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ABSTRACT 

Information superiority is considered a critical capability for future joint forces. Sensor allocation and information processing 
are critical to achieving this information superiority but the value of information is difficult to assess. We develop a weighted 
entropy measure for sensor allocation within simulations by using the Dynamic Model of Situated Cognition as a framework 
in which to view the processing and flow of information in a complex technological-cognitive system. The entropy measure 
developed is normalized across each requirement and weighted according to the Commander’s priorities within the phase of 
that operation. We develop a methodology for implementation for this normalized weighted entropy measure to allocate sen-
sors within a combat simulation. 

1 INTRODUCTION 

Decision-makers struggle with the value of information in almost all forms. Therefore, it is not surprising that the way infor-
mation is valued and used within combat simulations is also difficult to represent. In this paper we propose a methodology 
that relies on Commander’s Critical Information Requirements (CCIR) that are defined in the planning stage and are linked to 
phases of combat operations. We particularly do not rely on the notion of the expected value of information which requires 
calculation but, instead, rely on a measure of uncertainty as it relates to mission priorities, namely, the weighted entropy 
measure which we describe. 
 Sensor allocation has increased in its importance as the use of sensors has increased with the proliferation of unmanned 
aerial vehicles, unmanned ground vehicles, unattended ground sensors and others. Methodologies such as the Assignment 
Scheduling Capability for Unmanned Aerial Vehicles (Ahner 2006) assigns sensors to demands but needs an external me-
chanism to assign the value received for a sensor-demand assignment. Sensor assets should be allocated based upon the ex-
tent that a sensor allocation reduces the uncertainty within this weighted entropy measure. Entropy, when used in the context 
of information, is often thought of in terms of Shannon’s entropy measure which quantifies, in an expected value sense, the 
quality of long messages, usually in units such as bits. In this paper, we are not interested in the quality of the message but 
focus on the content of information as it applies to decision making. Nonetheless, we use a weighted entropy measure due to 
its excellent properties of measuring uncertainty of information.  
 Barr and Sherrill (1996) explore “information gain” in a military context with the addressed primary objective appearing 
to be “to study relationships between information gained about the enemy disposition and various measures of combat effec-
tiveness (Barr and Sherrill 1996).”  A Bayesian update is used to update the probability of an event given the probability that 
a sensor detects a target. This new probability is used to calculate the new entropy. The difference in the old and new entropy 
is what is referred to as “information gain.” Our paper improves upon this concept by normalizing information gain across 
competing requirements for Reconnaissance Surveillance and Target Acquisition (RSTA) resources in support of CCIR. 
 The U.S. Army Combined Arms Combat Development Agency divided CCIR into eight new categories – intelligence, 
maneuver, battlefield geometry, fire support, air defense artillery, combat support, combat service support, and command 
guidance (Spinuzzi 2007). This paper focuses on information for intelligence that influences, as part of a larger system of 
systems, the other categories. 
 Several RAND studies address the value information and how they affect combat outcomes (Hammitt 1991, Gonzolez 
2001). Research completed by the Naval Postgraduate School also tends to focus on outcomes (Ahner 2008). These RAND 
and NPS posterior measures aid in analysis but do not lend themselves to actively informing the act of gaining information to 
inform decisions. Unfortunately, attacking the value of information problem has proven difficult. As Washburn (2001) says, 
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“There is a crisis for military OR, centered on the role of information on the battlefield. It is clear to military professionals 
that information is becoming increasingly important, but unfortunately the OR profession’s ability to measure its contribution 
is still primitive.”  To address the role of information we look at it within the Dynamic Model of Situated Cognition (DMSC) 
(Shattuck and Miller 2006). The Dynamic Model of Situated Cognition (Figure 1) is a conceptual model that attempts to illu-
strate the relationship between technological systems and human perceptual and cognitive processes. 
 

 

 
Figure 1: Dynamic Model of Situated Cognition 

 
 This paper presents an overview of the Dynamic Model of Situated Cognition and the elements of information and cog-
nition that should be considered for development and inclusion within simulations, the decision problem to be addressed, 
Commander’s Critical Information Requirements and the associated information vector, the methodology for measuring un-
certainty using weighted normalized entropy, and some conclusions. 

