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ABSTRACT

In many financial decision problems, such as portfolio optimization or hedging, the goal is to compute an optimal investment
strategy, in order to maximize expected utility or minimize expected risk. If the volatility of the risky asset(s) follows a
stochastic process and is not observable, the problems usually do not have analytical solutions. Hence, we propose an efficient
numerical method for these problems, based on a method developed recently for solving continuous-state partially observable
Markov decision processes. Numerical applications are presented and discussed for a problem of hedging European put and
call options.

1 INTRODUCTION

In many financial decision problems, such as portfolio optimization or hedging, an investor wants to find an optimal investment
strategy to achieve a certain goal, for example, to maximize a utility function or to minimize a risk. He invests in the
various assets available in market, including riskless assets such as bonds and deposits, and risky assets such as stocks and
options. The price of a risky asset is usually modeled as a stochastic process, where the volatility is treated as a constant
in some models, such as the classical Black-Scholes-Merton model (Black and Scholes 1973) (Merton 1973). However,
stochastic volatility (SV) models are used heavily in financial engineering to capture the impact of time-varying volatility on
financial markets and decision making (Shephard and Andersen 2008). Analytical results for SV models are derived mostly
for option pricing, such as (Heston 1993) (Bates 1996) (Nicolato and Venardos 2003). For portfolio optimization or hedging,
SV models in general do not have analytical results, and are hard to solve numerically due to computational difficulties.

Many financial decision problems under stochastic volatility fall into the framework of a stochastic control problem
under partial observation, where the control is the investment strategy, the unobserved state is the risky asset volatility, and
the observation is the risky asset price. A partially observed stochastic control problem can be transformed to a fully observed
problem, but the transformation introduces a new state that is a continuous probability density function. Since a continuous
density is generally infinite dimensional, the fully observable stochastic control problem has an infinite-dimensional state
space. Efficient numerical methods for these problems are sparse, as opposed to a large number of existing methods for
finite-dimensional stochastic control problems. Based on the idea of density projection for dimension reduction, we have
recently developed an effective method for solving continuous-state partially observable Markov decision processes (Zhou,
Fu, and Marcus 2008). In this paper, we will adapt this method to financial decision problems under stochastic volatility,
and solve the problem of hedging European options in particular. A numerical method proposed in (Corsi, Pham, and
Runggaldier 2007) solves the same problem through quantization of the observation and filtering processes, i.e., the price
and the conditional density processes. The quantization of the conditional density still results in a relatively large dimension,
compared to our density projection approach.

The rest of the paper is organized as follows. Section 2 sets up the general problem formulation of financial decision
problems under stochastic volatility. Section 3 presents a numerical method for solving such problems. Section 4 applies
the method to the hedging of European options under the quadratic risk and shortfall risk criteria, discusses the implication
of the numerical results, and compares with other numerical methods. Section 5 concludes the paper.
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2 FINANCIAL DECISION PROBLEMS UNDER STOCHASTIC VOLATILITY

2.1 Financial Example

For simplicity, we consider that an investor invests in a riskless asset with constant interest rate r and a risky asset whose
price per share at time t is St . Suppose St is a geometric Brownian motion that satisfies the following stochastic differential
equation (SDE):

dSt = rStdt +XtStdWt , (1)

where Xt is the (unobserved) volatility of the asset, and Wt is a Wiener process. The volatility Xt follows a mean-reverting
process:

dXt = λ (x0−Xt)dt +ηdZt , (2)

where the rate of reversion λ , mean reversion value x0, and η are constant known parameters, and Zt is a Wiener process
that is independent of Wt .

Investment decisions take place at discrete times t0, t1, . . . , tT , simply denoted by 0,1, . . . ,T in the following. Each time
period lasts ε = tk+1− tk. Under the assumption that no additional capital is added (self-financing assumption), the investor
observes the risky asset price Sk at time k, then decides the number of shares ak invested in the risky asset, and the remainder
of the capital is invested in the riskless asset. According to the analytical solution to (1), Sk evolves as

Sk+1 = Sk exp

[
(r−

X2
k+1

2
)ε +Xk

√
εWk

]
,

where Wk is an i.i.d. sequence of standard Gaussian random variables. Let Yk = lnSk, often referred to as the log-price. Then

