheduling are delivered
by Nascimento (1993) and Chang and Sullivan (1990). They basically describe that good scheduling results are achievable
in environments consisting of many flexible manufacturing systems by just considering all possible machine allocations in
addition to job selection by the method of Giffler and Thompson (1960). Since flexible flow shops are a special kind of
flexible manufacturing systems, this approach can be adapted to our case. Thus, job decision conflict sets are build by the
method of Giffler and Thompson, and machine decision conflict sets just consist of all available machines at the considered
stage. This leads to a process of building conflict sets as follows:

1. Build conflict set 1 consisting of all ready operations
2. Select from conflict set 1 the operation with the shortest processing time
3. Add to conflict set 1 all operations which are currently processed on the production stage preceding the considered

one and will be ready for processing prior to the end of the previously chosen operation
4. Select an operation from conflict set 1 by a method to be defined
5. Build conflict set 2 consisting of all machines at the considered stage
6. Select a machine from conflict set 2 by a method to be defined
7. Start processing of the selected operation on the selected machine

In order to answer if the modified algorithm of Giffler and Thompson is applicable for reactive scheduling, we refer to
the sequential nature of the original method the authors present. It builds schedules from start to end by only considering
currently available information. Therefore, it is applicable for reactive scheduling.

5.4 Making Decisions

The most important part of the system to be developed in this paper is the process of making decisions. Its quality primarily
affects the quality of the reactively developed scheduled. As already mentioned, the decisions to be made by an artificial
intelligence method are reasonably abstract. It merely has to decide for a job and a machine selection priority rule. Specific
jobs and machines are then chosen by the selected rule.

The method should make globally promising decisions on the basis of local information. Discovering which decisions
are globally good in a given situation should be done by machine learning. Therefore, the outcome of as many different
decisions as possible has to be simulated prior to the production process. This can for example be done by choosing job and
machine selection priority rules randomly at every stage and then saving the decisions, descriptions of the situations they
were made in, and the resulting global makespan. After many simulation runs of that kind it can be decided (by comparing
the makespans) which simulation runs should be considered as good. The decisions made during these ”good” runs can then
be regarded as examples of future decisions.

Discovering coherencies on the basis of a limited set of examples is an important sub-field of artificial intelligence and
machine learning, which is referred to as classification. Classification is therefore used in the scheduling system developed in
this paper when deciding which priority rules are most promising. There are many different classification methods. Selecting
among them potentially has great impact on the scheduling results.

Among the most often used classification techniques are classification (decision) tree methods. These methods use
example data to develop trees, in which branches represent certain attribute values. The branches lead to leaves, which
represent decisions. An implementation is the supervised learning algorithm C4.5 (Quinlan 1993), which is an enhancement
of older methods that build CARTs (classification and regression trees). In this paper we suggest to use the algorithm C4.5
for both necessary classification processes at each production stage: the one choosing a priority rule for the job decision
and the one choosing a priority rule for the machine decision.

In order to classify a situation (in our case: find the most promising priority rules) each situation has to be described.
In classification, describing a situation is done by referring to the values of its attributes. Therefore a set of attributes needs
to be defined. In order to describe situations which can occur during the considered production process we suggest using
the following attributes:

• The number of jobs in the currently considered job conflict set
• The standard deviation of processing times in the currently considered job conflict set
• The utilization of machines at the considered production stage

2169

Aufenanger, Varnholt and Dangelmaier

• The position of the considered production stage in the entire production process
• In the case of a job decision: the last made decision
• In the case of a machine decision: the job decision earlier made in the same situation

6 EVALUATION

6.1 Evaluation system

To evaluate our concept of an adaptive scheduling system for flexible flow shop production environments we developed an
extension of the d3FACT insight simulation system. It basically consists of a java class, which handles the routing (and
therefore the described process of decision making) at every stage of the considered production environment. This class is
called ”FFS knowledgeBased”. It uses some other classes which are mentioned in figures 1 and 2.

