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ABSTRACT 

Equipment models used in fab-level simulation do not typically include features such as internal wafer buffers and setups that 
depend on wafer locations inside the tool. Such features are especially important to system performance in the presence of 
smaller lot sizes and greater product diversity. In this paper, we provide an introduction to flow line models that allow one to 
incorporate these key practical behaviors. We then develop flow line models for clustered photolithography tools and conduct 
simulations to assess the quality of the models. Despite the fact that the models only incorporate wafer transport robots via a 
constant addition to the process time, they can be quite accurate. When tested against data from a clustered photolithography 
tool in production, the model predictions for throughput and cycle time were within 1% and 4%, respectively. The computa-
tional requirements are about one order of magnitude less than is otherwise possible.   

1 INTRODUCTION 

The anticipated proliferation of small lot sizes and increased product diversity brought about by a transition to 450 mm wafer 
sizes will present challenges for existing simulation models of semiconductor wafer fabrication (Pillai 2006). Fab-level simu-
lation models of production typically consist of a thousand tools, or more. Each tool model allows for numerous practical fea-
tures such as first wafer delay, throughput rate, batch sizes, setups between dissimilar lots, tool failure and sampling, to men-
tion a few. The simulation is used to answer questions about cycle time, throughput, production control policies, tool 
purchases, etc. that cannot be well addressed via less detailed queueing or spreadsheet models.  

For many tools, current tool models accurately express the essentials of tool behavior. However, as lot sizes decrease and 
product diversity increases, behaviors not currently included in typical models will play a greater role in system performance. 
In particular, features such as internal wafer buffers and setups with start times that depend upon the location of wafers with-
in a tool require closer examination. A key tool where both of these elements exist is the clustered photolithography tool. 
With the goal of modeling such tools, we provide an introduction to deterministic flow line models that allow for the inclu-
sion of additional model elements with less computation than would be required of a model incorporating both wafer and 
transport robot movement. While deterministic flow line models are limited by the assumptions that make them tractable, 
nevertheless, one can extend them sufficiently to include diverse classes of lots and state dependent setups.  

Flow line models have been studied for many years and there is a rich body of work addressing their analysis, control 
and design. The first key results on deterministic flow lines were developed in Avi-Itzhak (1965) and Friedman (1965). Re-
sults for general classes of flow lines may be found in texts such as Buzacott and Shanthikumar (1993) and Altiok (1996) or 
survey papers such as Dallery and Gershwin (1992) or Papadopoulos and Heavey (1996). In the classic work of Avi-Itzhak 
(1965), a recursion for the exit times of customers from a deterministic flow line with a single class of lots was developed. 
This recursion could be used to simply model such tools in simulation, however, it does not allow visibility to the interior of 
the tools without fully tracking the evolution of each wafer through each processing module. Thus, setups that depend on the 
wafer locations in the tool cannot be included. Also, though Avi-Itzhak (1995) later allowed for product dependent process 
times, the neat recursive structure of the initial results was lost.  

To allow visibility into the nature of wafer movement internal to a deterministic flow line, Morrison (2008) and Morri-
son (2009a) developed an exact decomposition of a flow line into segments called channels. A recursive relationship for the 
movement within each channel was demonstrated that allowed for a significant reduction in computational complexity over a 
module by module simulation. This model can be used to incorporate setups that can only begin once an initial portion of the 
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tool empties. Subsequently, Morrison (2009b) addressed the issue of different classes of lots with their own process times. 
We first provide an introduction these results.  

We then turn our attention to converting a generic flow line model for a clustered photolithography tool into a tractable 
deterministic flow line model. The conversion results in some small loss of fidelity, but as we shall see, the loss is quite rea-
sonable for the purpose of fab-level simulation. We conduct simulations to assess the quality of the resulting flow line model. 
We observe that, for the representative system studied, the tractable model provides throughput and cycle time predictions 
within about 1% and 3% of the generic flow line, respectively. Also, the models have been tested on clustered photolithogra-
phy tools in production and gave predictions for throughput and cycle time within 1% and 4% of actual values, respectively. 

The paper is organized as follows. In Section 2, we provide a description of clustered photolithography tools and deter-
ministic flow lines. Theoretical results for the models are reviewed in Section 3. In Section 4, we discuss computational com-
plexity. We turn to the modeling of a fictitious but representative clustered photolithography tool in Section 5. Concluding 
remarks are presented in Section 6. 

2 SYSTEM DESCRIPTION 

We begin with an overview of a clustered photolithography tool, hereafter referred to as a CPT. We then turn our attention to 
deterministic flow lines. We mention similarities and differences between the two. Later, we will show how to construct a 
flow line model for a representative CPT. We use the shorthand DFL to refer to a deterministic flow line. 

2.1 Clustered Photolithography Tools 

A CPT consists of a track tool and a photolithography scanner clustered into a single piece of equipment. The track tool con-
sists of numerous processing modules that conduct pre-scan and post-scan operations. Conceptually, the process is quite simi-
lar to the process of making film, taking a picture and developing the picture. The pre-scan processing modules prepare wa-
fers for the scanner by depositing light sensitive coatings on the wafers, baking and cooling the wafer. Once the wafer has 
received all pre-scan operations, it is ready to be exposed to the desired pattern of light in the scanner. The scanner tool con-
ducts an alignment operation and then scans a pattern of light over the wafer. The post-scan operations include image devel-
opment, baking and chilling. There is often a buffer for storing wafers just before the scanner. A post-scan buffer may also be 
used. Typically, the pre-scan and post-scan modules are segregated, that is, no module used for a pre-scan operation is used 
for a post-scan operation, and vice-versa. To ensure that the scanner, which can cost on the order of US $20 million, is the 
bottleneck of the CPT, redundant modules that provide identical processing are devoted to pre-scan and post-scan operations 
with long durations.  

Wafers enter the tool and advance from one operation to the next via wafer handling robots. There are numerous such 
robots in the track tool, between the track and scanner tools and internal to the scanner. A robot control algorithm is used to 
direct the actions of the robots and advance the wafers to their next stage of processing. 

