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In this paper, we consider a preemptive (multiple) priority queueing model in which arrivals occur according to a Markovian
arrival process (MAP). An arriving customer belongs to priority type i, 1≤ i≤m+1, with probability pi. The highest priority,
labeled as 0, is generated by other priority customers while waiting in the system and not otherwise. Also, a customer of
priority i can turn into a priority j, j 6= i,1 ≤ i, j ≤ m + 1, customer, after a random amount of time that is assumed to be
exponentially distributed with parameter depending on the priority type. The waiting spaces for all but priority type m+1
are assumed to be finite. The (m+1)− st priority customers have unlimited waiting space. At any given time, the system
can have at most one highest priority customer. Thus, all priority customers except the (m + 1)− st are subject to loss.
Customers are served on a first-come-first-served basis within their priority by a single server and the service times are
assumed to follow a phase type distribution that may depend on the customer priority type. This queueing model, which
is a level-dependent quasi-birth-and-death process, is amenable for investigation algorithmically through the well-known
matrix-analytic methodology. However, here we propose to study through simulation using ARENA, a powerful simulation
software as some key measures such as the waiting time distributions are highly complex to characterize analytically. The
simulated results for a few scenarios are presented.

1 INTRODUCTION

While priority queues (both pre-emptive and non pre-emptive) have been extensively studied (see Takagi (Takagi 1989),
Jaiswal (Jaiswal 1968) and references therein) in the literature, in this paper we analyze a multi-priority queueing system
attended by a single server in which arriving priority customers can change their priorities while waiting for service. Such
priority queueing models have been motivated by applications in areas such as health care and communication, and are
referred to as self-generated priority queues. Self generation of priorities is a common phenomenon. For example, patients
waiting in a clinic can become seriously ill and therefore given preference over other waiting patients. The change of priorities
also takes place in multi-speciality hospitals. For example a patient waiting for an appointment with a physician specialized
in a certain ailment, may require other specialized treatments. This patient may turn out to be critically ill at which time
becomes a super-priority type requiring immediate attention in the current place (pre-empting the other priority customer in
service) or elsewhere (due to another highest priority in service) by leaving the system. One can also find applications of
the present model in communication, aircraft landing and so on.

Krishnamoorthy, Deepak and Viswanath (Krishnamoorthy, Deepak, and Narayanan 2002) introduced self-generation of
priority into queueing models. Wang (Wang 2004) discusses patient queue models with self-generation of priorities (though
he does not introduce that terminology). He assumes all time variables to be exponentially distributed. Krishnamoorthy,
Viswanath and Deepak (Krishnamoorthy, Narayanan, and Deepak 2005) provide an extensive analysis of a multiserver
queue with Poisson arrival process. Customers while joining the system, are categorized as being ordinary; however while
waiting they generate into priority according to a linear rate. The system is shown to be always stable. Several performance
measures are computed. Some optimization problems are discussed. Gomez Corral, Krishnamoorthy and Viswanath (Gomez,
Krishnamoorthy, and Narayanan 2005) analyzed a multi-server queueing system with a finite buffer and self-generation of
priorities by waiting customers. Customers, at the time of joining the system, belong to one class and while waiting generate
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into priority. They provide formulae for numerical computation of variety of performance measures, including the blocking
probability, the departure process and the stationary distributions of the system state at pre-arrival epochs, post arrival epochs
and epochs at which arriving customers are lost.

In this paper, we consider a queueing system with m+2 priorities, labeled as 0,1,2, . . .,m+1, with 0 designated as super
or highest priority and the rest of the m+1 priorities are such that type i has a higher priority over type j customers, for
i < j. We assume that the customers arrive according to a Markovian arrival process with parametric representation given
by (D0,D1) of order n. A brief description of MAP is given below. An arriving customer belongs to type i priority with
probability pi, 1 ≤ i ≤ m + 1. The maximum capacity for priority type i is Ni with N0 = 1, Ni is finite for 1 ≤ i ≤ m and
Nm+1 is infinite. An arriving priority i customer has one of the following options. (a) Enters into service immediately due to
the server being idle or busy with a customer whose priority type is lower than that of the arrival; (b) Enters into priority i
buffer if the buffer is not full (unless i = m+1 in which case the customer will always enter into the buffer of infinite size);
(c) Leaves the system since priority i buffer is full. Note that option (c) is not pertinent to type m+1 customers as there is
no limit for how many such customers can be admitted. It is easy to see that the priority i customers arrive according to a
Markovian arrival process with the arrivals governed by the matrix D̃i = piD1, 1≤ i≤m+1. In our model, we assume that
the highest priority customers do not arrive externally. Instead these customers are generated randomly by the other types of
priority customers while waiting for service. In general, the priority generation scheme is as follows. After a random amount
of time that is exponentially distributed with parameter γii, a priority type i,1≤ i≤m+1, customer waiting for service can
turn into a highest priority with probability γi0

