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ABSTRACT

Overcrowding in the emergency departments (ED) has led to an increase in the use of ambulance diversion (AD), during
which a hospital formally is not accepting patients by ambulance. We use a number of tools to considers methods by which
hospitals in a metro area may cooperate to reduce diversion, including contracts and pressure from outside regulators. The
tools include a birth-death process, discrete event simulations, agent-based simulation model, and some game theory to
examine the potential for cooperative strategies. We use data to suggest a functional form for the payoff of such games. We
find that a centralized form of routing is needed, as voluntary cooperation does not appear to be robust in the presence of
noise or strategic behavior, and ethical considerations also have a significant impact.

1 INTRODUCTION

From 1992 to 2003, the number of hospital emergency rooms in the U.S. went from approximately 6000 to less than 4000,
while emergency department visits increased from 89.8 to 108 million (Schafermeyer and Asplin 2003). Many hospital
patients arrive through the emergency room, and when the hospital is at capacity, many patients are boarded in the ED until
a regular bed opens up. This exacerbates crowding of the ED. To combat this problem, the hospital may go on diversion
(or Ambulance Diversion, AD), where ambulances are sent to other facilities.

At the level of a hospital system for a given metropolitan statistical area (MSA), the emergency services must coordinate
dispatching, especially when capacity is tight. This leads to the question of cooperation between the hospitals. Systems may
vary from each hospital operating independently to a completely centralized system. Advances in technology enable both
tighter integration on the one hand, and better information flow to aid independent hospital decision making, on the other.

We seek cooperative strategies to limit AD, between these extreme positions. The first goal in this study is therefore
to identify a method to reduce AD in a cooperative manner, and to evaluate its impact from the perspective of hospitals,
public, and government.
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Figure 1: Patients moving through the ED and main hospital ward

The idea behind this research came from a description of how AD worked at DeKalb Medical Center (DKMC) in
Atlanta, GA (Hardy and Te 2005). When the hospital reaches capacity, the hospital goes on AD, and ambulance dispatchers
are informed. Going on AD is not done lightly, and DKMC remains on diversion until some slack capacity is generated, in
order that a minor surge of new patients will not overwhelm the ED again. The flow of patients is illustrated in Figure 1.

The spur to extend this avenue to systems of hospitals came from descriptions of waves of diversions in the Chicago
area.

To work up from patients to systems of hospitals requires several steps. We begin by considering a standard birth-death
model for patient arrivals and departures, and then a discrete event simulation when tweaking the closed-form solution
becomes intractable. We use these tools to examine an approach to lower both the rate and variability of new patient arrivals
to the ED when capacity is tight, thereby lessening the probability that a hospital will have to go on diversion. The benefits
include less time spent on diversion for hospitals, less crowding of ED’s, enhanced government ability to respond to disasters,
and better health service for the public.

There are three types of patients in the U.S.: uninsured, privately insured, and federally insured (Medicare and Medicaid;
M/M). We examine the impact from allowing partial diversion (PD) of M/M patients to low occupancy hospitals, to see if
this would increase overall patient flow, for all classes of patients.

Limiting probabilities for a Markov process are derived in order to show the potential effects, and data from DeKalb
Medical Center in Atlanta is used to parameterize a numerical example, as well as to provide the framework for a simulation
model.

Unfortunately, the benefits are fragile, and unlikely to hold in any system with significant noise. The scheme itself raises
ethical issues, and as the benefits are ephemeral, this would appear to be a dead-end for combating AD. We therefore turn
to investigating cooperative strategies between hospitals, without patients nor government directly involved.

We use an agent-based model (ABM) to provide insight into how a more complex spatial structure, a variable number of
differentiated hospitals, differentiated policies, and various types of enforcement may contribute to cooperation in avoiding
ambulance diversion. The ABM is constructed to be consistent with the previous portions of the paper, and it is by adding
these new features that the fragility of PD is made clear.

Finally, we use a game theory approach to examine the rational incentives to hospitals to pre-emptively go on AD,
even before the practical maximum patient load is reached. As before, we retain as much as possible of the preceding
work, to aid comparison. We find that with sufficient patient demand, the hospitals are operating in an N-Player Prisoner’s
Dilemma, which makes cooperation highly unlikely without external pressure. Further, the optimal strategy is to go on AD
at a threshold less than capacity, which decreases with the expected overflow from other hospitals, but increases with the
square root of a penalty for going on AD.
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We round off by commenting on how these (non)results may be applied to the discussion of reforming hospital legislation,
and on the need for either legally binding contracts or outside regulation.