A CPT is depicted in Figure 1. Three wafer handling are shown. The operations are denoted as P1, …, P11 (P for process) 
and there are redundant modules dedicated to some of them. For example, P2 has three modules devoted to it. There are both 
pre-scan and post-scan buffers shown. The scan process is denoted as P6 and shows a wafer, a reticle that contains the de-
sired pattern and a light. Wafers enter the CPT at process P1 and are complete when they exit process P11. 

 

 
 

Figure 1: Conceptual layout of a clustered photolithography tool (CPT) 
 
Different lots may require different processing. The modules are designed to provide a variety of operations. For exam-

ple, a baking module can use different temperatures and durations; a module applying a photo resistive chemical is plumbed 
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for multiple types of chemicals. The process times in a module are thus a function of the type of wafer. Some wafers may not 
require the service of all processes and skip a collection of process modules. When a module changes from one setting to 
another, a setup is required. Often, the setup is conducted on all modules in the pre-scan or post-scan track simultaneously 
and can only begin once the pre-scan track is empty of wafers.  The scanner often conducts a setup when starting wafers from 
a new lot. The scanner setup is often longer in duration than the time required for post-scan track setup so that the post-scan 
setup can be ignored for modeling purposes.  

2.2 Deterministic Flow Lines 

A flow line consists of E process modules, denoted m1, …, mE, from which wafers require service in order. There is an infi-
nite buffer before the first module and a buffer of finite capacity bi before module mi, i = 2, …, E. Let F denote the sum of the 
internal buffer spaces, that is, F = b2 + … + bE. Wafers arrive to the system singly or in a batch as an arbitrary process. Wa-
fers are indexed in the order in which they arrive; the arrival time of wafer w is denoted as aw. The index of wafers in a batch 
is assigned arbitrarily within the batch. For convenience, we assume that wafers in the buffer preceding m1 are served in a 
FIFO fashion. This assumption can be easily generalized. Wafers in each internal buffer are served in a FIFO manner. After 
receiving service from a module mi, a wafer advances to module mi+1, if it is unoccupied. If module mi+1 is occupied and a 
slot is available in module mi+1’s buffer, the wafer enters the buffer. If no slot is available in the buffer, then the wafer lan-
guishes in module mi – preventing upstream wafers from accessing that module. This behavior is referred to as manufactur-
ing blocking, see Dallery and Gershwin (1992). A DFL is depicted in Figure 2. There, the buffer serving module m2 has a ca-
pacity of three wafers and the buffer serving module mE has a capacity of five wafers. 

 

 
 

Figure 2: An example of a deterministic flow line (DFL) 
 
There are K classes of wafers, 1, …, K. Use c(w) to denote the class of wafer w. All wafers in class k require the same 

deterministic service time from server mj, call it τj
k. It is this feature that earns the flow line the deterministic moniker. When 

the number of classes is more than one, this fact may be highlighted by referring to the system as a multiclass DFL. Unless 
otherwise mentioned, we will be studying multiclass DFLs, so there is no need for the distinction. 

As discussed in Avi-Itzhak (1965) and Morrison (2009a), buffers in a DFL can be modeled as a server with zero process 
time. The distinction is that buffer modules may be skipped if they are not needed, while a server with zero process time must 
be passed through. However, since the total time a wafer spends in a buffer module is identical to the time spent in a server 
with zero process time, the models are equivalent. We can thus equivalently replace a DFL model containing F buffer spaces 
and E process modules, with a DFL containing M = E + F process modules, where we set the service time to zero if the 
process module was formerly considered a buffer. Hereafter, we consider that all buffer modules have been replaced by a 
process module with zero service time. 

 
Example 1 Consider a DFL consisting of four process modules m1, …, m4. There is buffer space for one wafer between 

each server so that b2 = b3 = b4 = 1. Here E = 4 and F = 3, so that the total number of locations for wafers internal to the 
DFL is M = E+F = 7. In the equivalent DFL modeling buffers as servers with zero process times, modules m2, m4 and m6 re-
place the buffers and have τ2

k = τ4
k = τ6

k = 0.  
 
Let Xw,j denote the time that wafer w starts service with module mj. The elementary evolution equations dictate the 

progress of wafers through the DFL. They are 
Xw,1 = max{aw, Xw-1,2}, 
Xw,j = max{Xw,j-1 + τj-1

c(w), Xw-1,j+1}, j = 2, …, M-1, and             (1) 
Xw,M = max{ Xw,M-1 + τM-1

c(w), Xw-1,M + τM
c(w-1)}. 

Define γw,j to be the time that module mj is finished conducting its service of wafer w, not including time spent queueing for 
the subsequent server. Define the delay in a module as dw,j := Xw,j+1 – Xw,j – τj

c(w), for j = 1, …, M. Note that dw,M = 0, for all 
wafers w since there is no contention after the final server. Define dw,0 := Xw,1 – aw; it is the queueing to enter module m1.  
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The following assumptions and definitions are useful. 
 
Assumption A0 There is a distinguished module mB for which τB

k > τj
k, for all j, all k, and τB

k > τi
k, for all i < B, all k. 

This module is called the bottleneck.  
Assumption A1 The service times are such that τj

k+1 = ηk τj
k, for k = 1, …, K-1, where 0 < ηk < 1. We use η to denote 

η1* η2*…* ηK-1. Thus, wafers of class c1 are the slowest in every module and wafers of class cK are the fastest. 
Definition 1 A server is called a dominating module for wafers of class k if τj

k > τi
k, for all i < j. 

Assumption A2 For class 1 wafers, the service times between the dominating modules satisfy τj
1 < ηj-β(α) τβ(α)

1, for β(α) 
< j < β(α+1), α = 1, …, σ-1. For j > β(σ), τj

1 < ηj-B τB
1.  

 
Under assumption A1, the dominating modules are the same for all classes. In this case, use σ to denote the number of 

dominating modules and employ α as their index. Let β(α) be the module index of dominating module alpha. Thus, if module 
m7 is the third dominating module, β(3) = 7; also, β(σ) = B. 