γii
or into priority j, j 6= i, with probability γi j

γii
. Note that γii = ∑

m+1
j 6=i, j=0 γi j, for

1 ≤ i ≤ m + 1, and that all priority i,1 ≤ i ≤ m + 1, customers will independently change their priority type while waiting
for service. We assume that while in service the customer cannot change the priority type. Furthermore, a highest priority
customer finding another highest priority customer in service will leave the system without getting service and this is the
reason why we take N0 = 1. Thus, the set {γi j,1≤ i≤m+1,0≤ j≤m+1}, along with the numbers of customers of priority
type i,1≤ i≤ m+1 will completely describe the self-priority generating scheme.

The customers of priority type i have pre-emptive priority over customers of type j for i < j, 0 ≤ i, j ≤ m + 1. The
pre-empted customer will be served (as a new customer) when the service begins for this customer following the priority rule.
The service time of a customer of priority type i,0≤ i≤m+1, is assumed to be of phase type (PH-type) with representation
(α(i),S(i)) and of order ri, where α(i) is the initial probability vector. S0(i) is a column vector such that S(i)e+S0(i) = 0,
where e is a column vector of 1’s of appropriate order. Denoting by µ ′i to be the mean of (α(i),S(i)), it can be verified
that µ ′i =−α(i)(S(i))−1e. Recall that a PH-distribution is the distribution of the time until absorption in a continuous time
Markov chain with an absorbing state (Neuts 1981).

Observe that by taking γi j = 0 for 1≤ i≤ m+1; 0≤ j ≤ m+1, we get the classical priority queue. On the other hand
letting γi j 6= 0 for i ≤ j and γi j = 0 otherwise, the case of priority generation will be restricted to generating only one of
higher priority. Similar interpretation (for generating one of lower priority) holds good when γi j 6= 0 for j ≥ i, i 6= 0.

The MAP in continuous time is described as follows. Let the underlying Markov chain be irreducible and let Q̂ be the
generator of this Markov chain. At the end of a sojourn time in state i, that is exponentially distributed with parameter λi, one
of the following two events could occur: with probability ri j(1) the transition corresponds to an arrival and the underlying
Markov chain is in state j with 1 ≤ i, j ≤ n; with probability ri j(0) the transition corresponds to no arrival and the state
of the Markov chain is j, j 6= i. Note that the Markov chain can go from state i to state i only through an arrival. Define
matrices D0 = (d0

i j) and D1 = (d1
i j) such that d0

ii =−λi, 1≤ i≤ m, d0
i j = λiri j(0), for j 6= i and d1

i j = λiri j(1), 1≤ i, j ≤ n.
Note that for all i,1 ≤ i ≤ n, ∑

n
j=1[ri j(0)+ ri j(1)] = 1. By assuming D0 to be a nonsingular matrix, the interarrival times

will be finite with probability one and the arrival process does not terminate. Hence, we see that D0 is a stable matrix. The
generator Q̂ is then given by Q̂ = D0 +D1. If π is the steady-state probability vector of Q̂, then the arrival rate λ is given
by λ = πD1e, where e is a column vector of 1’s of dimension n.

Thus, D0 governs the transitions corresponding to no arrival and D1 governs those corresponding to an arrival. It can
be shown that MAP is equivalent to Neuts’ versatile Markovian point process. The point process described by the MAP
is a special class of semi-Markov processes. For further details on MAP and their usefulness in stochastic modeling, we
refer to ((Lucantoni 1991), (Neuts 1989), (Neuts 1992)) and for a review and recent work on MAP we refer the reader
to (Chakravarthy 2001).