2 LITERATURE REVIEW

The literature on hospital and emergency room overcrowding is growing with the perception of incipient crisis (Institute of
Medicine 2006), the core of which is a decrease in hospital capacity over the last ten years, as the number of ED visits
increase. Schafermeyer and Asplin (2003) give an overview of hospital and ED overcrowding.

The scope of the problem has grown significantly in recent years (Fatovich and Hirsch 2003, Schafermeyer and Asplin
2003), with more than nine out of ten ED directors considered overcrowding a significant problem (Derlet et al. 2001). In
2003, an estimated half million diversions occurred, while the overall volume of ED visits was slightly more than sixteen
million (Burt et al. 2006). Although this is primarily a patient-safety issue, lost revenues is also considered a significant
problem for many hospitals (Geer and Smith 2004).

2.1 Overcrowding

The causes of overcrowding of EDs may be split into input, throughput, and output problems (Fatovich and Hirsch 2003;
Asplin et al. 2003). Since the ED plays such a large number of roles in the U.S. health system, there are a number of
suggested reasons for the causes of overcrowding (Derlet and Richards 2000), including more acute and complex cases
presenting to the ED, increased patient volumes, and limited resources. A blockage of output from the ED to the main
hospital, i.e. boarding of patients in the ED, is considered a primary cause of over-crowding (Schafermeyer and Asplin
2003).

Instead of focusing only on a single hospital, several studies suggest that AD is best seen as a system-wide problem
Lagoe et al. 2003; United States General Accounting Office(GAO) 2003), since diversion at one hospital impacts nearby
hospitals. If one hospital goes on diversion, other hospitals have an incentive to do so as well, to avoid an onerous increase
in traffic. In a recent experiment, two hospitals agreed to measure the impact on one hospital ED, when the other committed
to remain off diversion for a week (Vilke et al. 2004). The effect was remarkable: diversion hours fell from 19.4 and
27.7 to 1.4 and zero, respectively. A system-wide collaborative approach in Sacramento, where the hospitals committed to
working together to manage patient flow, resulted in significant reductions in AD (Patel et al. 2006). Collaborative efforts
in Rochester, New York, saw some improvement (Schneider et al. 2001), and a 24% reduction of hours on AD in Syracuse,
New York (Lagoe et al. 2003).

The studies that have been conducted therefore support the contention that ED overcrowding and diversions are symptoms
of a systemic problem (Pham et al. 2006). It follows that solutions to the problem may be found outside of the ED itself, a
point emphasized in several studies (Lagoe et al. 2002; Fatovich and Hirsch 2003; Schafermeyer and Asplin 2003).

2.2 Proposed Solutions to Overcrowding

The most obvious way to increase throughput in an ED is to add capacity. However, building new space is remarkably
expensive, one estimate putting the cost at approximately one million USD per bed (Norland 2005). In one hospital,
increasing ICU beds from 47 to 67 decreased average daily time on diversion from 3.8 to 1.4 hours (McConnell et al. 2005).
Better management of hospital beds, as opposed to simply increasing the number of beds, is also expected to reduce ED
overcrowding in general, and AD in particular (Asplin and Magid 2007).

In addition to increasing resources, there are several suggestions for more flexible use of assets. Selective diversions,
e.g. for those patients that emergency medical services (EMS) personnel believe are unlikely to need critical care (Price et al.
2005), is one possibility. A program to predict diversion may effectively preemptively divert in order to avoid formal diversion
(Epstein and Tian 2006). Information technology may provide decision support systems to improve ED operations (Gordon
and Asplin 2004). And in perhaps the most straight-forward application of internet technology, posting an up-to-the-minute
workload schedule of EDs in the Perth area was found to reduce the time spent on diversion by more than a third from 2002
to 2003 (specifically from 1788 to 1138 hours), despite an increase in demand (Sprivulis and Gerrard 2005).

Several operations management techniques have been used to help address the problem of overcrowding (Asplin 2006,
Institute of Medicine 2006). For example, Litvak et al. (2001) make the point that most capacity planning is done using
average demand on resources, but ignores variability. This immediately suggests that reducing variability in demand would
be a viable method to limit diversion, e.g. by scheduling elective surgeries (Litvak et al. 2001, Lane et al. 2000). Lane
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et al. (2000) use a system dynamics approach to simulate admission to acute hospitals, and found that elective surgeries
function as a safety valve in the UK, being canceled to allow ED patients admittance.