 

2 THE DYNAMIC MODEL OF SITUATED COGNITION 

The Dynamic Model of Situated Cognition (Figure 1) is a conceptual model that attempts to illustrate the relationship be-
tween technological systems and human perceptual and cognitive processes. The left side of the model represents all data in 
the real world in oval 1, the data that is visible to deployed sensors in oval 2, and the information that is visible on local in-
formation systems in oval 3. We refer to the left side of the DMSC as the technological systems. The right side of the model 
represents the perceptual and cognitive systems. The right side represents perception in oval 4, comprehension in oval 5, and 
projection in oval 6. Perception, comprehension, and projection are all needed to gain information superiority.  

The lenses in the Dynamic Model of Situated Cognition combine elements from the left side of each lens with informa-
tional elements ‘resident’ in the decision maker and feed forward information or decisions to the next portion of the model.  
The decision maker’s behavior is critical to understanding the data and information flow within the DMSC. The model is 
centered around the decision maker’s information needs and information flow to the decision maker. Note that oval 2 is, in 
the best of cases, a subset of the first oval.  Data elements that are the same in ovals 1 and 2 represent the accurate detection 
of items.  We refer to this as technological accuracy.  Not everything in Oval 1 is detected accurately for a variety of reasons. 
Sensors can either miss or misidentify data in Oval 1.  Data may be missed for the following reasons: 

• There may be an insufficient number of sensors to cover the environment. 
• The technology may not be sensitive enough to detect certain classes of data. 
• The technology may not have the specificity required to identify certain classes of data. 
• Sensors may malfunction. 
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Three dynamic lenses are depicted in Figure 1.  The lenses in the Dynamic Model of Situated Cognition model combine 

elements from the left side of each lens with informational elements ‘resident’ in the decision maker and feed forward infor-
mation or decisions to the next portion of the model. Situated cognition is not a state that is achieved but a dynamic, ongoing 
process (Clancy 1997).  For example, the sensor coverage and communications network are dynamic.  The sensor coverage is 
shifting constantly as sensors move or fly about the environment, resulting in changes to sensor coverage.  These changes in 
coverage, will affect data available in Ovals 2 and 3 and ultimately influence the perception, comprehension, projection, and 
decision making.  Developing a measure for effectively controlling sensor coverage for maximum information gain is the 
goal of the methodology that is developed.  

Information does not just flow to one individual. The DMSC can also branch between oval 2 and oval 3 to provide dif-
fering C2 system representations to different users and illustrated for a commanders staff in Figure 2. These staff elements 
then feed into the Commander’s perception, comprehension, and projection to provide a more robust understanding. 

 

 
Figure 2: Dynamic Model Applied to Commander’s Staff 

 
Several analytical problems are embedded within the DMSC model that may need to be represented within simulations. 

As shown in Figure 3, these problems span differing portions of the DMSC model. Scarce sensor resources must be allocated 
and reallocated, required information must reach appropriate destinations, information fusion must occur to combine data in-
to useable information, data association between sensor streams must occur to estimate the state of the system,  and Com-
mander’s staff and Commander’s must process this information through human cognition. A large portion of allocating re-
sources to performing these functions and routing information involves correctly valuing information. Valuing information 
cover ovals 1 to ovals 5 and directly feeds into developing situational awareness. Solving each  of these analytical problems 
lends itself to improving the likelihood for mission accomplishment. This paper looks at valuing information originating from 
sensors before they are allocated. Sensors can either be electronic device such as electro-optical, infrared, moving target indi-
cator radar, signal intelligence etc. or human observation reports. These sensors have capabilities of detecting activity which 
will need to be quantified. 
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Figure 3: Problems of Interest within the Dynamic Model 

 

3 COMMANDER’S CRITICAL INFORMATION REQUIREMENTS 

 
Army Field Manual (FM)  2-0 Intelligence indicates the importance and use of information.  “Commanders must have de-
tailed information to command. Information is the medium that allows the commander’s decisionmaking and execution cycle 
to function. Information gives direction to actions by the force, identifies the enemy’s centers of gravity, provides COAs for 
force activity, and enables the force to accomplish its operational mission.” In 1997, the U.S. Army introduced Commander’s 
Critical Information Requirements (CCIR) as an essential component of Army Command and Control (C2) doctrine (FM 
101-5). CCIR are “elements of information required by commanders that directly affect decisionmaking and dictate the suc-
cessful execution of military operations (FM 6-0).” A RAND study “Understanding Commander’s Information Needs” in-
itially linked these elements to mission analysis (Kahan 1989). 