4 Implementierung und Evaluation

<<interface>>

TokenHandler_Interface
tokens: ArrayList<Token>

myEntity: Entity

kernel: Kernel

getNumberOfTokens(): int

getTokens(): ArrayList<Token>

hasNextToken(): boolean

incomingToken(Token)

<<abstract>> sendNextToken(): boolean

sendToken(Token, OutputChannel): boolean

FFS_knowledgeBased
lastSelected: String

sendNextToken(): boolean

JobAttributes
kernel: Kernel

lastSelected: String

ratioReadyUnready: double

relativeProgress: int

relativeUsageNext: int

relativeUsageSecondnext: int

selected: String

sizeConflictSet: int

standardDeviation: double

getAttributesForClassification(): writeAttributes()

getLastSelected(): String

getRatioReadyUnready(): double

getRelativeProgress(): int

getRelativeUsageNext(): int

getRelativeUsageSecondnext(): int

getSelected(): String

getSizeConflictSet(): int

getStandardDeviation(): double

printAttributes()

setLastSelected(String)

setRatioReadyUnready(double)

setRelativeProgress(int)

setRelativeUsageNext(int)

setRelativeUsageSecondnext(int)

setSelected(String)

setSizeConflictSet(int)

setStandardDeviation(double)

writeAttributes()

MachineAttributes
jobSelected: String

kernel: Kernel

ratioReadyUnready: double

relativeProgress: int

relativeUsageNext: int

relativeUsageSecondnext: int

selected: String

sizeConflictSet: int

standardDeviation: double

getAttributesForClassification(): writeAttributes()

getJobSelected(): String

getRatioReadyUnready(): double

getRelativeProgress(): int

getRelativeUsageNext(): int

getRelativeUsageSecondnext(): int

getSelected(): String

getSizeConflictSet(): int

getStandardDeviation(): double

printAttributes()

setJobSelected(String)

setRatioReadyUnready(double)

setRelativeProgress(int)

setRelativeUsageNext(int)

setRelativeUsageSecondnext(int)

setSelected(String)

setSizeConflictSet(int)

setStandardDeviation(double)

writeAttributes()

1

1..*

1

1..*

1 1

Abbildung 4.5: UML-Darstellung der Klasse „FFS_knowledgeBased“ zusammen mit
den mit ihr verbunden Klassen (Teil eins)

72

Figure 1: Classes of the evaluation system developed as an extension of d3FACT insight. Part one.

2170

Aufenanger, Varnholt and Dangelmaier
4.3 Realisierung in Java

JobConflictSet
candidateTokens: ArrayList<JobCandidate>

add(JobCandidate)

getCandidateTokenBy(String): JobCandidate

getCandidateTokens(): ArrayList<JobCandidate>

getStandardDeviation(): double

printContents()

MachineConflictSet
machineCandidates: ArrayList<MachineCandidate>

add(MachineCandidate)

getCandidateMachineBy(String): MachineCandidate

printContents()

size(): int

JobCandidate
isReady: boolean

nextProcTime: int

tok: Token

getNextProcTime(): int

getTok(): Token

isReady(): boolean

MachineCandidate
outchannel: OutputChannel

speed: int

getOutchannel(): OutputChannel

getSpeed(): int

1..* 1..*

Abbildung 4.6: UML-Darstellung der Klasse „FFS_knowledgeBased“ zusammen mit
den mit ihr verbunden Klassen (Teil zwei)

Die Klasse „JobAttributes“ dient wie schon erwähnt der Sammlung aller für die Auf-

tragswahl-Klassifizierung relevanter Ausprägungen der Situationsmerkmale. Glei-

ches gilt für die Klasse „MachineAttributes“ in Bezug auf die Arbeitsstationswahl-

Klassifizierung. Die Elemente der Konfliktmengen sind als „JobCandidate“ bzw.

„MachineCandidate“ in Objekten der Klassen „JobConflictSet“ respektive „Machine-

ConflictSet“ zusammengefasst. Die für die Funktion des Evaluationssystems notwen-

digen Methoden sind stets den Klassen zugeordnet, auf deren Daten sie unmittelbar

operieren.