2.3 Current recommendations

The American College of Emergency Physicians (ACEP) have issued Guidelines for AD (Brennan et al. 2000), which
suggest that EMS agencies need working agreements to coordinate, and diversion should be a temporary situation, managed
systemically, and avoided as much as possible. The guidelines explicitly allow for “selective diversion”, without specifying
this concept further. The guidelines suggest the decision to go on diversion should reside with the emergency physician
at the ED, without being based on financial considerations. We note that this point regards going on diversion in any one
particular instance. Since the capacity of a hospital or ED is fundamentally dependent on financial resources, this caveat
cannot extend to the system for hospital management over time.

2.4 Incentives to change

The Institute of Medicine report (Institute of Medicine 2006) explicitly points out that hospitals have few financial incentives
“to reduce crowding”, and to suggest that firm rules are needed to avoid diversion. However, we argue that hospitals do
have a financial incentive in their capacity decisions and resource allocations. Further, McConnell et al. (2006) estimate that
each hour spent on diversion cost one hospital $ 1,086 in foregone revenue.

2.5 Systems of Agents

There are a number of tools that may be used to study systems. Note that in any system that has a long-term tendency to
decrease capacity when there is an excess, and political pressure to increase capacity when there is a dearth, will tend to lie
in the borderland between shortage and surplus. This has been called self-organized criticality, and is most familiar from
the sand-pile model (Bak et al. 1988).

Systems that suddenly shift from one state to another are well-known in physics, and have been described as cascades
(Watts 2002, Arneodo et al. 1998), avalanches (Paczuski et al. 1996), or percolation (Solomon et al. 2000). The difficulty
with applying these models to this setting is that hospitals are strategic actors, who are capable of changing their beliefs
about the probability distribution over other hospitals actions, depending on what they observe.

In order to capture such games, settings of repeated Prisoner’s Dilemma games in various spaces have been examined
(Axelrod and Hamilton 1981, Axelrod 1997), and the dynamics are examined using agent based models (Doran et al. 2001,
Tesfatsion 2001). The potential for cooperation in the absence of an enforcer has been studied, and in some instances
cooperation can evolve (Ostrom et al. 1992, Ostrom 2000).

2.6 Contribution

The multiple methods we use to study the phenomenon of strategic ambulance diversion, and shed light on potential levers of
influence, is the primary contribution of this paper. We investigate a policy that raises an interesting question of distributive
justice versus efficiency, and we consider the limits of voluntary cooperation in this setting.

3 THE PATIENT BIRTH-DEATH PROCESS: ASSUMPTIONS AND MODEL FORMULATION

In order to model the hospitals occupancy as a continuous time Markov process, we require several assumptions. However,
in the interest of space, we refer to the Figure 2. Patients enter, are served, and leave at a rate proportional to the number
of patients present. To make the problem tractable, all arrivals and service times are exponentially distributed.

We assume two classes of patients in this model, a high revenue class consisting of the privately insured patients, and
a low revenue class, made up of M/M and uninsured patients.

The hospital has a fixed number of beds for the modeling period: N. The hospital will go on full diversion only when at
capacity. The hospital will remain on full diversion until some slack develops, specifically until the number of beds occupied
is M.

Under the more flexible contract between the hospital and the federal government, the hospital may go on partial diversion
earlier than at full capacity, in order to avoid full diversion. We specify K < N, and allow the hospital to selectively divert
all patients except those with private insurance when the patient population has reached size K. Every state is recurrent
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Figure 2: Diversion Patient Flow

and the continuous-time Markov chain is irreducible, so the Markov chain is ergodic. This means that if the hospital runs
long enough, every bed occupancy level (X) will take place, and the hospital will spend some time on, as well as off, full
diversion. This assumption assures the existence and uniqueness of the limiting probability distribution (Ross 1996).

3.1 State Space and Notation

We indicate that the hospital is on full diversion with ∆ = 1, and off full diversion with ∆ = 0. X captures the number of
beds occupied. The states are fully specified by the number of beds occupied, and whether or not the hospital is on full
diversion: Ω = {0,1}×{0, ...,N}. The states may therefore be visualized as on a chain of nodes, with one loop for diversion
(see Figure 2).