Yk+1 = Yk +(r−
X2

k+1

2
)ε +Xk

√
εWk. (3)

The volatility process (2) can be discretized in time using the Euler’s method (Milstein 1995), yielding

Xk+1 = Xk +λ (x0−Xk)ε +η
√

εZk,

where Zk is an i.i.d. sequence of standard Gaussian random variables that are independent of Wk. Euler’s method is the
simplest discretization scheme, and is used here for simplicity. To achieve better approximation, we can use other higher
order approximation methods in (Milstein 1995). The mean-reverting process (2) is an Ornstein-Uhlenbeck process that has
an analytical solution, and hence can be discretized more precisely as

Xk+1 = Xke−λε + x0(1− e−λε)+ηe−λε
√

εZk.

An investment strategy is denoted by π = {ρ1, . . . ,ρT}, where each ρk is a function that maps the price history
Y0:k , {Y0, . . . ,Yk} to an action ak, i.e., the action ak is selected based on the past observations of the risky asset price. Under
the assumption of self-financing investment strategies, the wealth process evolves as

Vk+1 = (Vk−akSk)erε +ak(Sk+1−Sk)
= Vkerε +ρk(Y0:k)(eYk+1 − eYk+rε). (4)

Let Π denote the set of all admissible investment strategies. In hedging, given a loss function l : R→R, the hedging criterion
for a derivative asset h(YT ) at maturity time T , is to minimize the expected loss over all admissible investment strategies:

min
π∈Π

E [l(h(YT )−VT )] .
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In portfolio optimization, given a utility function u : R→R, the goal is to maximize the expected utility over all admissible
investment strategies:

max
π∈Π

E [u(VT )] .

2.2 Stochastic Control under Partial Observation

Hedging and portfolio optimization can be cast as stochastic control problems under partial observation as follows:

min
π∈Π

J(x,v) = E [g(YT ,VT )|X0 = x,V0 = v] , (5)

s. t. Xk+1 = F(Xk,Zk), (6)
Yk+1 = H(Xk+1,Xk,Yk,Wk), (7)
Vk+1 = G(Vk,Yk+1,Yk,ρk(Y0:k)), (8)

where functions g, F , H, and G are of suitable forms, X is the unobserved state, Y is the observation of X , V is the fully
observed state, and ρ is the control. An optimal investment strategy, denoted by π∗, is an admissible investment strategy
that achieves the minimum of (5). Please note that the above problem does not restrict Wk and Zk to be Gaussian. Therefore,
the numerical method we develop in the following applies to problems with any randomly distributed Wk and Zk, as long as
their distributions can be sampled.

Since Xk is unobserved, it needs to be estimated based on all the information available at time k, which includes the
observation history Y0:k, the action history a0:k−1 = {a0, . . . ,ak−1}, and the fully observed state history V0:k = {V0, . . . ,Vk}.
With a little inspection, it is easy to see that for a fixed initial condition V0 = v, ak−1 and Vk are both measurable with respect
to Y0:k. Hence, it is sufficient to use only Y0:k in the estimation of Xk. Define Bk as the conditional probability density of
the Xk given Y0:k,

Bk(x) , p(Xk = x|Y0:k).

Since Bk is a sufficient statistic of Y0:k, an investment strategy at time k, i.e., ρk, should be a function that maps Bk to an
action ak. Therefore, at each time k, the investor observes Yk, estimates Bk, decides an action ak = ρk(Bk), and then reaches
the wealth state Vk+1 at the next time k +1.

3 NUMERICAL METHOD

3.1 Full Observation

In fact, by treating Bk as a state to replace the unobserved state Xk, the problem under partial observation (Q) can be
transformed to an equivalent problem under full observation. The state Bk is observable, because it can be computed
recursively via Bayes’ rule using observed quantities:

Bk+1(x|Y0:k+1) =
∫

p(Xk+1 = x,Xk|Y0:k,Yk+1)dXk

=
1

p(Yk+1|Y0:k)