The objective of this paper, therefore, is to generalize the classical priority queues. Of course we do this with restriction
placed on the waiting spaces for all but the lowest priority one. This paper is presented as follows. In Section 2 we provide
the description of the queueing model under study. In Section 3 we simulate this queueing model using ARENA, and discuss
some illustrative numerical examples to qualitatively describe the model.
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2 MODEL DESCRIPTION

The model described in the introduction can be studied using continuous time Markov chain as follows. First let Ji(t),
0 ≤ i ≤ m + 1, denote the number of type i priority customers in the system at time t. Let I1(t) denote the state of the
server with the convention that I1(t) = 0 when the server is idle, and I1(t) will be the phase of the existing service when the
server is busy at time t; and let I2(t) denotes the phase of the arrival process at time t. The process {H(t) : t ≥ 0} defined
as {H(t) = (Jm+1(t),Jm(t), . . . ,J1(t),J0(t), I1(t), I2(t)) : t ≥ 0} is a continuous-time Markov chain with state space given by
Ω = ∪∞

k=0l(k), where

l(0) = {(0,0, . . . ,0, i2) |1≤ i2 ≤ n} ∪{(0, jm, . . . , j0, i1, i2)|

0≤ jq ≤ Nq, 0≤ q≤ m;
m

∑
u=0

ju 6= 0,1≤ i1 ≤ rh,1≤ i2 ≤ n,h = min0≤u≤m{ ju > 0}},

l(k) = {(k, jm, jm−1, . . . , j1, j0, i1, i2) |
0≤ jq ≤ Nq, 0≤ q≤ m; 1≤ i1 ≤ rh,1≤ i2 ≤ n,h = min0≤u≤m+1{ ju > 0}

}
,k ≥ 1.

l(k),k ≥ 0 is referred to as the level k containing set of states. Note that in l(k) description it is obvious that jm+1 = k.
It is clear that the above continuous time Markov chain {H(t)} is a level dependent quasi birth and death process

(LDQBD). Arranging the states lexicographically the infinitesimal generator Q = (qrs) of the process {H(t) : t ≥ 0} is given
by

Q =


A10 A00
A20 A11 A0

A22 A12 A0
A23 A13 A0

. . . . . . . . .

 .

The (block) matrices appearing in Q require extensive notations and since these are not absolutely necessary for our
further discussion in this paper, the details are omitted here. Note that the system under discussion is always stable.

It may be noted that setting γm+1, j = 0 for j = 0,1, . . . ,m, results in a level independent quasi birth and death process.
In this case we get the infinitesimal generator of the process as a quasi-Toeplitz Markov chain and so the matrix geometric
solution procedure can be adopted.

3 SIMULATION OF THE MODEL

The queueing model described in Section 2 is amenable to study through the classical algorithmic methods due to Neuts (Neuts
1981, Neuts 1989). However, we have chosen to simulate this queueing model using ARENA as the state space for the current
model grows exponentially and the book-keeping becomes very intensive. Furthermore, the computation of the distributions
of the waiting time in the system of various priority types (except the highest priority one) is very complicated to describe
analytically. Thus, simulation will not only help to compare analytical results with those of the simulated ones, especially
when one wants to generalize the model to include multiple-server case, but also get a feel for the waiting time distributions.
The logic for developing the model is displayed in Figure 3 in the appendix. The ARENA modules for developing the model
under study are displayed in Figures 4 and 5 in the appendix. The purpose of this section is to bring out the qualitative
aspects of the queueing system under consideration through some interesting simulated (numerical) examples.
For our numerical discussions, we consider five different arrival processes with parameter matrices D0 and D1 given by

1. Erlang of order 3 (ERL)

D0 =

 −3 3 0
0 −3 3
0 0 −3

 ,D1 =

 0 0 0
0 0 0
3 0 0


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2. Exponential (POI):

D0 =
(
−1

)
,D1 =

(
1
)

3. Hyperexponential (HEX):

D0 =

 −12.7 0 0
0 −1.27 0
0 0 −0.127

 ,D1 =

 8.89 2.54 1.27
0.889 0.254 0.127

0.0889 0.0254 0.0127


4. MAP with negative correlation (MNC):

D0 =

 −1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

 ,D1 =

 0 0 0
0.01002 0 0.9922

223.4925 0 2.2575


5. MAP with positive correlation (MPC):

D0 =

 −1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

 ,D1 =

 0 0 0
0.9922 0 0.01002
2.2575 0 223.4925

 .

All these five MAP processes are normalized so as to have an arrival rate of 1. However, these are qualitatively different
in that they have different variance and correlation structure. The first three arrival processes, namely ERL, EXP, and HEX ,
correspond to renewal processes and so the correlation is 0. The arrival process labelled MNC has correlated arrivals with
correlation between two successive inter-arrival times given by -0.4889 and and the arrivals corresponding to the processes
labelled MPC has a positive correlation with values 0.4889. The ratio of the standard deviations of the inter-arrival times
of these five arrival processes with respect to ERL are, respectively, 1, 1.732051, 5.913554, 2.44136, and 2.44136.