3.2 Model

The limiting probabilities are characterized by the balance equations, which are based on the fact that for an ergodic
continuous-time Markov chain, the number of exits and entries to a state must equal. We specify the balance equations and
present the solution as the limiting probabilities for the system, or the long-run proportion of time the system will be in a
given state. We first provide a small example in order to motivate the discussion.

3.3 Small-Scale model

We illustrate our model with a simple with only two beds. The arrival rate overall is λ , and once one bed is occupied, only
a subset of patients are brought in. The arrival rate with one bed occupied is therefore lower, and we denote the new arrival
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rate as γ , such that γ < λ . Since N is equal to 2, diversion sets in when the hospital is full, and there is only one other state
in the state space, namely when one bed is occupied while the hospital is on diversion (Node 1,1). This gives the following
solution:

P0 =
2µ(µ + γ)

2µ(µ + γ +λ )+3γλ
(1)

P1 =
2λ µ

2µ(µ + γ +λ )+3γλ
(2)

P2 =
λγ

2µ(µ + γ +λ )+3γλ
(3)

P1,1 =
2γλ

2µ(µ + γ +λ )+3γλ
(4)

(5)

This small model suggests some qualitative results which may also hold in the full-scale model. If we consider that
selective diversion boils down to selecting an arrival rate γ to limit the time spent on diversion, then the marginal effect of
γ on the time spent on diversion, P1,1, is as follows:

∂P1,1

∂γ
=
( 2λ

2µ(µ + γ +λ )+3γλ

)[
1− γ(2µ +3λ )

2µ(µ + γ +λ )+3γλ

]
(6)

Since γ,λ ,µ > 0, 2µγ+3γλ

2µ2+2µγ+2µλ+3γλ
< 1, and therefore both of the factors in Equation (6) are positive, i.e. increasing the

arrival rate while on selective diversion increases the time on full diversion. This intuitive result is illustrative of the greater
issue: by managing the distribution of patients such that hospitals on the verge of full diversion are partially shielded, full
diversion with its concomitant problems are avoided some portion of the time. The full-scale model is qualitatively very
similar to the small-scale model, and we remove it to focus on the simulations.

In order to assess the incentives for the hospitals, we take into account revenue, as well as the occupancy rates. We
therefore turn to empirical data to provide the input to a simulation to assess occupancy and revenue. The rationale for
using simulation is that while the state space without revenue classes is of size 2N−M, even with only two revenue
classes each occupancy level may hold from 0 to its level of one patient type, and so the size of the state space grows to
1
2 ((N +1)(N +2)+(N−M−1)(N +M +2)). In our example, with N = 100 beds and an occupancy level to go off diversion
of M = 90, this gives 13695 states.

3.4 Data

The data-set was comprised of 140,720 records from 27,002 anonymous patients based on 459 days from an Dekalb Medical
Center in Atlanta Georgia, which supplies more than thirty thousand services with individual charges (Hardy and Te 2005).
Mean lengths of stay per type of patient varied from 1 to 140 days, while the average actually collected by type of patient
varied from $7 to $774. The mean length of stay was 5.18 days, with a standard deviation of 7.73 days, and with an average
collection of $3,516.51 (standard deviation $7118.16), which corresponds to an average per day charge collected of $679.41.

3.5 Discrete Event Simulation

We begin with an initial patient population drawn from the distribution of patients in the hospital data. We assume
exponential arrival and service times, but use the sample mean inter-arrival and service times to calibrate. Since we use
different distributions for eighteen different patient classes, the simulation has an added degree of realism, in that patients
arrive at different frequencies, have different mean lengths-of-stay, and generate different average revenue per day.

The hospital beds are filled on a first-come first-served basis, and when the hospital reaches capacity of 100 full beds,
it ceased to accept patients, until there are 10 free beds. We then test various occupancy levels at which to go on partial
diversion, K, from 1 to 25. For brevity, we denote the number of beds reserved “Capital Protection Level”, or “CapProt” in
the figures. As indicated in Figure 3, there does not appear to be much effect when just a few beds are reserved, suggesting
that the revenue effect is modest.
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Figure 3: Revenue by Capital Protection Level

The effect on time spent on diversion is more striking. Figure 4 shows how the time spent on diversion falls to nearly
zero with eight beds reserved for partial diversion. This compares to an average time on diversion without partial diversion
of 12.42 days out of 100. The results for eight beds for a simulation of 100 runs of 100 days are shown in Table 1.