 
Definition 2 Under assumption A1, the modules mβ(α), …, mβ(α+1) are termed channel-α.  
 
The next example serves to demonstrate the above definitions and assumptions.  
 
Example 1 Consider a DFL with seven modules. There are three customer classes. The service times are depicted in Ta-

ble 1. The τj
k satisfy Assumption A0; module m6 is the bottleneck. The τj

k satisfy Assumption A1 with η1 = ⅔ and η2 = ¾. That 
is, τj

2 = ⅔ τj
1 and τj

3 = ¾ τj
2, for all j. Note that η = η1 * η2 = ½. The dominating modules, whose columns are shaded in Ta-

ble 2, are m1, m4 and m6. Also, Assumption A2 is satisfied since, for example, τ2
2 = 20 < η τ1

2 = 0.5*(40) = 20 and τ3
2 = 0 < 

η τ2
2 = 0.5*(20) = 10. There are two channels; channel-1 is the set of modules {m1, …, m4} and channel-2 is {m4, …, m6}. 
 

Table 1: Service times for the DFL of Example 1 
τj

k
m1 m2 m3 m4 m5 m6 m7 m8

Class 1 60 30 0 75 37.5 90 45 22.5

Class 2 40 20 0 50 25 60 30 15

Class 3 30 15 0 37.5 18.75 45 22.5 11.25  

2.3 Comparison Between a CPT and a DFL model 

We first mention differences between the CPT and general DFL. Unlike the CPT, there is but a single path from entrance to 
exit in a DFL. Nor are there wafer transport robots in the DFL, wafers immediately transfer from one location to the next 
when available. In the nominal DFL, there are no setups. We will discuss how to incorporate setups later. Also, we will show 
an easy way to convert a multipath CPT into a similar single path system.  

We next turn to Assumptions A0, A1 and A2. Generally in a CPT, the photolithography scanner is the bottleneck for 
each class of wafer. However, this is not always true, though it is certainly desirable due to the substantially higher cost of the 
scanner. Assumption A0 restricts to the case of a single bottleneck module. Assumptions A1 and A2 are more restrictive, but 
they are required to allow the mathematical structure we will discuss in the sequel.  

Despite the restrictive nature of Assumption A1 and A2 and the differences between a real CPT and a DFL, a DFL can 
serve as a good model for cycle time and throughput. Further, it is possible to analyze their behavior with about one order of 
magnitude less computation than is required for a DFL without A1 and A2. Beyond this, because we ignore the robot in the 
DFL, there is substantial additional computational reduction.  These observations will be discussed further in a later section. 

3 WAFER ADVANCEMENT IN DETERMINISTIC FLOW LINES 

It was shown in Morrison (2009b) that there is no contention possible after the bottleneck in a multiclass DFL under Assump-
tions A1 and A2. Further, the channels in such a system behave in a regular way and serve as a decomposition of the DFL. 
Using these facts, one can develop recursions for the manner in which wafers advance within the flow line without resorting 
to a full simulation of the entire DFL. Further, one can incorporate state dependent setups and setups at the bottleneck. Here 
we provide an introduction to these results. 
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 Note that there may be setups at the bottleneck corresponding to reticle alignment delays experienced between lots in the 
photolithography scanner. Thus, hereafter, we allow the bottleneck process times to depend upon the wafer. That is, while A1 
and A2 hold with the given nominal process times, let τw,B = τB

c(w) + sw,B, where sw,B > 0. 

3.1 No contention after the bottleneck 

Under assumptions A1 and A2 for the bottleneck and post-bottleneck modules, it can be shown that there is no contention af-
ter the bottleneck. The implications of this are stated in Theorem 1. For convenience we let Ti,j

k ≔ ∑ τl
kj

l=i . 
 
Theorem 1 Under Assumptions A1 and A2, the following hold for systems with M > B 
  Xw,j+1 = Xw ,j + τj

c(w) + s(w) ∙ I{j=B}, for all B ≤ j < 𝑀𝑀, 
  Xw+1,j ≥ Xw ,j + τB(w) + �𝑇𝑇𝐵𝐵,𝑗𝑗−1

𝑐𝑐(𝑤𝑤+1) − 𝑇𝑇𝐵𝐵 ,𝑗𝑗−1
𝑐𝑐(𝑤𝑤) �, for all B ≤ j ≤ M. 

The departure times from the last modules obey 
  γw,M = Xw ,j + τM

c(w),  
  γw+1,M ≥ Xw ,M + τB(w) + �𝑇𝑇𝐵𝐵,𝑀𝑀

𝑐𝑐(𝑤𝑤+1) − 𝑇𝑇𝐵𝐵,𝑀𝑀
𝑐𝑐(𝑤𝑤)�. 

 
This result allows us to essentially ignore dynamics after the bottleneck module and simply replace all post-bottleneck 

modules with a post-processing delay equal to TB+1,M
c(w) .  

3.2 Delays inside the flow line 

To model setups that depend upon the location of wafers, we must have visibility to wafer advancement inside the DFL. As 
an alternate option to the elementary evolution equations (1), a structural property of the channels allows us this visibility. 
This result is stated after a few helpful definitions. 

 
Definition 3 Let Yα(w) denote the total delay wafer w experiences in the modules of channel-α, excluding delay in the fi-

nal module of that channel. That is 𝑌𝑌𝛼𝛼(𝑤𝑤) = ∑ 𝑑𝑑𝑤𝑤 ,𝑗𝑗
𝛽𝛽(𝛼𝛼+1)−1
𝑗𝑗=𝛽𝛽(𝛼𝛼) . 