Figure 4 shows the Intelligence Surveillance Reconnaissance (ISR) Task Development Process given in FM 2-0 within 
the dashed box with two exceptions. First, instead of feeding COA Analysis and Mission Analysis directly into Information 
Requirements, Situational Understanding is inserted. Second, the process now explicitly feeds into an iterative process within 
the FM. While the FM calls for the ISR Plan to be an annex in the Operations Order for units, this planning annex is simply a 
strawman for the updates that the FM doctrinally requires. Figure 4 simply takes the DMSC and the ISR Task Development 
Process and integrates them into a coherent iterative process that adapts as information becomes available and the state of the 
operation evolves. 

The Task Development Process is extended into a dynamic process in Figure 4. The figure illustrates feedback through 
the Priority Intelligence Requirements (PIR) portion of the Commander’s Critical Information Requirements (CCIR). CCIR 
are a list of information requirements identified by the commander as being critical in facilitating timely information man-
agement and the decision making process that affect successful mission accomplishment. The two key subcomponents are 
critical friendly force information and Priority Intelligence Requirements. 

As the process begins, mission analysis occurs  where higher headquarter's order is analyzed to determine what must be 
accomplished. Course of Action (COA) Analysis then occurs to put plans in place to accomplish the mission. These plans re-
quire information that must be obtained in spite of the influences of the environment and enemy actions. Intelligence Re-
quirements are information elements required for planning and executing operations. While PIR are designated by the com-
mander and are requirements associated with a decision that affects mission accomplishment. These intelligence requirements 
generate specific information requirements that are an identified gap in intelligence that may be satisfied only by collection 
action. These requirements generate task which are then satisfied by limited sensor assets in a developed ISR Plan. 

Commander’s intelligence requirements are tied directly to his decisions as CCIR (PIR and Friendly Force Information 
Requirements, FFIR). He uses them, within the mathematical cognitive model being developed, to improve situational under-
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standing by increasing information reliability and decreasing uncertainty through the more effective deployment / redeploy-
ment of organic sensors. 
 

 
Figure 4: Dynamic ISR Task Development 

 
  In decision analysis, often influence diagrams are used that account for uncertainty, but the decision-maker has no 

control of the information that feeds that uncertainty (Howard 2005). The decision is based upon the decision-makers situa-
tional awareness which has many uncertainties. Among these uncertainties are missing data, reliability of the data, conflicting 
data, data timeliness, and ambiguous or noisy data (Endsley 2003). We now develop a the normalized weighted entropy 
measure for sensor allocation methodology that mitigates these uncertainties. 
 

4 METHODOLOGY 

The normalized weighted entropy measure for sensor allocation methodology, hereafter referred to as the Weighted Informa-
tion Measure Methodology (WIMM), is structured around the Dynamic ISR Task Development Process in Figure 4. The 
process informs the requirements of an effective information measure used to support Commander’s decisions.  

We can look at the Commander’s decision using decision theory. A decision problem, D, is defined as 
)(,,,,,, ICIwuXAD Ω= . 

Where the sets used are action space )(A , state space )(X , an outcome space )(Ω defined on a probability space )(W  
such that the probability is defined on AX × , the decision makers (DMs) utility function )(u , the initial wealth )(w , the 
available information about the random variables )(I , and an information cost function ))(( IC . 

The information structure available to the DM is { })|,(, xyxpYI =  where Xx∈ , all possible states and )(xYy∈ , the 
possible sensor messages. 
 Typically the probabilities within the information structure and the utility measure for a decision problem are assessed 
independently from one another. As a result, the expected utility of perfect information can be viewed as a real valued func-
tion of the probability outcomes where the optimal action changes with the discrete probability Npppp ,..., 21= . The deci-
sionmaker does not make decisions according to the state space Xx∈  rather according to information )(I  available about 
that state space. This information may or may not be accurate and complete. 
 Using this construct within our simulation we assume to have a decision engine that takes the information structure 
available to the DM and uses the state given by this information structure to determine the course of action chosen. The way 
in which this information structure is updated should directly relate to the decision being made. In order to accomplish this 
we use the actual method that is employed in the real world, Intelligence Preparation of the Battlefield. 
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Figure 5: Weighted Information Measure Methodology to Support Commander’s Decisions 

  
The methodology begins using the products from the Intelligence Preparation of the Battlefield (IPB) as outlined in FM 

2-0. IPB is a systematic process of analyzing and visualizing the threat and battlespace in a specific geographic area for a 
specific mission or in anticipation of a specific mission. IPB is conducted in simultaneously with course of action (COA) 
analysis and construction of the operations order (OPORD). Once an initial course of action is selected, the Commander iden-
tifies intelligence requirements associated with that COA and identities the most important as PIR.  These PIR are part of the 
Commander Critical Information Requirements and must be prioritized in order for the WIMM to weigh the information 
gained by satisfying them. Given a prioritized list flowing from the phases of the operation, decision points, and OPORD up-
dates as shown in Figure 5, Rank Order Centroid Weighting is used to assign weights. 