Zusätzlich zu den unmittelbar im Simulationssystem d3FACT insight verankerten

Klassen besteht die im Rahmen dieser Arbeit entwickelte Software aus mehreren

weiteren Elementen. Wie im Abschnitt 4.3.2 genauer beschrieben, dient die main-

Methode der Klasse „Kbffs_Evaluate“ dem Starten des Lernprozesses sowie der An-

wendungssimulation. Als Hilfsklassen zur Automatisierung des Evaluationsprozes-

ses wurden ferner die Klassen „EvaluatorFfs“ und „EvaluatorFfsRandom“ realisiert.

Erstere besitzt die Fähigkeit, automatisiert einen Lernprozess zu starten und das

Verhalten der Software anschließend auf der Grundlage mehrerer Abwandlungen

73

Figure 2: Classes of the evaluation system developed as an extension of d3FACT insight. Part two.

6.2 Scheduling Results

The evaluation system was used to simulate the results of scheduling by the developed technique in different flexible flow
shop production environments. These are primarily defined by their numbers of stages and machines at these stages. For
each of the five different environments considered, we first used the evaluation system to gather training examples. Thus,
we randomly generated a set of jobs and made the system select priority rules by chance during 100 simulation runs. After
that, we selected the decisions of the 20 best simulation runs as examples of good decisions.

In a second step, we used the classifier to make the job and machine priority rule decisions on the basis of the gathered
examples (knowledge). In order to obtain information about the adaptiveness of the developed technique, we did this with
five variations of the flexible flow shop production environment used to gather training examples. The resulting makespans
are listed in Table 2 and visualized in Figure 3. To be able to compare these results, we also list the makespans which have
been achieved by using static priority rules and randomly chosen priority rules.

By analyzing the scheduling results, it can be asserted that the developed technique for adaptive scheduling in flexible
flow shop production environments is in nearly all cases able to produce better results than static priority rules or scheduling by
randomly choosing priority rules. Since there are many possible improvements, the basic approach seems promising. Positive
impact on the scheduling results may for example be choosing other than the defined classification attributes, increasing the
number of training runs or selecting another classification algorithm.

6.3 Calculation Time

It was our goal to develop a technique being suitable in situations in which production parameters change frequently. Hence,
the developed technique has to make decisions without causing noticeable delays. This has been achieved. The time the
process of classifying consumes is comparable to the time the application of a static priority rule would consume. Additional
time is only needed prior to the production process. Since calculation time usually is not critical during that phase, this does
not cause delays.

7 CONCLUSION

In this paper we described a technique which is able to adaptively schedule a production process in a flexible flow shop
environment with uniform machines. The technique gathers information about the environment prior to the production
process by simulation and using machine learning methods. It discovers which decision is most likely to cause a globally
good result in a certain situation and uses this knowledge when it is used in real-world environments. Hence, it is able

2171

Aufenanger, Varnholt and Dangelmaier

to make decisions exceptionally fast. It is used reactively without causing noticeable delays. For that reason it is adaptive
while producing globally good results. It is a task of future research to enhance the technique by adding more sophisticated
attributes for situation description or using other classifiers, for example a Naive Bayes classifier.

REFERENCES

Alagöz, O., and M. Azizoglu. 2003. Rescheduling of identical parallel machines under machine eligibility constraints.
European Journal of Operational Research 149 (3): 523–532.

Aufenanger, M., W. Dangelmaier, C. Laroque, and N. Rüngener. 2008. Knowledge-based event control for flow-shops using
simulation and rules. In Proceedings of the 2008 Winter Simulation Conference, ed. S. J. Mason, R. R. Hill, L. Mönch,
O. Rose, T. Jefferson, and J. W. Fowler, 1952–1958. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Aytug, H., M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy. 2005. Executing production schedules in the face of
uncertainties: A review and some future directions. European Journal of Operational Research 161:86–110.