We run the simulation for 25 beds to illustrate that neither the hospital nor the patients benefit from reserving too many
beds: the utilization rate falls, and revenue does as well. It is true that the diversion time when 25 beds are reserved falls to
an actual value of zero in the simulation, but that compares to 0.14 days out of 100 with 8 beds reserved. When compared
to 12.41 without this partial diversion, we consider 8 beds reserved sufficient to resolve the problem in practice.

To give the hospital an incentive to introduce this scheme, the revenue effect is crucial. With 8 beds reserved, revenue
increases from $671,976 (s=170,624) to $714,217 (s=143,670).

4 Agent-Based Simulation

In order to examine the effects of varying other parameters, including spatial aspects, we created the simulation in Netlogo
(Wil , Tisue and Wilensky 2004b, Tisue and Wilensky 2004a). Schelling’s segregation model (Schelling 1969) was included,
in order to create a spatial pattern of two groups of patients (which we could think of high and low income). We then
experimented with 1260 different simulations, using patient loads between 900 and 1100, with capacity was distributed
around a mean of 1000, and to our surprise, we were never able to find a set of parameters that included variability in
capacity, and showed a gain for the underserved patients. This precludes any need for statistics.

Since the purpose of the exercise was to identify intervals in the parameter space that allowed a Pareto improvement,
we concluded that the noise in the system drowns out any advantage that may be provided to the diverted group from an
increased patient flow.

5 GAME-THEORETIC APPROACH

Having found from the Agent-Based Model that the PD approach would not be robust in the face of noise, we turned to
game theory and threshold models from physics to find opportunities for cooperation in the system of hospitals. Again, we
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Figure 4: Diversion Time by Capital Protection Level

retain as much as possible from the previous work, and examine how the hospitals would approach each opportunity to stay
open in the face of high traffic (i.e. cooperate), or go on diversion before absolutely necessary (i.e. defect).

Modeling the decision of hospitals to go on AD as a sequential game, with hospitals discovering their patient level, and
observing other hospitals going on AD, was made challenging due to the ability of strategic players to update their beliefs
about the other actors. The physics literature appeared to describe similar phenomena, but never with actors that are able to
play strategically. Therefore, percolation, cascade, and avalanche models, all failed to be directly applicable. However, the
threshold effect from raising some parameter (temperature, energy level, pressure), and seeing the system change radically at
some point, seemed appropriate to hospital diversions. Specifically, at low levels of traffic, there’s no diversion, and at high
levels, everyone is on diversion (which really devolves to nobody being on diversion, except when there’s a safety hospital).

This observation, that a system would tend to a fragile equilibrium between excess capacity and too frequent diversion,
would suggest that the Self-Organized Criticality (SOC) literature may be applicable. The canonical example of SOC, the
sand-pile metaphor, consists of having sand grains dropped down one at a time. At random times, avalanches occur, with
the angle of the sand-pile fairly constant. This angle represents the capacity of the hospital system per population unit.

The metaphor is useful to consider why we might find hospital systems so prone to go on diversion the world over. A
perception of ”too many empty beds” will lead to cutbacks, while a complete failure of the system leads to added investment.
One would therefore expect rational investors to balance the pain caused by ambulance diversion with the pain from investing
scarce capital to avoid diversion, leading to a system constantly on the edge of seizing up. This is the hallmark of complex
systems, and so opens up alternative approaches to studying ambulance diversion in systems over time. However, the strategic
nature of hospitals does not lend itself to passive players such as grains of sand.

To try to capture the salient points, without making the game too simple, we used the following payoff function:

π =−(a+X−F)2−P · I(AD) (7)

Here, π is the payoff, a is the initial patient level, X is the added patient load, F is an ideal patient load, meant to
be less than having patients in hallways and boarding in the ER; i.e. less than the absolute limit of patients that could be
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Table 1: Simulation Results for DeKalb Medical Center

Mean Num-
ber of Patients
(SD)

Total
HMO
Patients

Total M/M
Patients

Total Unin-
sured Pa-
tients

Without Capacity Protection 91.9 (0.61) 541 686 161
Capacity Protection of 25 74.7 (0.34) 692 383 88
Capacity Protection of 8 89.84 (0.45) 688 560 132

managed. P is a fixed penalty for going on diversion, and I(AD) is an indicator function equal to 1 on ambulance diversion,
and zero otherwise.