4.1 Rank Order Centroid Weighting 

Rank Order Centroid (ROC) weighting is a technique proposed for use in decision analysis to weight criteria (Edwards and 
Barron 1994, Barron and Barrett 1996).  Barron & Barrett demonstrate that ROC weighting is straightforward and effica-
cious. The mathematical objective is to derive relative values for the local groupings of criteria such that the sum of the val-
ues equal one and that the individual values are indicative of the priorities associated with the criteria under consideration 
(i.e., Σvi = 1 and v1 > v2 > . . . > vn ).  The ROC method has two favorable characteristics:  ease of elicitation from decision 
makers and minimal loss of information as ranking judgments are transformed into normalized weights summing to one.  
While the Commander may not have prioritized all their PIR, if the Commander or their staff prioritizes their Named Area of 
Interest (NAI)  in at least priority groupings, the ROC weighting translates these given priorities into appropriate weights. 
The Commander’s time and supporting staff time are precious during operations and the ROC weighting allows weighting 
with no substantial burden to the Commander and his staff.  
 Several recent studies and papers have shown this method to be well represented.  The method considers the successors 
in its calculations, but not its predecessors. 
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i  = the index of the element 
P  = the maximum rank value 

jp  = the rank value of the jth element 

N  = the total number of elements being considered 
iw = the relative value of the ith element  
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Rank Order Centroid methods are very accurate for capturing both partial rank ordering information as well as attribute 

weights (Barron and Barrett 1996). While ratio weights using pair-wise comparisons between all missions may yield slightly 
better results, effort and acceptance of these comparisons are overly burdensome (Jia, Fischer, Dyer 1998). 
In a recent study of unmanned aerial vehicles (Ahner 2007) that considered mission effectiveness, ranks were assigned in a 
two dimensional ranking where ranks were assigned by differing hierarchical unit echelons and a rank within that echelon. 
The rank order centroid method was compared to seven other weighting methods including a geometric and several linear 
variations.  The rank order centroid method was found to possess the characteristics desired. Linear methods appeared to 
overly decrease all lower echelon coverage by overemphasizing higher echelon coverage while the geometric variation ap-
peared to overly emphasize higher and lower echelons at the expense of the middle echelons. 
 Rank Order Centroid weights are assigned to each Named Area of Interest (NAI) and Targeted Area of Interest (TAI) 
identified in the IPB process. These weights are next used for measuring uncertainty in the situation through an entropy 
measure. 

4.2 Measuring Uncertainty using Weighted Normalized Entropy 

Information for decision making can be valued in two ways. First, the decisionmaker may not be able to cognitively process 
all information into their perception. If so, it is useful to provide the information which informs the decision most. In this 
case, informing the decision is decreasing the uncertainty of the outcome space )(Ω for a given action )( Aa∈ . Second, the 
decisionmaker can identify those areas in which they have the most uncertainty and can assign information agents to obtain 
information that most effectively decreases that uncertainty. In either case, competing information requirements can be va-
lued by the assignment or sensor actions, Ia  , that maximize 
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where we sum over the set of all actions in the information gaining action space, II Aa ∈ ; sum over the set of all Priority In-

telligence Requirements, PIR , using the rank order centroid method to determine the weights, jw ; and use an entropy 

measure  ij
i

ij pp∑− log , to measure the decrease in uncertainty which is normalized by the unweighted maximum entropy 

for that PIR, jentmax , which is typically given when each possible outcome for a single PIR is considered equally likely (no 

certainty to any outcome). We refer to 
IaH as the a priori action entropy, or in other words, the expected resulting entropy of 

assigning ISR assets to a particular mission measured before the ISR outcomes of the ‘experiment’ are known.  
Entropy measures have various advantages. Among them are that entropy is a continuous functions so that as informa-

tion is received there are no sudden jumps in the entropy measure, order that the information is received does not alter the 
change in entropy, entropy as a maximum value where all outcomes are considered equally likely, and the measure is addi-
tive. The main disadvantage of entropy is that it is defined in terms of the mathematics of probability distributions and cannot 
be considered a measure of the importance of information.  