∫
p(Yk+1|Xk+1 = x,Xk,Y0:k)p(Xk+1 = x,Xk|Y0:k)dXk

∝

∫
p(Yk+1|Xk+1 = x,Xk,Yk)p(Xk+1 = x|Xk,Y0:k)p(Xk|Y0:k)dXk

=
∫

p(Yk+1|Xk+1 = x,Xk,Yk)p(Xk+1 = x|Xk)Bk(Xk|Y0:k)dXk, (9)

where p(Yk+1|Xk+1,Xk,Yk) is induced by (7), and p(Xk+1|Xk) is induced by (6). The righthand side of (9) is a function of
Bk, Yk and Yk+1. Hence, the evolution of Bk can be written as

Bk+1 = Ψ(Bk,Yk,Yk+1). (10)
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Replacing Xk and (6) with Bk and (10), the resultant stochastic control problem is fully observable, and (Bk,Yk,Vk) can
be all viewed as states. Therefore, in principle we can apply dynamic programming to solve this problem:

JT (b,y,v) = g(y,v),
Jk(b,y,v) = min

a∈A
E [Jk+1(Bk+1,Yk+1,G(v,Yk+1,y,a))|Bk = b,Yk = y], k = 0, . . . ,T −1.

However, Bk is a continuous density, and hence is infinite dimensional in general. The above dynamic programming cannot
be implemented in practice unless we can approximate Bk by some finite (preferably low) dimensional density. One naive
way is to approximate Bk by a probability mass function (p.m.f.) supported on discretized points of Xk. This usually results in
a very high dimension in order to achieve sufficient accuracy. An improvement is to adaptively change the support points in
a certain way so that they concentrate on the area where Bk has most probability mass. To further reduce the dimensionality,
we can use moments of the approximate p.m.f. to represent Bk. These intuitive ideas will be exploited and made rigorous
in the following, through the idea of density projection with sequential Monte Carlo simulation.

3.2 Dimension Reduction

The idea of density projection provides an effective way for dimension reduction by orthogonally projecting an arbitrary
density onto a parameterized family of densities. Hence, the density can be approximately represented by only a small
number of parameters. The orthogonal projection is done through minimizing the Kullback-Leibler (KL) divergence of a
density B from a parameterized family Ω, as follows:

Pro jΩ(B) , argmin
f∈Ω

DKL(B‖ f ), (11)

where the KL divergence between B and f is defined as

DKL(B‖ f ) ,
∫

f (x) ln
B(x)
f (x)

dx.

For an exponential family of densities, defined as

Ω = { f (·,θ),θ ∈Θ| f (x,θ) = exp [θ T c(x)−ϕ(θ)]},

where ϕ(θ) = ln
∫

exp(θ T c(x))dx, θ = [θ1, . . . ,θm], and c(x) = [c1(x), . . . ,cm(x)]. The minimization in (11) can be carried
out analytically to yield the following equation related B with its projection f (·,θ) (see (Zhou, Fu, and Marcus 2008) for a
detailed derivation):

Eθ [c(X)] = EB [c(X)] , (12)

where EB and Eθ denote the expectations with respect to B and f (·,θ), respectively. Suppose B is a p.m.f., written as

B(x) =
N

∑
i=1

αiδ (x− xi),

where {x1, . . . ,xN} are the support points, {α1, . . . ,αN} are the associated probabilities satisfying ∑
N
i=1 αi = 1 and nonnegativity,

and δ (·) is a Kronecker delta function. Then (12) is reduced to

Eθ [c(X)] =
N

∑
i=1

αic(xi).

By projecting Bk to get its approximation f (·,θk), the resultant stochastic control problem is finite dimensional, with
states (θ ,Y,V ).
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3.3 Simulated Dynamic Programming

The states (θ ,Y,V ) are continuous, so we first discretize (θ ,Y,V ): a set of M grid points on (θ ,Y ), denoted by Γ; and a
set of MV grid points on V , denoted by ΓV . Then we estimate the transition probabilities between the grid points in Γ,
and then apply dynamic programming on the discrete mesh Γ×ΓV . Algorithm 1 estimates the transition probability from
a grid point (θ ,y)i ∈ Γ to a grid point (θ ,y) j ∈ Γ, denoted as P(i, j). It is based on the sequential Monte Carlo method
(Cappé, Godsill, and Moulines 2007) and the density projection described above. In particular, the steps of “sampling state”,
“propagation”, and “Bayes’ updating” use Monte Carlo simulation to approximate the evolution of Bk (see (9)), and yield a
p.m.f. to approximate Bk; the step of “density projection” projects the p.m.f. to a specified exponential family; and the step
of “sampling observation” simulates (7) for Yk.