This functional form allows a maximum to be reached at some level less than overfull, with an increasing loss at very
low levels of occupancy, as well as very high patient loads. The penalty allows the intrinsic costs of going on and off
diversion to be included, as well as any policy-driven fee for doing so.

5.1 Prisoner’s Dilemma Aspect of the two-player game

If we either consider only two hospitals in the metro area, we can study the payoffs and include the effect of having both
hospitals go on diversion. In that case, to add to the pain of diversion, we assume that the hospitals are forced to take their
own patients. To shorten notation, let Yi = ai +Xi. In that case, the payoffs to the patients from diverting or not are:

Player 2
NAD AD

Player 1 NAD −(Y1−F)2,−(Y2−F)2 −(Y1 +Y2−2F)2,−P
AD −P, −(Y1 +Y2−2F)2 −(Y1−F)2−P ,−(Y2−F)2−P

Assuming Yi > F , this is a Prisoner’s Dilemma if −(Yi +Yj−2F)2 < −(Yi−F)2−P <( Yi−F)2 < −P. The first two
inequalities always hold with our assumptions, and the third simplifies to: Y 2

i − 2FYi +(F2−P) > 0, which again yields
ai +Xi > F +

√
P, consistent with what we find below. In other words, provided the patient inflow is sufficiently higher than

the ideal load, the temptation to defect exists. This implies, among other things, that a larger group of hospitals will have
an even harder time cooperating than a two hospital system (Hauert and Schuster 1997).

5.2 N-hospital Game

Next we expand to the N hospital game. Whenever Nature has chosen an intensity or temperature, the beliefs of the other
players as functions of ones own observed patient load become difficult to find in closed-form. We therefore simplify, and
assume an initial distribution ai for each hospital. The focal hospital is just a or a0, so that the remaining hospitals are
indexed with iε{1, . . . ,N}, for a total of N +1 hospitals. We assume that the initial distribution is common knowledge, as
is the distribution of new arrivals X . We do not specify the distribution, however, which simplifies the math.

We use a threshold T to indicate the patient load at which a hospital will go on ambulance diversion. We envision this
T > F , which also follows from the equations below.

For convenience, we also define Z as a column vector of size N, such that each entry is zero if the corresponding hospital
did not divert anyone, and otherwise represents the number of patients diverted. AD is the corresponding vector of dummy
variables, such that a one indicates a hospital on diversion, while a zero indicates the hospital accepted all the patients. If
One(N) is an N-vector of ones, then Γ = Z′One(N)/[1+(One(N)−AD)′One(N)] represents the number of diverted patients,
divided by the number of hospitals that did not divert. We assume that patients are evenly divided by the non-diverting
hospitals, and Γ is therefore the number of additional patients the focal hospital will receive.

The distribution of X is simply P(X = x), with support in the natural numbers. From this basic structure, we may
characterize the expected payoff with and without diversion. Without diversion, we assume the hospital can keep exactly F
patients, and so Eπ =−P. Without diversion, the expression is more complex:
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Figure 5: NetLogo Agent-Based Simulation

ENAD
π = ∑

Z
−(a+X−F +Γ)2 ·P(Z) (8)

Z is a vector, and the probability of Z being any particular value depends on both X and T . However, we assume that all the
hospitals follow the same strategy of diverting at T , and that all the patient distributions are independent, which means that for
each hospital, P(Zi = 0) = P(Xi < T −ai), P(Ziε{1, . . . ,T −F−1}) = 0, and for any z≥ T −F,P(Zi = z) = P(XiF−ai + z).
Due to our simplifications, P(Z) = ΠiP(Zi). Since we have constructed the payoff function so that increasing the patient
load when the focal hospital should have been on diversion must decrease the expected payoff, the optimal policy requires
that any patient load higher than T must also lead to diversion. Similarly, any patient load lower than any other that does
not require diversion, also does not require diversion. Notice that with this formulation, with N assumed large, we further
simplify by not assigning the patients back to the hospitals if all the hospitals go on diversion.

We therefore seek a T such that ENADπ(a+X = T −1) >−P, while ENADπ(a+X = T ) <−P. Multiplying the second
inequality by−1 and adding gives ENADπ(a+X = T−1)−ENADπ(a+X = T ) > 0. This simplifies to T > F + 1

2−∑Z Γ ·P(Z).
In words, the threshold must exceed the ideal level F , minus the expected overflow from the other hospitals, EΓ, plus half
a patient. The latter is intriguing, but stems from the unit increase in patients arriving.