The weighting from the ROC method accounts for the importance of information to each PIR while the Bayesian update 
of the probability accounts for the capabilities of the sensors. For each available Intelligence, Surveillance, and Reconnais-
sance (ISR) asset the amount that it reduces uncertainty can be determined using the understanding of the capabilities of the 
ISR asset, the mission to be observed, and the environmental conditions. Sensor placement must be considered when deter-
mining the amount that it reduces uncertainty. 
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4.3 ISR Assignment 

ISR assignment has the goal of reducing entropy as weighted by the Commander’s priorities. Interpreting this weighted en-
tropy as a measure of uncertainty, information can be quantified as the difference of the entropy between two given probabili-
ty distributions of a random process. The information gain, I , achieved on a target for an efficient assignment of ISR assets 
is then 

II aAa HHI ∈∅ −= min where ∅H  is the entropy if no ISR assignment occurred, also the actual current entrory measure 

of the system, and 
II aAa H∈min  is the minimum entropy as determined by an assignment algorithm. Following some passage 

of time, ISR assets may once again become available while others may still be functionally assigned to requirements. An ISR 
assignment can again take place under the constraint of already assigned ISR assets being unavailable and available ISR as-
sets requiring new assignment. The dynamic nature of this assignment through time and across different phases of the opera-
tion can be difficult. For now, we use a myopic approach to assigning sensors and leave the dynamic programming of ISR 
assets for another time. 

4.4 ISR Outcomes and the Next Iteration 

Outcomes from completed ISR assignments can take on many values or states. For this paper, we restrict these outcomes to 
detection or no detection. If no detection occurs, then uncertainty is decreased and the entropy measure is adjusted according-
ly. If a detection occurs, since we allow no false detects, a PIR may be satisfied. If a PIR is satisfied then no more sensor as-
sets will be assigned to cover that PIR since its entropy is zero. 

For each outcome, the weighted entropy measures of the system may change. In contrast to the a priori entropy discussed 
earlier, this is post outcome entropy or actual entropy of the system. This actual entropy, along with parameters from the cur-
rent state of the system, is used as the base entropy for the next iteration.  

5 EXPERIMENTATION & RESULTS 

Consider a scenario with four priority intelligence requirements (PIR) and five sensors. We do not present the detailed scena-
rio for brevity. NAIs are associated with each PIR indicating the identified sources of where that information may be ob-
tained. The PIR with potential states are shown in Table 1 along with their ranked priority. The commander has determined 
that the missile launcher is their top priority, followed by location of the enemy brigade tactical operations center (TOC), 
presence of possible reinforcements via identified enemy avenues of approach, and, finally, the location of the enemy forces.  
 

 
Table 1: Scenario Priority Intelligence Requirements, Weights, and Maximum Entropy 

 
PIR Possible States Priority Max Entopy ROC Weight

Presence within NAI 1
Presence within NAI 2
Presence within NAI 3
No enemy present
Reinforcements thru NAI 4
Reinforcements thru NAI 5
No reinforcements
Presence within NAI 1
Presence within NAI 2
Presence within NAI 3
No launcher present
Presence within NAI 1
Presence within NAI 2
Presence within NAI 3
No enemy present

0.1200

0.2800

1.0000

0.5200
PIR #4 Determine 
Enemy BDE TOC 

location
2

0.6021

0.4771

0.6021

0.6021

PIR # 1 Location 
of Enemy Forces

4

PIR #2 
Reinforcements 

Enter AO

3

PIR #3 Location of 
Exocet Missile 

Launcher
1
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 Using 
ij

i
ij pp∑− log  to calculate Max entropy when each possible state is equally likely and (1) to determine the ROC 

weights yields the final columns of Table 1.  
 Sensors have differing capabilities dependent on target type and location. For each Sensor, NAI, and target activity, the 
associated probability of detection is given in Table 2. For instance, a moving target can easily be detected by a synthetic ape-
rature radar moving target indicator sensor where as a stationary target is much more difficult to detect by that sensor. Like-
wise, a target emitting a signal will be more likely to be detected by a electronic intelligence sensor and so on. False detec-
tions and other confounding detection states will not be considered but can be addressed by the methodology in this paper.    
 

