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ABSTRACT 

A primary component of the wafer assembly and final testing phases of the semiconductor manufacturing process is the 
process of binning wherein integrated circuits are tested for speed, voltage, and other functionality requirements.  Customer 
demand for products is satisfied using binned components.  While higher functionality components can be used to satisfy 
lower-level demand at a profit loss, the reverse case is not an option.  We investigate the important question of satisfy 
customer demand from available binned devices with maximum profit in terms of maximizing revenue and minimizing 
inventory holding costs using a mathematical programming-based solution approach.  Initial results suggest our model is able 
to accurately produce cost-effective demand fulfilment strategies for semiconductor manufacturers in practice. 

1 INTRODUCTION 

Integrated circuits (ICs) are the heart of most electronic devices, toys, and appliances today.  ICs are fabricated first as indi-
vidual die on silicon wafers in wafer fabrication facilities.  Next, once the die are electrically tested for functionality, the sili-
con wafers are sawed into individual circuits for subsequent assembly or packaging and final testing.  A primary component 
of the wafer assembly and final testing phases is the idea of binning.  During final test, completed ICs may be evaluated in 
terms of assessing their processing speed (i.e., 3.0 GHz) and/or voltage requirements (i.e., 1.45 volts).  After each IC’s func-
tionality is assessed and recorded, it is placed (sorted) by the manufacturer (i.e., the supply side) based on capability testing 
results in a “bin” corresponding to different product qualities (Uzsoy et al., 1992). 
 Consider the following binning scenario:  bin 1 could be reserved for the “highest functionality” components; bin 2 
could contain components with “medium functionality;” bin 3, in turn, could hold the “low functionality” components.  In 
practice, devices are placed into bins when they fall into a certain functionality range.  For example, one bin may contain de-
vices that have a power rating of 89 Watts, a speed of 3.1 GHz, and a voltage level between 1.425 volts and 1.45 volts.  
Further, it is important to note that product binning is not deterministic, as wafer fab production variability (which is 
inevitable) leads to variable end product capabilities/functionality. 
 External customers (i.e., the demand side) may place orders with a semiconductor manufacturer for various quantities of 
products having a wide range of capabilities—these product capabilities typically map to specific bin designations (i.e., sup-
plier bin designations often relate to customer ordering patterns/demands).  If necessary, higher product functionality can be 
substituted for lower level product demand, but not vice versa.  For example, if there is customer demand for Bin 3 products 
in excess of the available inventory, bin 1 and/or bin 2 products could be used by the supplier to meet the demand. However, 
this substitution often comes with a significant price in terms of lost potential profits due to the related selling prices of high 
vs. low functionality components.   

As customer demands occur on a weekly basis, frequent high functionality product substitution for lower functionality 
product demand can result in significant lost profits.  However, generating excess inventories of all product functionality 
types can lead to unnecessarily high inventory holding costs.  As excess inventory creation is not desirable, this paper 
investigates the important question of satisfy customer demand from available binned devices with maximum profit in terms 
of maximizing revenue and minimizing inventory holding costs.  Towards this goal, we present an mathematical 
programming model designed to achieve our research goals. 
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2 LITERATURE REVIEW 

The tradeoff between maintaining appropriate inventory levels to satisfy customer demand while seeking to maximize 
profits has been addressed previously in the literature, especially as global planning has become more necessary in practice 
due to increasing product demands.  Hsu and Bassok (1999) present a downgrading substitution model with random demand 
and random yield that is quite similar to our motivating case of using devices placed in higher functionality bins for lower 
functionality demand satisfaction.  Bitran and Gilbert (1994) study the idea of co-producing different products in batches 
within the semiconductor manufacturing industry.  They note that random production yield of wafer die can help to enable 
manufacturers to supply a range of product functionalities to a number of customers from one production batch.  IMPReSS, 
an optimization production planning and scheduling tool developed at the University of California-Berkeley, was created in 
order to provide inventory planning assistance for Harris Corporation through more effective scheduling efforts (Leachman et 
al., 1996). 