Definition 4 Let Sp
β(α)(w), for p > β(α), denote the maximum possible delay wafer w may experience in the modules mp, 

…, mβ(α)−1. That is Sp
β(α)(𝑤𝑤) = �∑ �τ𝛽𝛽(𝛼𝛼)

c(𝑗𝑗 ) + d𝑗𝑗 ,𝛽𝛽(𝛼𝛼)�𝑤𝑤−1
𝑗𝑗=𝑤𝑤+𝑝𝑝−𝛽𝛽(𝛼𝛼) � − 𝑇𝑇𝑝𝑝 ,𝛽𝛽(𝛼𝛼)−1

𝑐𝑐(𝑤𝑤) . 
Theorem 2 Consider a DFT under assumptions A1 and A2 with σ > 2. For each channel-α, 1 < α < σ, the following re-

cursions hold for the channel delays for w = 1, 2, …,  

   𝑌𝑌𝛼𝛼(𝑤𝑤) = 𝑚𝑚𝑚𝑚𝑚𝑚 �
Sβ(α)
β(α+1)(𝑤𝑤),𝑌𝑌𝛼𝛼(𝑤𝑤 − 1) + 𝜏𝜏𝛽𝛽(𝛼𝛼+1)

𝑐𝑐(𝑤𝑤−1) + 𝑑𝑑𝑤𝑤−1,𝛽𝛽(𝛼𝛼+1) −𝑚𝑚𝑚𝑚𝑚𝑚 �𝜏𝜏𝛽𝛽(𝛼𝛼)
𝑐𝑐(𝑤𝑤−1), 𝑎𝑎𝑤𝑤𝛼𝛼 − 𝑋𝑋𝑤𝑤−1,𝛽𝛽(𝛼𝛼)�

+

+ �𝑇𝑇𝛽𝛽 (𝛼𝛼),𝛽𝛽(𝛼𝛼+1)−1
𝑐𝑐(𝑤𝑤−1) − 𝑇𝑇𝛽𝛽(𝛼𝛼),𝛽𝛽(𝛼𝛼+1)−1

𝑐𝑐(𝑤𝑤) �
�

+

 ,(3) 

where {.}+ = max{0,.}, dw,B = sw,B, aw
1 = aw, aw

α = Xw,β(α) . To calculate Sα(1), let τw,B = τ1,B, w = 0, -1, -2, … The start 
 times at channel-α are given as  
       𝑋𝑋𝑤𝑤 ,1 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑎𝑎𝑤𝑤 ,𝑋𝑋𝑤𝑤−1,1 + 𝜏𝜏1

𝑐𝑐(𝑤𝑤−1) + 𝑑𝑑𝑤𝑤−1,1�, 

     𝑋𝑋𝑤𝑤 ,𝛽𝛽(𝛼𝛼) = 𝑎𝑎𝑤𝑤 + 𝑑𝑑𝑤𝑤 ,0 + ∑ 𝑌𝑌𝜑𝜑(𝑤𝑤)𝛼𝛼−1
𝜑𝜑=1 + 𝑇𝑇1,𝛽𝛽(𝛼𝛼)−1

𝑐𝑐(𝑤𝑤) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼 = 1, … ,𝜎𝜎 − 1. 
In each channel-α, the delays at module j = β(α), …, β(α+1)−1 are given b 

    𝑑𝑑𝑤𝑤 ,𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜏𝜏𝛽𝛽(𝛼𝛼+1)
𝑐𝑐(𝑤𝑤+𝑗𝑗−𝛽𝛽(α+1)) + 𝑑𝑑𝑤𝑤+𝑗𝑗−𝛽𝛽(α+1),𝛽𝛽(𝛼𝛼+1) − 𝜏𝜏𝛽𝛽(𝛼𝛼)

𝑐𝑐(𝑤𝑤),𝑌𝑌𝛼𝛼(𝑤𝑤) − Sj+1
β(α+1)(𝑤𝑤)�

+
.        (4) 

The initial conditions are Yα(0)=0, a0 = -∞, X0,1 = -∞, and dw,j = 0, w < 0.  
 

Theorem 2 has several implications. For a wafer in channel-α, Equation (4) states that if the wafer experiences delay in 
any module of that channel except the last one, then there is a first module at which delay occurs, the delay is zero for preced-
ing modules in the channel, and the delay at subsequent modules in the channel is the maximum possible. Equation (3) states 
that the total delay a wafer experiences in a channel can be recursively calculated.  
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3.3 Practical features 

Computationally, the approach of Theorem 2 is roughly equivalent to that of the elementary evolution equations (1). We next 
give a recursion for the evolution of delay in a single channel DFL. The computation is smaller since there is only one Yσ−1(w) 
to assess. As we shall see, using a single channel model – even for a more complicated system – will allow us to appropriate-
ly incorporate setups as well as accurately model practical CPTs. 

 
Corollary 1 The delay in a single channel DFT satisfying assumptions A1 and A2 obeys the recursion 

 𝑌𝑌𝜎𝜎−1(𝑤𝑤) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑆𝑆1
𝐵𝐵(𝑤𝑤),𝑌𝑌𝜎𝜎−1(𝑤𝑤 − 1) + 𝜏𝜏𝑤𝑤−1,𝐵𝐵 − 𝑚𝑚𝑚𝑚𝑚𝑚�𝜏𝜏1

𝑐𝑐(𝑤𝑤−1), 𝑎𝑎𝑤𝑤 − 𝑋𝑋𝑤𝑤−1,1� + �𝑇𝑇1,𝐵𝐵−1
𝑐𝑐(𝑤𝑤−1) − 𝑇𝑇1,𝐵𝐵−1

𝑐𝑐(𝑤𝑤) ��
+

,    (5) 

with initial conditions Yσ−1(0)=0, a0 = -∞, X0,1 = -∞, τw,j := τ1,j, for all w < 0. The delay in each module of channel-(σ−1) is 
given as  

     𝑑𝑑𝑤𝑤 ,𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜏𝜏𝑤𝑤+𝑗𝑗−𝐵𝐵,𝐵𝐵 − 𝜏𝜏𝑗𝑗
𝑐𝑐(𝑤𝑤),𝑌𝑌𝛼𝛼(𝑤𝑤) − 𝑆𝑆𝑗𝑗+1

𝐵𝐵 (𝑤𝑤)�
+

.            
The entry times to the channel obey the recursion  
     𝑋𝑋𝑤𝑤 ,1 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑎𝑎𝑤𝑤 ,𝑋𝑋𝑤𝑤−1,1 + 𝜏𝜏1

𝑐𝑐(𝑤𝑤−1) + 𝑑𝑑𝑤𝑤−1,1�, 
with the initial conditions above (Yσ−1(0)=0 implies that d0,1 = 0). 