Table 2: Sensor Detection Capabilities for each Named Area of Interest (NAI) 
 

Sensor #1 Sensor #2 Sensor #3 Sensor #4 Sensor #5
Asset Class IV UAV Recon Team Class II UAV Class II UAV Class IV UAV
Sensor Type SAR MTI EO / IR EO / IR EO / IR ELINT / EO / IR
NAI 1 0.65 0.4 0.4 0.4 0.1
NAI 2 0.65 0.4 0.4 0.4 0.1
NAI 3 0.65 0.4 0.4 0.4 0.1
NAI 4 0.65 0.4 0.4 0.4 0.1
NAI 5 0.65 0.4 0.4 0.4 0.1
NAI 1 0.001 0.3 0.3 0.3 0.3
NAI 2 0.001 0.3 0.3 0.3 0.3
NAI 3 0.001 0.3 0.3 0.3 0.3
NAI 4 0.001 0.3 0.3 0.3 0.3
NAI 5 0.001 0.3 0.3 0.3 0.3
NAI 1 0.05 0.3 0.3 0.3 0.6
NAI 2 0.05 0.3 0.3 0.3 0.6
NAI 3 0.05 0.3 0.3 0.3 0.6
NAI 4 0.05 0.3 0.3 0.3 0.6
NAI 5 0.05 0.3 0.3 0.3 0.6

Moving Target

Stationary Target

Emitting Target

P(Event Detected | Event There)

 
 Applying (2) using the parameter values from Table 1 and Table 2 allows us to determine the decrease of the 

weighted entropy caused by the assignment of each sensor to a NAI. Table 3 shows the decrease in weighted entropy by as-
signing a sensor to a given NAI. In this case, we assign sensor #5 to NAI 1.  

 
Table 3: Decrease in Weighted Entropy by Sensor Assignment 1 

 
Sensor #1 Sensor #2 Sensor #3 Sensor #4 Sensor #5

NAI 1 0.0000 0.0270 0.0270 0.0270 0.0546
NAI 2 0.0000 0.0270 0.0270 0.0270 0.0546
NAI 3 0.0000 0.0270 0.0270 0.0270 0.0546
NAI 4 0.0390 0.0140 0.0140 0.0140 0.0009
NAI 5 0.0390 0.0140 0.0140 0.0140 0.0009  

 
 Since entropy values have changed, we consider the new entropy values for the next assignment. Weighted entropy val-
ues are once again calculated as given in Table 4 and the process continues until all sensors are assigned. No detections occur 
during this process since no sensor outcomes have yet occurred. Once outcomes do occur, the available sensor is once again 
assigned according to its maximum decrease in weighted entropy.  
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Table 4: Decrease in Weighted Entropy by Sensor Assignment 2 
 

Sensor #1 Sensor #2 Sensor #3 Sensor #4 Sensor #5
NAI 1 0.0001 0.0545 0.0545 0.0545
NAI 2 0.0001 0.0530 0.0530 0.0530
NAI 3 0.0001 0.0530 0.0530 0.0530
NAI 4 0.0390 0.0140 0.0140 0.0140
NAI 5 0.0390 0.0140 0.0140 0.0140

Decrease in Weighted Entropy

 
 

 In comparing Table 3 and 4, it first appears that weighted entropy has increased instead of decreased. This not the case. 
Since no outcome has yet been determined, the weighted entropy associated with no enemy activity, which is not shown 
since no sensor can be assigned to it, has decreased. This results in a weighted entropy changing from .12 to .1180 for PIR 
#1, no change for PIR #2, from  1 to .9835 for PIR #3, and from .52 to .4839 for PIR #4 due to the assignment of Sensor #5 
to NAI 1. The sum of these weighted entropy measures is 0.0546, the value of assigning Sensor #5 to NAI 1 in Table 3. Each 
assignment of a sensor only decreases the total weighted entropy for the case where the outcome is a detection or no detection 
and no false detections are allowed. 

6 CONCLUSIONS 

The methodology of assigning sensor assets presented here offers a robust means to determine the tradeoff of sensors being 
assigned to missions within simulations. The methodology uses a framework constructed from a cognitive model and Army 
doctrine. Within this framework elements of decision theory, ranking of priorities, information theory, and a new weighted 
entropy measure are used to produce reasonable sensor assignments within combat models. While in real life this assignment 
of sensors requires the skillful art of an intelligence analyst, the process presented in this paper produces reasonable sensor 
assignments to which the intelligence analyst would make only minor modifications.   

The experiment and results section illustrates the methodology using a normalized weighted entropy measure to produce 
assignments that rely on the mission priorities, current uncertainty of Priority Intelligence Requirements (PIR), and availabili-
ty and capabilities of the sensors.  
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