Hung and Wang (1997) examine the problem of meeting customer demand requirements through effective inventory 
planning.  Finally, a theoretical approach presented by Gallego et al. (2006) is the most closely-related prior effort to our re-
search study.  Gallego et al. (2006) explore the minimization of inventory through part downgrading for customers that desire 
low functionality products.  In contrast, our approach is more applied in nature than Gallego et al. (2006) as (1) we develop a 
number of our model’s constraints based on prior discussions with semiconductor industry personnel and (2) we focus on mi-
nimizing total inventory costs over a multi-time period planning horizon.  Towards this end, we now present an initial, work-
ing deterministic optimization model for the demand fulfillment problem of interest that later can be enhanced with addition-
al, realistic probabilistic customer demand requirements and stochastic device binning distributions/results. 

3 MODEL DEVELOPMENT 

3.1 Definitions 

Throughout the remainder of this paper, we will use key terms such as devices, bins, and OPNs, as they relate to a 
semiconductor manufacturer with whom we have consulted on the problem area of interest.  For reader clarification, these 
key terms are defined as follows: 

• Devices

• 

:  The products that are electrically tested to ascertain different levels of functionality during the final test 
stage of the semiconductor manufacturing process.  Based on the results of these tests, devices are assigned to a sin-
gle bin related to their functionality/capability. 
Bin:

• 

  A repository or inventory location containing tested devices of some specified functionality or capability.  In-
dividual bins are used to satisfy customer demand requirements for one or more specific OPNs. 
OPN:

3.2 Model 

  Order Part Number.  Customers place their demand orders for OPNs in varying quantities during each time 
period.  This demand subsequently is satisfied by the supplier with tested devices from bins corresponding to re-
quired production functionality/capability specifications. 

We now present a mixed-integer programming model for optimizing customer demand fulfillment from bins such that 
company profits are maximized.  First, we define relevant model notation in terms of the model’s sets, parameters, and 
variables: 

 
 

B  Set of bins, indexed by b 
Sets: 

D  Set of devices, indexed by d 
O  Set of OPNs, indexed by o 
T  Set of time periods, indexed by t 
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𝑎𝑎𝑏𝑏𝑏𝑏  percent of device d assigned/distributed to bin b during electrical testing; these values were obtained from his-
torical data supplied by our partnering semiconductor manufacturer; ≥ 0 , ≤ 1 

Parameters: 

𝑚𝑚𝑏𝑏𝑏𝑏 =1 if demand for OPN o can be satisfied by devices in bin b; otherwise, =0 
𝑣𝑣𝑑𝑑  initial inventory for device d; ≥ 0 
𝑝𝑝𝑑𝑑  cost to produce device d; ≥ 0 
ℎ𝑏𝑏 holding cost per unit in bin b per time period; ≥ 0 
𝑛𝑛𝑜𝑜𝑜𝑜 customer demand for OPN o during time period t; ≥ 0 

 
 

𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏  integer variable representing the number of components selected from bin b to satisfy customer demand for 
OPN o in time period t; ≥ 0 

Variables: 

𝑦𝑦𝑏𝑏𝑏𝑏  integer variable representing the component inventory level in bin b during time period t; ≥ 0 
𝑧𝑧𝑑𝑑𝑑𝑑  integer variable representing the quantity of device d components produced in time period t; ≥ 0 

 
The objective function of our model minimizes the sum of inventory holding costs and production costs:  
 

 minimize  ∑ ∑ ∑ ((ℎ𝑏𝑏𝑦𝑦𝑏𝑏𝑏𝑏𝑑𝑑∈𝐷𝐷𝑡𝑡∈𝑇𝑇𝑏𝑏∈𝐵𝐵  ) + (𝑝𝑝𝑑𝑑𝑧𝑧𝑑𝑑𝑑𝑑 )) (1) 
 
A number of constraints are necessary in our model.  First, constraint sets (2) and (3) maintain inventory balance across all 
time periods by reconciling inventory levels with production quantities and customer demand levels: 
 