 
Consider once more a DFL consisting of one or more channels. We now turn our attention to the modeling of setups that 

can only begin once all modules prior to a distinguished one are vacant. Such setups may occur in CPTs when changing from 
one class of lot to another. In this case, before the new type of lot can enter the first module, all modules in the pre-scan track 
must be empty. Typically, this means that some wafers of the previous lot are located in the pre-scan buffer and will continue 
to advance into the scanner as it requires them. Once the pre-scan track is empty, the setup of those modules is initiated. 
When the setup is complete, wafers from the new lot may enter production.  

Two possible methods to determine when the setup commences are discussed next. First, one could wait for both the 
next lot to arrive as well as for the pre-scan track to empty. However, if it is known what lot will next be processed on the 
tool, one can simply begin the setup as soon as the required modules are empty. Let P(w) denote the index of the last module 
that must be vacant before the setup of wafer w. That is, m1, …, mP(w) must be vacant. Let Vw-1,P(w) denote the time instant at 
which wafer w-1 vacates module P(w). Let τS(w) denote the duration of the setup required. If no setup is required for a wafer, 
we set P(w) = 1 and τS(w) = 0.  

With this notation, for the case where the setup commences only when both wafer w has arrived and the modules are va-
cant, let X*

w,1 := max{ aw, Vw-1,P(w) } + τS(w). For the case where the setup does not wait for the wafer to arrive, let X*
w,1 := 

max{ aw, Vw-1,P(w) + τS(w) }. Let αP(w) 𝜖𝜖 {1, … ,𝜎𝜎} denote the index of the dominating module prior to P(w), so that β(αP(w)) < 
P(k) < β(αP(w)+1). In general, the vacation time of wafer w-1 from a module P(w) may be calculated as  

𝑉𝑉𝑤𝑤−1,𝑃𝑃(𝑤𝑤) = 𝑋𝑋𝑤𝑤−1,1 + 𝑇𝑇1,𝑃𝑃(𝑤𝑤)
𝑐𝑐(𝑤𝑤−1) + � 𝑌𝑌𝛼𝛼(𝑤𝑤 − 1)

𝛼𝛼𝑃𝑃(𝑤𝑤 )−1

𝛼𝛼=1

+ � 𝑑𝑑𝑤𝑤−1,𝑛𝑛

𝑃𝑃(𝑤𝑤)

𝑛𝑛=𝛽𝛽�𝛼𝛼𝑃𝑃(𝑤𝑤 )�

. 

The next result follows. 
 
Corollary 2 For a DFL under Assumptions A1 and A2 with state dependent setups as described above, Theorem 2 holds 

with aw replaced with X*
w,1. If the DFL consists of a single channel, Corollary 1 similarly holds. 

 
In addition to setups, it is common for wafers to arrive in batches termed wafer lots. Such lots may consist of up to twen-

ty five wafers. Because all wafers in a lot arrive to the tool simultaneously and a setup is not required between the wafers 
within lot, the recursions for wafer delay may be simplified. Let g denote the index of wafer lots. Use Ω(g,w) to denote the 
wafer index of the w-th wafer of lot g. For example, if 300 wafers have already arrived to the tool and the next arriving lot is 
lot 15, the 7-th wafer of lot 15 is wafer number Ω(15,7) = 307. Use W(g) to denote the number of wafers in lot g. For conven-
ience, also use c(g) to denote the class of the wafers in lot g. Thus, c(Ω(g,w)) = c(g).  

 
Corollary 3 Consider a single channel DFT under Assumptions A1 and A2 with batch arrivals of wafer lots. Assume 

that the first wafer of a lot may have sw,B ≠ 0, but all others have sw,B = 0. The following recursion holds for the delay the last 
channel, for w = 1, …, W(g) – 1, 

     𝑌𝑌𝜎𝜎−1�𝛺𝛺(𝑔𝑔,𝑤𝑤 + 1)� = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑆𝑆1
𝐵𝐵�𝛺𝛺(𝑔𝑔,𝑤𝑤 + 1)�,𝑌𝑌𝜎𝜎−1�𝛺𝛺(𝑔𝑔,𝑤𝑤)� + 𝜏𝜏𝛺𝛺(𝑔𝑔 ,𝑤𝑤),𝐵𝐵 − 𝜏𝜏1

𝑐𝑐(𝑔𝑔)� . 
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4 COMPUTATIONAL COMPLEXITY 

The recursions of Theorem 2 require just about as much computation as do the elementary evolution equations (1). However, 
restricting attention to a single channel DFL and employing simplifications for wafer lots allows one to reduce the complexi-
ty. The following theorem from Morrison (2009b) compares the operations required for the various approaches. Use FS to 
denote “full simulation” as in the elementary evolution equations (1). Let TH2 denote the approach of Theorem 2. Let C3 de-
note the approach of Corollary 3.  Note that addition and subtraction are considered equivalent, as are maximization and mi-
nimization. Recall that B is the index of the bottleneck module, σ is the number of dominating modules and K is the number 
of classes of wafers.  

Note that although we assume a fixed W wafers per lot, the recursions developed work for W(g) a function of the lot. 
 
Theorem 3 The computations required to simulate G lots of W wafers each are shown in Tables 2 and 3. Note that C2 

assumes there is a single channel and hence σ = 2. 
 

Table 2: Initialization computations for simulation of a DFL  
Method # of Add # of Mult

FS 0 0

TH2 K2(2B-σ-1)+K(2σ-B-K-1)+2B-2 1

C2 K(K-1)(B-1) 0  
 

Table 3: Recursion computations for simulation of a DFL  
Method # of Add # of Max

FS GWB-1 GWB-B
TH2 (17σ-20)(WG-1) (5σ-6)(WG-1)
C3 9G(W+1) 2G(W+2)  

 
Note that the computation required for the FS method depends greatly upon the index of the bottleneck module. If this 

index is less than around 10, the FS approach can be better. Often, however, the bottleneck is module twenty or more, de-
pending on the number of buffer modules. The next example demonstrates the practical application of the results and reviews 
the computational complexity of each approach. 