For services we consider two cases:

• ERL5: Here we assume that all five priorities have the same service distribution given by Erlang of order 5. We
take µ ′i = 0.9,0≤ i≤ 4.

• ERLV: Here we assume that the five priorities have different service distributions with the highest priority having
Erlang of order 5; customers of priority type i have Erlang of order 5− i,1≤ i≤ 4. Here we normalize the rates in
each phase of the five Erlangs such that µ ′i = 0.9,0≤ i≤ 4.

Note that Erlang is a special case of a phase type distribution. It should be pointed out that Erlang is a built-in distribution
in ARENA. However, we have provided the module in ARENA as displayed in Figure 2 for using phase type services (of
order 3) as this is not available in ARENA.

In the following we will denote by γi the vector of dimension 5 that gives the rates of priority generation of a waiting
priority i,1≤ i≤ 4 customer. That is, γi = (γi0, . . . ,γi4). In all our examples below we have fixed λ = 1,µ ′i = 0.9,0≤ i≤ 4, pi =
0.25,1≤ i≤ 4, and γ1 = (1.5,5,1.5,1,1),γ2 = (2,1.5,6,1.5,2),γ3 = (2,1.5,1,5.5,1),γ4 = (3.5,2,2,1.5,9), N1 = 10,N2 = 20,
and N3 = 30.

We define the following measures (in steady state) for our discussion on the simulated results.

• µ
(i)
WT S,0≤ i≤m+1 the mean waiting time in the system of an admitted priority i customers (except for the priority

m+1 customers who will always be admitted due to unlimited buffer size.
• P(i)

busy,0≤ i≤ m+1 the probability that the server is busy with priority i customers at an arbitrary time.

• P(i)
lost ,0≤ i≤m the probability that a priority i customer will be lost due to lack of buffer space at an arbitrary time.

• s(i)
WT S,0 ≤ i ≤ m + 1 the standard deviation of the waiting time in the system of an admitted priority i customer

(except for the priority m+1 customers who will always be admitted due to unlimited buffer size.
• µ

(i)
NQ,0≤ i≤ m+1 the mean number of priority i customers waiting in the queue at an arbitrary time.
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For the above combinations of five arrival processes and two service schemes, we ran our simulation model for 10000
units and five replications. The above set of performance measures along with the half-widths of the intervals are displayed
in Tables 1 and 2 below. Furthermore, three selected measures: log of the mean waiting time in the system of customers of
various priorities, the probability that the server is busy with different types of customers, and the probability of a priority
i,0≤ i≤ 3, customer is lost, are displayed in Figure 1.

A quick look at the entries in Tables 1, 2, and Figure 1, reveal the following observations.

1. The mean waiting time for the highest priority customer entering into service (remember that a highest priority
customer may leave without getting service due to server being busy with another highest priority customer) is
nothing but the mean service time and is assumed to be the same, namely 0.90, for all scenarios. The numbers are
very close to 0.9. This fact can also be used as an accuracy check for simulated results.

2. The mean waiting time in the system for the lowest priority, namely, priority type 4, is largest among all customers
and for all scenarios. This is as expected since these customers enter into the system without getting lost, and also
are pre-empted by other priority customers.

3. It is interesting to see that in the case of renewal arrivals (namely, when comparing ERL,POI, and HEX), the
probability that the server is busy with priority i,0≤ i≤ 2, customers appears to increase with increasing variability
in the arrival process. However, the probability that the server is busy with priority i,3≤ i≤ 4, customers appears
to decrease with increasing variability in the arrival process.

4. Looking at the probability that the server is busy with a specific priority type customer for the two correlated arrival
processes, namely, MNC and MPC, we notice an interesting trend. For MPC process, this probability is larger as
compared to MNC process in the case highest priority as well as for the lowest priority (priority 4) customers .
However, for the other priority types, this probability is higher for MNC as compared to MPC.

5. We notice that a priority 3 customer has the highest probability of getting lost when the arrival process has a larger
variability (HEX) or has a higher positively correlated arrivals (MPC). It is not surprising to see this phenomenon
since these customers have a limited waiting space and are probably pre-empted more often (next only to priority
4 customers).