 𝑦𝑦𝑏𝑏1 = ∑ ((  𝑣𝑣𝑑𝑑 + 𝑧𝑧𝑑𝑑1𝑑𝑑∈𝐷𝐷 𝑎𝑎𝑏𝑏𝑏𝑏 ) − ∑ 𝑥𝑥𝑏𝑏𝑏𝑏1     ∀𝑏𝑏 ∈ 𝐵𝐵𝑜𝑜∈𝑂𝑂  (2) 
 𝑦𝑦𝑏𝑏𝑏𝑏 = 𝑦𝑦𝑏𝑏(𝑡𝑡−1) + ∑ ((  𝑣𝑣𝑑𝑑 + 𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑∈𝐷𝐷 𝑎𝑎𝑏𝑏𝑏𝑏 ) −∑ 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏      ∀𝑏𝑏 ∈ 𝐵𝐵, 𝑡𝑡 ∈ 𝑇𝑇, 𝑡𝑡 > 1𝑜𝑜∈𝑂𝑂  (3) 
 
Next, constraint set (4) ensures that demand for each OPN is only met by components contained in valid (i.e., functionally 
compatible) bins in each time period: 
 
    ∑ 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏 ≥ 𝑛𝑛𝑜𝑜𝑜𝑜𝑏𝑏∈𝐵𝐵    ∀𝑜𝑜 ∈ 𝑂𝑂, 𝑡𝑡 ∈ 𝑇𝑇 (4) 
 
Finally, constraint set (5) requires that only available binned components can be used to satisfy customer demand in each 
time period: 
 
 ∑ ∑ 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏 ≤ ∑ ∑ (𝑧𝑧𝑑𝑑𝑑𝑑 𝑎𝑎𝑏𝑏𝑏𝑏 +𝑑𝑑∈𝐷𝐷𝑏𝑏∈𝐵𝐵𝑜𝑜∈𝑂𝑂𝑏𝑏∈𝐵𝐵 𝑦𝑦𝑏𝑏𝑏𝑏 )      ∀𝑡𝑡 ∈ 𝑇𝑇 (5) 
 
Variable type constraints are not included here, as they are defined above in the model notation portion of the paper. 

3.3 Model Validation 

In order to assess the validity of our formulation, we now present an example toy data set to demonstrate the model’s func-
tionality.  First, let the set of devices D = {A, B, C, D, E, F, G, H}.  Assume that customers can place orders for OPNs in the 
set O = {I, II, III, IV, V, VI, VII, VIII}.  Further, we defined the set B to contain bins 1 through 9 and initially examine a two-
period time horizon (i.e, T = {1, 2}). 
 Table 1 contains an example matrix for parameter 𝑎𝑎𝑏𝑏𝑏𝑏  describing the distribution for each device d into bin b resulting 
from the final test stage of semiconductor manufacturing.  The values were obtained from our partnering semiconductor 
manufacturer.  This distribution is expressed as the fraction of devices tested that are mapped/placed into each bin.  Note that 
the column associated with each device sums to 1, as each device must be entirely mapped to the available bins. 
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Table 1: Example Data for Device-to-Bin Mapping Parameter 𝒂𝒂𝒃𝒃𝒃𝒃 

 Device 
Bin A B C D E F G H 
1 0 0 0 0 0 0 .03 0 
2 0 0 0 0 0 0 .02 0 
3 0 0 0 0 0 0 .08 0 
4 .84 .06 .99 0 .94 .95 .33 0 
5 .16 .94 .01 0 .06 .05 .32 0 
6 0 0 0 0 0 0 .13 .01 
7 0 0 0 0 0 0 .09 .79 
8 0 0 0 .84 0 0 0 .20 
9 0 0 0 .16 0 0 0 0 

 
 The distribution or mapping of devices into bins as given in Table 1 determines how much each bin will/can be utilized 
when fulfilling customer demand orders.  For example, consider the bin mappings for devices D and G in Table 1.  Between 
these two device types, all bins can be covered.  However, the cost of making each device type comes into play when a semi-
conductor manufacturer is deciding on which device to produce in order to meet customer demand.  For example, if it is more 
expensive to produce device type G, a semiconductor manufacturer may elect to produce device H products in order to satisfy 
inventory requirements for bin 7. 
 Next, Table 2 displays example production cost data for each device type.  Even though device types D and G can be 
used solely to produce inventories for all bin types (see Table 1), they are also the most costly to produce, according to Table 
2.  This tradeoff is especially evident when one considers the inventory holding costs incurred when extra devices are not 
sold to customers in response to OPN orders.  For example, observe bin 5 and the low yield of device C into this bin (1%) 
and it’s cost in Table 2 (1 unit).  These values are in stark contrast to the same bin 5 values for device B (94% and a cost of 5 
units).  It is possible that the 500% cost increase may be warranted if significant amounts of demand exist for bin 5 compo-
nents, given the difference between the two device’s mapping percentage into bin 5. 
 