Baker, K. 1974. Introduction to sequencing and scheduling. New York: Wiley.
Blazewicz, J., K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. 2007. Handbook of scheduling. from theory to applications.

Berlin, Heidelberg: Springer.
Brucker, P. 2007. Scheduling algorithms. 5. ed. Berlin: Springer.
Chang, Y.-L., and R. S. Sullivan. 1990. Schedule generation in a dynamic job shop. International Journal of Production

Research 28 (1): 65–74.
Church, L. K., and R. Uzsoy. 1992. Analysis of periodic and event-driven rescheduling policies in dynamic shops. International

Journal of Computer Integrated Manufacturing 5 (3): 153–163.
Dakin, R. 1965. A tree-search algorithm for mixed integer programming problems. The Computer Journal 8 (3): 250–255.
Dangelmaier, W., M. Aufenanger, C. Laroque, and D. Huber. 2005. d3FACT insight - Ein Materialflusssimulator zum

Erstellen und Simulieren komplexer Materialflussmodelle. In 18th Symposium Simulationstechnique, ed. F. Hülsemann,
M. Kowarschik, and U. Rüde, 530–535.

Dangelmaier, W., M. Aufenanger, C. Laroque, D. Huber, and K. Mahajan. 2006. A multi-user modeling environment to create
and parametrize material flow models in d3fact insight. In Proceedings of the 13th European Concurrent Engineering
Conference, ed. U. Baake and E. Yucesan, 132–137.

Giffler, B., and G. L. Thompson. 1960. Algorithms for solving production scheduling problems. Operations Research 8 (4):
487–503.

Günther, H.-O., and H. Tempelmeier. 2005. Produktion und Logistik. 6. ed. Berlin: Springer.
Hopp, W. J., and M. L. Spearman. 2001. Factory physics: foundations of manufacturing management. 2. ed. Boston:

Irwin/McGraw-Hill.
Johnson, S. M. 1954. Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics

Quarterly 1:61–68.
Kouvelis, P., R. Daniels, and G. Vairaktarakis. 2000. Robust scheduling of a two-machine flow shop with uncertain processing

times. IIE Transactions 32 (5): 421–432.
Kyparisis, G. J., and C. Koulamas. 2006. Flexible flow shop scheduling with uniform parallel machines. European Journal

of Operational Research 168 (3): 985–997.
Lawrence, S. R., and E. C. Sewell. 1997. Heuristic, optimal, static, and dynamic schedules when processing times are

uncertain. Journal of Operations Management 15 (1): 71–82.
Mehta, S., and R. Uzsoy. 1998. Predictable scheduling of a job shop subject to breakdowns. IEEE Transactions on Robotics

and Automation 14 (3): 365–378.
Nascimento, M. A. 1993. Giffler and Thompson’s algorithm for job shop scheduling is still good for flexible manufacturing

systems. The journal of the Operational Research Society 44 (5): 521–524.
Panwalkar, S. S., and W. Iskander. 1977. A survey of scheduling rules. Operations Research 25 (1): 45–61.
Quinlan, J. R. 1993. C4.5: programs for machine learning. 1. ed. San Francisco: Morgan Kaufmann Publishers.
Sriskandarajah, C., and S. Sethi. 1989. Scheduling algorithms for flexible flowshops: Worst and average case performance.

European Journal of Operational Research 43 (2): 143–160.
Unal, A., R. Uzsoy, and A. Kiran. 1997. Rescheduling on a single machine with part-type dependent setup times and

deadlines. Annals of Operations Research 70:93–113.
Wang, H. 2005. Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions. Expert Systems 22

(2): 78–85.

2172

Aufenanger, Varnholt and Dangelmaier

AUTHOR BIOGRAPHIES

MARK AUFENANGER studied Business Computing at the University of Paderborn, Germany. Since 2005, he is a research
assistant at the group of Prof. Dangelmaier, Business Computing, esp. CIM. He is mainly interested in simulation of logistics
systems, artificial intelligence and knowledge based systems. His email address is <Mark.Aufenanger@hni.upb.de>.