 
Example 2 Consider a multiclass DFT consisting of 45 modules as is common in real tools. Suppose there are K=3 

classes of wafers. Let B = 35, σ = 3, β(σ−1) = 8. We will determine the calculations required to simulate for 100 lots, each 
consisting of W = 25 wafers. Table 4 gives the results. The C3 recursion requires a total of about 1/6 the computations of FS. 

 
Table 4: Computation required to simulate 100 lots in Example 2  

Initialization
Method # of Add # of Mult

FS 0 0

TH2 563 1

C2 204 0   

Recursion
Method # of Add # of Max

FS 87499 87465

TH2 77469 22491
C2 23400 5400  

5 MODELING OF A CPT 

In this section we first develop a generic flow line models for clustered photolithography tools. We then show how to convert 
this model into a flow line obeying Assumptions A1 and A2. Finally, we demonstrate via simulation that, for a fictitious yet 
representative CPT model, the simplified one channel DFL model satisfying assumptions A1 and A2 predicts the cycle time 
and throughput quite well. Subsection 5.1 discusses the development of a generic DFL from a CPT. Subsection 5.2 compares 
the DFL models via simulation. In the last subsection, we mention the results obtained when applying these models to a clus-
tered photolithography tool in production. 

1587



Morrison 
 

5.1 Converting a CPT to a DFL 

In this subsection we consider a representative CPT and discuss several modeling approaches to convert it to a DFL. We 
conduct these investigations via several examples. The following notation is helpful. Let N denote the number of processes in 
a CPT. Process time for a wafer of class k in process p is denoted as Wp

k. Let Rp denote the number of modules devoted to 
process p. Let Bp denote the number of buffer spaces allocated to process p. Assume there is a transfer time for unloading or 
loading wafers that cannot be conducted in parallel with the process. Denote this time by τT. It represents overhead in enter-
ing or exiting a module, but does not include queueing for a wafer transport robot or module. For example, if there is a single 
module for a process p, then the minimum time between wafer departures from that process is Wp

k + τT.  In general, the max-
imum rate of wafer departures from a process p is one wafer every (Wp

k + τT)/Rp units of time. We thus effectively add τT 
seconds to each process time. Hereafter, we will assume that the CPT is not robot limited and account for the robot only via 
this additional process time for each process. The next example demonstrates the conversion of a CPT into a DFL.  

 
Example 3 Consider the CPT of Figure 1. There are three classes of wafer lots, K = 3. There are 24 pre-scan buffer 

slots and none after process P6. Process time for a wafer in process p of class k is denoted as Wp
k. Assume that process P6 is 

the bottleneck. Table 5 gives the process times Wp
k. Let  τT = 5 seconds. 

The flow line model consists of a series of ∑ 𝑅𝑅𝑝𝑝𝑁𝑁
𝑝𝑝=1 + ∑ 𝐵𝐵𝑝𝑝𝑁𝑁

𝑝𝑝=2  modules. For each process p, the DFL consists of Rp seri-
al modules with class dependent process times τj

k = (Wp
k + τT)/Rp. Prior to the modules for process p are Bp modules with ze-

ro process time. Thus, since R1 = 2, τ1
k = τ2

k = (W1
k + 5)/2. In particular, τ1

1 = τ2
1 = 50 s, τ1

2 = τ2
2 = 45 s and τ1

3 = τ2
3 = 40 

s. For our example, R = (R1, …, RN) = (2, 3, 1, 2, 1, 1, 1, 3, 2, 1, 3). The resulting DFL process times are given Table 6. The 
bottleneck module for each class is module m34, so that B = 34. Note that Assumptions A1 and A2 are not satisfied.  

 
Table 5: Process times by class for the system of Example 3  

Class P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

1 95 160 30 85 40 55 38 140 95 41 143

2 85 130 40 75 37 45 24 115 65 39 112

3 75 115 32 65 37 40 19 85 67 35 82  
 

Table 6: Process times by class for the DFL model of Example 3 

Class t1
k t2

k t3
k t4

k t5
k t6

k t7
k t8

k t9
k t10

k … t33
k t34

k t35
k t36

k t37
k t38

k t39
k t40

k t41
k t42

k t43
k t44

k 

1 50 50 55 55 55 35 45 45 45 0 … 0 60 43 48⅓ 48⅓ 48⅓ 50 50 46 49⅓ 49⅓ 49⅓

2 45 45 45 45 45 45 40 40 42 0 … 0 50 29 40 40 40 35 35 44 39 39 39

3 40 40 40 40 40 37 35 35 42 0 … 0 45 24 30 30 30 36 36 40 29 29 29  
 
The DFL model at this stage will not typically satisfy Assumptions A1 and A2. However, one can easily generate DFL 

models that do, while still retaining properties such as total process time and bottleneck process rate. While there is some loss 
of fidelity, the modeling error is quite small for the models under consideration. The approach is to create a multiclass DFL 
that retains the bottleneck process times per class by defining  η1 = τB

2/τB
1 ,  …, ηK-1 = τB

K/τB
K-1 and η = η1*η2*…*ηK-1. For 

class 1, recall that the process time of the penultimate dominating module mβ(σ−1) is denoted τβ(σ−1)
1. To obtain a DFL model 

satisfying A1 and A2, we define the following process time parameters υj
k for module j and class k. Let υ1

1 = τβ(σ−1)
1, υ2

1 = 
η τβ(σ−1)

1, υ3
1 = (η)2 τβ(σ−1)

1, …, υB-1
1 = (η)Β−1 τβ(σ−1)

1 and υB
1 = τΒ

1. For the other classes, define  υj
k+1 = ηk υj

k, for classes k = 
2, …, K and all modules. The rationale for placing the process time υ1

1 = τβ(σ−1)
1 of the penultimate dominating module at the 

first module of the new DFL model is to obtain a flow line with a single channel! Thus, we can have the computational re-
duction properties associated with a focus on single channel DFLs (as in Corollary 1). 