Table 2: Example Device Production Cost Data 

Device A B C D E F G H 
𝑝𝑝𝑑𝑑  10 5 1 20 4 8 20 16 

 
 Table 3 displays example inventory holding cost data for the components in each bin.  Each bin has a different carrying 
cost per piece held, as the value of the components contained in each bin vary according to the specifications of each bin.  As 
a reminder, cost is the main objective of our proposed optimization model.  Next, Table 4 displays the initial inventory (in 
number of items) of each device available for binning.  From these initial inventories, subsequent binning and production de-
cisions follow. 
 

Table 3: Example Bin Holding Cost Data 

Bin 1 2 3 4 5 6 7 8 9 
ℎ𝑏𝑏  .01 .02 .01 .02 .05 .07 1 .05 .04 

 

Table 4: Example Initial Device Inventory Levels 

Device A B C D E F G H 
𝑣𝑣𝑑𝑑  10439 2052 636 64560 12648 5700 373142 81659 

 
 In Table 5, an example bin-to-OPN mapping is shown.  This is the map of bins from which components can be used to 
fulfill customer OPN demands.  For example, the only way that any customer’s demand for OPN I can be satisfied is by hav-
ing an appropriate amount of inventory in bin 1.  This mapping data, viewed in concert with Table 1’s specification that only 
one device (G) bins out to bin 1, suggest that sufficient inventories and/or production levels of device G are critical.  Lastly, 
Table 6 shows an example set of customer OPN demand quantities for use in our model verification efforts. 
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Table 5: Example Bin-to-OPN Mapping Data (𝒎𝒎𝒃𝒃𝒃𝒃) 

 OPN 
Bin I II III IV V VI VII VIII 
1 1 0 0 0 0 0 0 0 
2 0 1 1 0 0 0 0 0 
3 0 0 1 1 0 0 0 0 
4 0 0 0 0 1 0 0 0 
5 0 0 0 0 1 1 0 0 
6 0 0 0 0 1 1 1 0 
7 0 0 0 0 0 1 0 0 
8 0 0 0 0 0 0 1 0 
9 0 0 0 0 0 0 1 1 

 

Table 6: Example Customer Demand Orders by OPN in Each Time Period 

 OPN 
Time I II III IV V VI VII VIII 
1 19806 320 946 71831 115822 6839 155606 13208 
2 18636 33323 7317 23533 148777 30000 270479 7317 

 
 The model is implemented in AMPL v10.1 for solution and analysis using CPLEX v10.1 on a standard desktop PC.  As 
it is in the class of optimization problems known as assignment problems, solution time is negligible.  After analyzing this 
example problem, we achieve an objective function value of $343,843,106.90 for total production and inventory holding 
costs.  The model outputs for primary decision variable 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏  resulting from this solution are presented in Tables 7 and 8 for 
time periods 1 and 2, respectively. 
 

Table 7: Number of Units Taken from Each Bin to Fulfill Demand in Time Period 1 

 OPN 
Bin I II III IV V VI VII VIII 
1 27294 0 0 0 0 0 0 0 
2 0 320 0 0 0 0 0 0 
3 0 0 953 71831 0 0 0 0 
4 0 0 0 0 300234 0 0 0 
5 0 0 0 0 291136 0 0 0 
6 0 0 0 0 0 0 118274 0 
7 0 0 0 0 0 81882 0 0 
8 0 0 0 0 0 0 37348 0 
9 0 0 0 0 0 0 0 13211 

 