This result is unsurprising, so we seek alternate ways to characterize T . Since the cutoffs are discrete patients, we must
allow discontinuity at each integer, so calculus is infeasible. Second, we imagine that T > F , but that if the hospital is first
going to incur the cost of diversion, it will divert enough patients to achieve the ideal load of F , so the amount diverted
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is discontinuous at T . Due to the threshold strategy, we therefore solve for ENADπ(a + X = T ) ≈ −P. A somewhat long
quadratic equation arises, which has one economically meaningful solution:

T = F−EΓ+
√

P− (E(Γ2)− (EΓ)2 = F−EΓ+
√

P−Var(Γ) (9)

The radical reflects the fact that unless the penalty P is sufficiently high, i.e. greater than the variance of the expected
overflow of patients, it will be dominated by the noise in the system and have no impact. However, the previous result
continues to hold, and the threshold will therefore be at least F + 1

2 −∑Z Γ ·P(Z), up to P = Var(Γ)+ 1
4 , and then rising

with P.
In order for this threshold policy to be a Nash Equilibrium (NE) for the set of hospitals, the policy must be in the best

response set to all the other hospitals diverting at T . Note that Γ is a function of T , which we underscore by introducing
G(T ) = F−EΓ(T )+

√
P−Var(Γ(T )). As the threshold goes to zero, all patients are diverted, and provided P≥Var(Γ),

G(T ) > 0, and in particular, for small values of T , G(T ) > T . If the threshold goes to infinity, no patients are ever diverted,
which means EΓ and Var(Γ) both go to zero. Hence for large values of T , G(T )→ F +

√
P < T . By the mean value

theorem, there exists such a T . This T may not be integer, so we allow the hospitals to randomize over strategies, which
ensures the existence of a Nash Equilibrium.

5.3 Discussion

Since the variance of the overflow will increase if we split a patient flow up into many small streams, this is yet another
argument for consolidating into one hospital or hospital system. However, since moving to more independent hospitals moves
the game closer to a mean-field game (Johnson et al. 1998), it is not surprising that more agents leads to the need for a
stronger penalty to force cooperation.

The main observation from this section is to note that for certain values of the parameter space, the game devolves
to a Prisoner’s Dilemma, which has been extensively studied in the evolutionary game theory literature. We simply note
that without either binding contracts, enforced by an external agent, or direct regulation by the external agent, this makes
cooperation very difficult.

6 CONCLUSION

In this paper we address cooperative strategies for hospitals, in order to reduce ambulance diversion. These strategies lie in
between the extreme of laissez faire individualism and a central planner approach. We first use standard tools to model the
flow of patients, then simulate to get more detail, and then another simulation to assess the robustness of a Pareto improving
approach.

Partial Diversion allows a hospital to divert some traffic when capacity has become tight. Although the Federal government
may be able to force through such a measure in theory, the ethical problems of partial diversion are troubling.

The Agent-Based model shows that with added noise, a partial diversion scheme to share load is fragile. Without being
able to claim that such a scheme is a Pareto improvement, except under unrealistically narrow conditions, it seems clear that
this approach is infeasible. Since that is even true even without taking into account the ethical issue this approach raises, it
is safe to say that partial diversion is a non-starter.

The game theory apporach shows that without some form of binding cooperative scheme, the incentives to defect are
not only strong, but will often lead to system-wide pre-emptive diversion. Not surprisingly, the hospitals operate under a
Prisoner’s Dilemma when the patient load is sufficient. One noteworthy aspect of the game is that the penalty, P, must be
large enough to balance out the variance of the overflow before there is a an optimal threshold.

Having examined these aspects of cooperative solutions to ambulance diversion, we believe the incentives require a
centralized agent to route patients, at least when the patient load is high.

6.1 Future Research

Some avenues of future research on ambulance diversion remain promising. It would be of interest to map out how and when
a central planner should intervene, and what minimum rules must be in place to maximize system-wide efficiency. Also, the
challenge of balancing distributive justice with efficiency is stark in the setting of partial diversion, and the legal and ethical
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implications are intriguing. Although we concluded that partial diversion was infeasible, any situation with wealth-dependent
care raises the same issue, so we believe it is an interesting question.
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