To ensure that the total process time for a wafer of class k remains the same, we add modules after the bottleneck. As-
suming there is no contention after the bottleneck, the post-bottleneck modules merely have the effect of adding a fixed addi-
tional process time. For each class, set this post-bottleneck process time to ∑ τj

kM
j=1 − ∑ υj

kB
j=1 , whenever this is greater than or 

equal to 0. If this difference is negative the approach discussed will not work. One could rectify this by setting some of the 
intermediate process times before the bottleneck to 0.  

We illustrate the details via example. 
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Example 4 For the DFL of Example 3, B = 34 and we have η1 = τB

2/τB
1 = 50/60 = 5/6, η2 = τB

3/τB
2 = 45/50 = 0.9 and η 

= η1 η2 = 0.75. For class 1 wafers, the penultimate dominating module is m3 and has τβ(σ−1)
1 = 55. We thus set υ1

1 = 55, υ2
1 

= η 55 = 41.25, υ3
1 = (η)2 55 = 30.9375, …, υB-1

1 = (η)Β−2 55 = (¾)32∗55  and υB
1 = 60. Obeying Assumption A1 gives υj

2 = 
η1 υj

1 and υj
3 = η2 υj

2, for j < B. To determine the post-bottleneck process time it is convenient to use the fact that ∑ 𝜐𝜐𝑗𝑗𝑘𝑘𝐵𝐵
𝑗𝑗=1 =

𝜏𝜏𝐵𝐵1 + 𝜏𝜏𝛽𝛽(𝜎𝜎−1)
1 (1 − 𝜂𝜂𝐵𝐵−1)/(1 − 𝜂𝜂)  = 60 + 220*(1-0.7533) ≈ 297.9834. Since ∑ 𝜏𝜏𝑗𝑗1𝑀𝑀

𝑗𝑗=1 = 977 , we set the post-bottleneck 
processing times for class 1 to ∑ 𝜏𝜏𝑗𝑗𝑘𝑘𝑀𝑀

𝑗𝑗=1 −∑ 𝜐𝜐𝑗𝑗𝑘𝑘𝐵𝐵
𝑗𝑗=1 = 977 − 297.98 ≈ 697.02. Similarly, for classes 2 and 3. The module 

process times for a single channel DFL model satisfying assumptions A1 and A2 is shown in Table 7. 
 

Table 7. Process times of a DFL model satisfying Assumptions A1 and A2 

Class ν1
k ν2

k ν3
k … ν33

k ν34
k 

Post-B 
Sum

1 55.00 55(η)1 55(η)2 … 55(η)32 60 697.0

2 η1*55 η1*55(η)1 η1*55(η)2 … η155(η)32 50 588.7

3 η1*η2*55 η1*η2*55(η)1 η1*η2*55(η)2 … η1*η2*55(η)32 45 497.0  

5.2 Simulations to assess loss of fidelity 

The multiclass DFL model of Example 4 was developed from the original CPT model and obeys assumptions A1 and A2. It 
will thus be amenable to analysis as in Corollaries 1, 2 and 3. The question that remains, however, is this: How accurate is the 
new model in comparison to the original? In the remainder of this subsection we use the notation DFL-1-A to denote a DFL 
possessing a single channel (the “1”) and satisfying both A1 and A2 (the “A”). 

First note that a DFL-1-A system will typically allow setups to start earlier than a generic one channel DFL (or a DFL 
model of a CPT). The reason for this is that wafers in the DFL-1-A system will advance faster through modules m1, …, mP 
due to the geometric decay of the process times. This of course assumes that the sum of the process times for modules m1, …, 
mP in the DFL-1-A system is less than in the generic one channel DFL. Note that the elementary evolution equation for Xw,1 
can in general be written as 𝑋𝑋𝑤𝑤 ,1 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑎𝑎𝑤𝑤 ,𝑉𝑉𝑤𝑤−1,𝑃𝑃(𝑤𝑤)� + 𝜏𝜏𝑆𝑆(𝑤𝑤) , including the possibility of setups. Recall that if no setup 
is required for a wafer, we set P(w) = 1 and τS(w) = 0.  

To account for the tendency of the DFL-1-A system to allow wafers into the system too early, we use the following ad-
justed start time for wafers in module m1. Set 𝑋𝑋𝑤𝑤 ,1 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑎𝑎𝑤𝑤 ,𝑉𝑉𝑤𝑤−1,𝑃𝑃(𝑤𝑤) + 𝐴𝐴𝑤𝑤−1,𝑃𝑃(𝑤𝑤)� + 𝜏𝜏𝑆𝑆(𝑤𝑤), where the adjustment Aw-

1,P(w) is defined next.  

𝐴𝐴𝑤𝑤 ,𝑃𝑃(𝑤𝑤+1) ∶=

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑚𝑚𝑚𝑚𝑚 ���𝜏𝜏𝑗𝑗

𝑐𝑐(𝑤𝑤) − 𝜐𝜐𝑗𝑗
𝑐𝑐(𝑤𝑤)�

𝐵𝐵

𝑗𝑗=2

,𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝑌𝑌1(𝑤𝑤) + ��𝜏𝜏𝑗𝑗
𝑐𝑐(𝑤𝑤)� −

𝐵𝐵−1

𝑗𝑗=2

� �𝜐𝜐𝑗𝑗
𝑐𝑐(𝑤𝑤) + 𝑠𝑠𝑤𝑤 ,𝐵𝐵�

𝑤𝑤−1

𝑙𝑙=𝑤𝑤−𝐵𝐵+2

�� ,   𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃(𝑤𝑤 + 1) = 1,

��𝜏𝜏𝑗𝑗
𝑐𝑐(𝑤𝑤) − 𝜐𝜐𝑗𝑗

𝑐𝑐(𝑤𝑤)�,                                                                                                                         𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃(𝑤𝑤 + 1) > 1.
𝑃𝑃

𝑗𝑗=1

� 

Since most of the terms in this expression can be calculated during the initialization, the overall complexity of the resulting 
simulation is not harmed too much. 