Table 8: Number of Units Taken from Each Bin to Fulfill Demand in Time Period 2 

 OPN 
Bin I II III IV V VI VII VIII 
1 23172 0 0 0 0 0 0 0 
2 0 33324 0 0 0 0 0 0 
3 0 0 32715 23533 0 0 0 0 
4 0 0 0 0 254892 0 0 0 
5 0 0 0 0 247168 0 0 0 
6 0 0 0 0 0 0 100412 0 
7 0 0 0 0 0 69516 0 0 
8 0 0 0 0 0 0 154130 0 
9 0 0 0 0 0 0 15943 7317 
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 Table 9 displays the model’s output for the amount of device production required each time period to satisfy customer 
demand.  Careful observation confirms that this indeed is the least costly option, based on the multiple competing factors—
production costs are balanced with inventory holding costs in order to produce the most cost-effective solution.  The primary 
decision is to only produce devices D and G, and then allow the bin mapping percentages result in appropriate amounts of all 
customer-demanded OPNs.  In fact, the majority of all demanded OPNs are satisfied from device G production. 
 

Table 9: Model Outputs for Weekly Device Production 

Device Week 1 Week 2 
A 0 0 
B 0 0 
C 0 0 
D 82575 145375 
E 0 0 
F 0 0 
G 909800 772400 
H 0 0 

 
Building on the production results in Table 9, Table 10 displays the inventory levels in each bin during each time period.  

As production efforts build device inventory levels, final testing distributes these devices to their appropriate bins.  Then, 
customer demand for OPNs consumes binned ICs in the most cost-effective manner, resulting in the bin inventory levels de-
scribed in Table 10. 

 

Table 10: Bin Inventory Levels Per Week 

Bin Week 1 Week 2 
1 0 0 
2 17876 0 
3 0 5544 
4 0 0 
5 0 0 
6 0 0 
7 0 0 
8 32015 0 
9 1 1 

3.4 Model Sensitivity Analysis 

In order to test the model’s sensitivity to various input parameter values, the OPN-to-Bin map parameter 𝑚𝑚𝑏𝑏𝑏𝑏  was varied to 
assess the model’s ability to select different bins for customer OPN demand.  However, it is clear from Table 1 that device G 
(as described by our partnering semiconductor manufacturer) often is the sole source for several bins’ inventories.  Therefore, 
regardless of a variety of sensitivity analysis changes, device G must always be chosen for production in order to satisfy cus-
tomer demand, regardless of device G’s associated costs. 
 It is important to realize that care must be taken to insure proper coverage of all bins is possible.  Preliminary experi-
ments reveal that when device G’s mapping parameters were changed to not produce any bin 1 components (𝑎𝑎1𝐺𝐺 = 0), de-
mand for OPN I could not be satisfied at all, as bin 1 is the only bin allowed to fulfill OPN I demand.  This highlight the im-
portance of proper bin coverage and confirms the model’s ability to seek lowest cost, feasible solutions for customer OPN 
demand fulfillment. 

4 CURRENT RESEARCH—SCALING UP TO REALITY 

Now that our initial model is verified and its functionality has been validated, we are working with our partnering semicon-
ductor manufacturer to generate a larger, more realistic data set.  For this effort, the model scale of interest contains 300 
OPNs available for customer demand and a product mix of 350 different device types.  Some initial lessons learned from this 
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effort confirmed the importance of ensuring appropriate bin coverage for all bins are available for device-to-OPN translation 
mapping. 
 Upon generating our first realistically-sized dataset, the optimization model described above was run again in CPLEX.  
Unfortunately, our initial solution was determined to be infeasible, which at first we thought was the result of infeasi-
ble/uncovered bin mappings.  However, subsequent investigations revealed that the integer restrictions on our model’s prima-
ry decision variables were the reason for this infeasibility. 
 While customer demand requirements are for integer quantities of OPNs, the device-to-bin mapping parameters cause a 
fractional number of items to be present in bin inventories.  We continue to investigate the appropriate method for relaxing 
the integrality restrictions in practice.  We have verified that individually relaxing the integrality restriction on each of the 
model’s three primary decision variables, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑦𝑦𝑏𝑏𝑏𝑏 , and 𝑧𝑧𝑑𝑑𝑑𝑑 , separately results in optimal solutions that are within .000001% 
of each other, regardless of which variable was chosen for integrality relaxation.  Therefore, our future efforts will focus on 
this area of model modification to produce cost-effective demand fulfillment solutions for our partnering semiconductor 
manufacturer. 
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