HENDRIK VARNHOLT studied Business Computing at the University of Paderborn, Germany. He is primarily interested in
adaptive scheduling systems, real-time scheduling and artificial intelligence. His email address is<hevarnholt@gmx.net>.

WILHELM DANGELMAIER studied Mechanical Engineering at the University of Stuttgart, Germany. Since 1981, he
was director and head of the Department for Corporate Planning and Control at Fraunhofer Institute for Manufacturing.
In 1991, Dr. Dangelmaier became Professor for Business Computing at Heinz Nixdorf Institute, University of Paderborn,
Germany. In 1996, he founded the Fraunhofer Center for Applied Logistics. His principal interests today are models and
tools for distributed production systems. His email address is <Wilhelm.Dangelmaier@hni.upb.de>.

2173

Aufenanger, Varnholt and Dangelmaier

Table 2: The results of the evaluation process. Production environments are denoted by ”M×N” with M representing the
number of stages and N representing the number of machines at each stage. For each considered environment six variations
were build. One of these was used for training. The others were used for application of the gathered knowledge. The results
achieved when applying the knowledge were combined to mean values for each production environment. For comparison,
results achieved when using static priority rules or randomly chosen priority rules are mentioned as well.

Problem Job decision Machine decision Makespan in seconds
(mean value)

Deviation from
knowledge based
result (mean value)

1x3 knowl. based knowl. based 284.217 –
SPT fastest 295.417 4.05 %
SPT slowest 295.338 4.02 %
LPT fastest 284.217 0 %
LPT slowest 284.036 -0.07 %
random random 290.118 1.53 %

2x4 knowl. based knowl. based 121.27 –
SPT fastest 174.054 46.13 %
SPT slowest 198.042 69.83 %
LPT fastest 123.962 2.32 %
LPT slowest 123.514 1.89 %
random random 127.355 5.17 %

3x2 knowl. based knowl. based 715.714 –
SPT fastest 913.626 27.74 %
SPT slowest 931.557 30.26 %
LPT fastest 752.077 5.33 %
LPT slowest 749.999 5.19 %
random random 716.92 0.4 %

3x3 knowl. based knowl. based 95.41 –
SPT fastest 100.47 5.8 %
SPT slowest 124.79 32.77 %
LPT fastest 104.5 10.04 %
LPT slowest 108.092 14.39 %
random random 105.115 10.61 %

4x4 knowl. based knowl. based 111.702 –
SPT fastest 143.435 28.07 %
SPT slowest 219.575 97.2 %
LPT fastest 124.292 11.15 %
LPT slowest 142.842 29.51 %
random random 117.528 5.41 %

2174

Aufenanger, Varnholt and Dangelmaier4 Implementierung und Evaluation 4 Implementierung und Evaluation

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

��

��

��

��

��

��

�

�

�
�

�

�

��
��

��

�� ��

��

�
�

�

�

�

�

��
��

��

��

�� ��

Pr
ob

le
m

1x
3

Pr
ob

le
m

2x
4

Pr
ob

le
m

3x
2

Pr
ob

le
m

3x
3

Pr
ob

le
m

4x
4

M
ea

n
Va

lu
e

Abbildung 4.7: Visualisierung der prozentualen Abweichungen der maximalen
Durchlaufzeit Cmax bei Verwendung der Regeln SPT/fastest (♢),
SPT/slowest (♦), LPT/fastest (□), LPT/slowest (■) sowie bei zufäl-
liger Regelauswahl (△); jeweils im Vergleich zum durch wissensba-
siertes Scheduling erzielten Referenzwert

78

Figure 3: Visualization deviations (mean values) in percent from corresponding knowledge based results. ♦ denotes SPT/fastest.
� denotes SPT/slowest. � denotes LPT/fastest. � denotes LPT/slowest. 4 denotes randomly chosen priority rules.

2175