6. As is to be expected all the performance measures for renewal arrivals, namely, for ERL, POI, and HEX arrival
processes, behave similar to what is to be expected. For example, the mean and standard deviation of the waiting
times tend to increase with increasing variability.

7. While MNC and MPC arrival processes have the same mean and standard deviation, yet some of the key measures
such as the mean waiting times in the system of priority i,1 ≤ i ≤ 4, customers are significantly different. This
indicates the crucial role played by the correlated, especially the positive one, arrivals in stochastic modeling. We
have seen such a crucial role played by the correlated arrivals in our other stochastic models analyzed using analytical
and computational modeling tools.

Now we look at the fitted distributions of the waiting time distributions of various types of customers. Using the
simulated data, ARENA has the option to identify the best fit (based on the least sum of squares due to error) among many
distributions. In Tables 3 and 4 we list the fitted distributions for the various scenarios considered. Some sample histograms
of simulated data along with the fitted distributions are displayed in Figure 2. An examination of these tables reveal the
following.

• As expected an admitted highest priority customer’s waiting time in the system is nothing but the service time
distribution which is assumed to be Erlang of order 5.

• It is worth noting that the waiting time distribution of a priority 4 customer is fitted using beta distribution for all
scenarios. As is known, the beta distribution has the ability to fit a variety of shapes in the data, and due to priority
4 customers having more chances of getting pre-empted by other types of customers and they all leave the system
only after getting a service, the waiting times have more variability.

• Normally the waiting time distribution in a queueing model is skewed to the right (to accommodate for some
customers having to wait unusually longer than the others) and this can be seen in ARENA identifying lognormal
distribution to be the best fit for many combinations.

In conclusion, we have shown how simulation (using powerful software such as ARENA) can be used to bring out
the qualitative aspect of a complicated stochastic model. Further research is currently being done to incorporate interesting
optimization problems and the results of which will be presented elsewhere.
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Figure 1: Comparison of selected measures for various scenarios

Table 3: Identification of the fitted distributions for the waiting time in the system for identical services
ARRIVAL Highest Priority Priority 1 Priority 2 Priority 3 Priority 4

ERL ERLANG(0.181,5) LOGN(1.08,0.607) LOGN(1.71,1.41) 70 BETA(0.481,3.36) 6060 BETA(0.933,1.06)
POI ERLANG(0.179,5) LOGN(1.14,0.676) LOGN(2.34,2.34) 114 BETA(0.607,3.19) 7270 BETA(1.15,1.21)
HEX ERLANG(0.181,5) LOGN(2.12,2.11) EXP(15.2) 492 BETA(0.724,3.83) 9310 BETA(1.61,2.12)
MNC ERLANG(0.18,5) LOGN(1.22,0.766) LOGN(2.81,2.93) 178 BETA(0.865,4.03) 8680 BETA(0.805,1.14)
MPC ERLANG(0.179,5) WEIBULL(2.07,0.935) LOGN(10.2,35.1) LOGN(73.4,697) 3990 BETA(0.802,1.12)

Table 4: Identification of the fitted distributions for the waiting time in the system for varying services
ARRIVAL Highest Priority Priority 1 Priority 2 Priority 3 Priority 4

ERL ERLANG(0.181,5) GAMMA(0.324,3.32) LOGN(1.85,1.87) 98 BETA(0.458,3.98) 6380 BETA(1.07,1.3)
POI ERLANG(0.179,5) LOGN(1.18,0.79) LOGN(2.58,3.09) 146 BETA(0.622,2.68) 8300 BETA(1.17,1.42)
HEX ERLANG(0.181,5) EXPO(2.16) 291 BETA(1.02,19.6) 926 BETA(1.164,10.3) 8670 BETA(0.83,0.978)
MNC ERLANG(0.178,5) LOGN(1.21,0.818) GAMMA(0.823,4.22) 168 BETA(0.823,4.22) 8510 BETA(0.991,1.09)
MPC ERLANG(0.18,5) GAMMA(2.17,1.03) LOGN(11.9,43.6) LOGN(98.6,824) 5490 BETA(1.6,2.76)
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Figure 2: Histograms and fitted distributions for waiting time in the system for selected scenarios
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APPENDIX

MAP arrivals
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LOGIC FOR DEVELOPING THE SIMULATION MODEL

Figure 3: Logic for the development of ARENA model
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Figure 4: ARENA MODULES - Main, MAP arrivals and Phase type services
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Figure 5: ARENA MODULES - Self-priority generation and Record keeping
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