In order to address the question of how much is lost when converting from a DFL model of a CPT to a DFL-1-A, we 
conduct simulation experiments for the models described in Examples 3 and 4 above. 

 
Example 5 We compare the systems of Examples 3 and 4. Suppose that all lots consist of 12 wafers, that is, W = 12. Lots 

arrive to the system as a Poisson process; the rates will be given later. Lots are processed in a first come first served manner. 
Each arriving lot is of class 1, 2 or 3 with equal probability independent of all other random events. For each simulation 
case, we conduct 20 replications each consisting of 1250 lots. We use only the last 1000 lots for our data to ensure we use 
steady state values. The mean time a lot is in the tool (from the entry of wafer 1 at module m1 to the exit of wafer W from the 
last module) is calculated for each replication. This gives 20 values for each simulation study (one value that is the average 
over the last 1000 lots in the replication). The mean and standard deviation of these 20 values are then calculated and re-
ported in Table 8. Similarly for the TBLO, which is shorthand for the time between lots out of the tool. It is defined as Tg := 
min{cg–sg, cg–cg-1}, where cg is the completion time of lot g from the tool and sg is the start time of the first wafer of lot g on 
the tool. The throughput is calculated as the total number of wafers completed divided by the simulation time. 
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In all simulations we assume that the setup module P = 9, τS(w) is uniformly distributed from 2 to 4 minutes. Setups are 

required when changing from on class of wafer to another. The delay sw,B for the first wafer of every lot at the bottleneck is 
uniformly distributed from 4 to 6 minutes. Four cases are studied: 

• EX3: JIT – This case studies the system of Example 3. Here there is an infinite supply of lots at the entrance of the 
system; JIT stands for just in time. The result is that the simulation gives the maximum system throughput.  

• EX4: JIT – This case studies the system of Example 4. Here there is an infinite supply of lots at the entrance of the 
system; JIT stands for just in time. The result is that the simulation gives the maximum system throughput. 

• EX3: 90% – This case studies the system of Example 3. The arrival rate of wafers is set to 90% of the JIT through-
put from case EX3: JIT. 

• EX4: 90% – This case studies the system of Example 4. The arrival rate of wafers is set to 90% of the JIT through-
put from case EX4: JIT. 

The results of the simulations are given in Table 8. 
 

Table 8. Results of the simulations of Example 5 
EX3: JIT EX4: JIT

Mean Time in Tool (hours) 0.682 0.682
Std of 20 Values for Mean 

Time in Tool (hours)
0.020 0.021

Mean TBLO (hours) 0.261 0.261
Std of 20 Values for Mean 

TBLO (hours)
0.001 0.002

Throughput (wafers/hour) 46.0 46.0  

EX3: 90% EX4: 90%
Mean Time in Tool (hours) 0.608 0.606
Std of 20 Values for Mean 

Time in Tool (hours)
0.020 0.019

Mean TBLO (hours) 0.280 0.280
Std of 20 Values for Mean 

TBLO (hours)
0.005 0.005

Throughput (wafers/hour) 41.4 41.4  
 
The mean time in tool and mean TBLO for the systems of Examples 3 and 4 are virtually identical under the same arrival 

process conditions. Thus the relaxation from the DFL model of a CPT to a DFL-1-A causes little loss of fidelity. This is due 
to the adjustments Aw,P(w+1) and the fact that the CPT system studied has somewhat similar throughput rates for each process. 
It is quite common in practice for the throughput rates of each process to be similar due to the use of redundant chambers to 
ensure that the scanner is the bottleneck. 

5.3 Comparison of a DFL model with actual data from a production CPT 

We have tested the models against data from a CPT in production. For this case, the use of a DFL model created from the ap-
proach of Example 3 provided throughput and cycle time predictions within 0.8% and 3% of the real tool data, respectively. 
Part of this small loss of fidelity may be due to the fact that we are largely ignoring the wafer transport robots. We also tested 
a DFL model satisfying Assumptions A1 and A2, as in Example 4, and obtained results within 1% and 4% of the cycle time 
and throughput, respectively. Thus, the conversion from a basic DFL model to one with a single channel satisfying Assump-
tions A1 and A2 resulted in very little loss of fidelity.  

6 CONCLUDING REMARKS 

We have introduced multiclass deterministic flow line models and described how practical features such as state dependent 
setups and reticle alignment delays for the first wafer in a lot can be incorporated. It was discussed how the models can be 
more computationally tractable than a normal flow line simulation by about one order of magnitude. 

Following the introduction to the models, we next discussed the application of the models to the simulation of clustered 
photolithography tools (CPT). A deterministic flow line model (DFL) was developed for a CPT that consisted of a single 
channel with geometrically decaying service rates from module to module. As a result, the theory discussed previously in the 
paper readily applies and can be used for tractable simulation of the system. To address the key question of how well the 
models describe the behavior of a CPT, we conducted simulation studies. It was demonstrated that with an explicitly defined 
adjustment to wafer start times, the DFL model was extremely accurate. In fact, in tests with a CPT in production, the models 
have provided cycle time and throughput values within 1% and 4% of actual, respectively.  

An important caveat is that the models ignore wafer transport robots except to add a constant travel time to the module 
process times. However, based on the study of data from a real CPT as just mentioned, this seems sufficient for the purposes 
of fab-level simulation. Thus, the models proposed appear to be promising candidates to replace existing less expressive tool 
models in fab-level simulation for select key groups of tools.  
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There are numerous avenues for future research. First, it would be interesting to quantify the loss of fidelity brought 

about by ignoring the wafer transport resource. Also, a theoretical comparison of various DFLs to quantify the exact loss of 
fidelity caused by moving the penultimate dominating module to the first position and the geometric decay of process times 
would be of interest. A practical avenue of study would be to develop simplifications for cases where the module setups are 
conducted without requiring the entire pre-scan track to be vacant.  
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