Algorithm 1 Estimation of transition probabilities

• Input: grid point (θ ,y)i = (θ i,yi), number of particles N; Output: transition probabilities P(i, j), j = 1, . . . ,M.
• Sampling state: Sample {x1, . . . ,xN} from f (·,θ i).
• Propagation: Compute {x̃1, . . . , x̃N} according to x̃n = F(xn,zn) using {z1, . . . ,zN} drawn from the distribution of Z.
• Sampling observation: Compute {y1, . . . ,yN} according to yn = H(x̃n,xn,yi,wn) using {w1, . . . ,wN} drawn from the

distribution of W.
• Bayes’ updating: For a fixed observation ym, calculate the probability αm

n associated with each xn according to
αm

n ∝ p(ym|x̃n,xn,yi),n = 1, . . . ,N and normalize. Do it for every m = 1, . . . ,N.
• Density projection: Project the p.m.f. ∑

N
n=1 αm

n δ (x− xn) onto the exponential family Θ, i.e., to compute θm according
to Eθm(c) = ∑

N
n=1 αm

n c(xn). Do it for every m = 1, . . . ,N.
• Estimation: For m = 1, . . . ,N, find the nearest-neighbor of each (θm,ym) in the set of grids, and count the frequency

of each grid point. P(i, j) = number of occurrences of the grid (θ j,y j)/M, j = 1, . . . ,M.

Algorithm 2 applies dynamic programming on the discrete mesh of Γ×ΓV using the estimated transition probabilities.
Algorithm 2 Dynamic Programming

• Input: [P(i, j)](i, j); Output: J0(θ ,y,v),∀(θ ,y,v) ∈ Γ×ΓV , ρ0, . . . ,ρT−1.
• Initialization: JT (θ ,y,v) = g(y,v),∀(θ ,y,v) ∈ Γ×ΓV . Set k = T −1.
• Iteration: Compute Jk(θ ,y,v) and find ρk according to

Jk(θ ,y,v) = min
a∈A

M

∑
j=1

P(i, j)Jk+1
(
(θ ,y) j,ProjΓV G(v,y j,y,a)

)
, ∀(θ ,y,v) ∈ Γ×Γ

V

where i is the index of (θ ,y) in Γ, and ProjΓV (·) means to find the nearest-neighbor grid on ΓV .
• Stopping: If k = 0, stop; else, set k := k−1 and go to the iteration step.

4 EXAMPLES: HEDGING OF EUROPEAN OPTIONS

In this section, we apply the numerical methods stated in section 3 to hedging of European call and put options. Each will
be hedged under the quadratic and shortfall cost criteria respectively, with the the risky asset price process (1) and volatility
process (2). More specifically, the objective function for a put option under the quadratic risk criterion is

min
π∈Π

J(b,y,v) = E
[(

(K− eYT )+−VT
)2 |B0 = b,Y0 = y,V0 = v

]
,

for a call option under the quadratic risk criterion is

min
π∈Π

J(b,y,v) = E
[(

(eYT −K)+−VT
)2 |B0 = b,Y0 = y,V0 = v

]
,
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for a put option under the shortfall risk criterion is

min
π∈Π

J(b,y,v) = E
[(

(K− eYT )+−VT
)+ |B0 = b,Y0 = y,V0 = v

]
,

and for a call option under the shortfall risk criterion is

min
π∈Π

J(b,y,v) = E
[(

(eYT −K)+−VT
)+ |B0 = b,Y0 = y,V0 = v

]
,

where K is the strike price at maturity time T , and (·)+ = max(·,0).

4.1 Implementation

We project Bk to the Gaussian family, representing its density function via its mean µk and standard deviation σk, i.e.
θk = (µk,σk). Recall that Yk is the log-price of the risky asset at time k. We choose an equally-spaced M grid points for
(µ,σ ,Y ), and an equally-spaced MV grid points for V . Using Algorithm 2, we obtain an estimated transition probability
matrix [P(i, j)](i, j). By plugging it into Algorithm 2, we solve an optimal hedging policy. In the case of quadratic put option,
we can write the JT (θ ,y,v) and G(v,y j,y,a) in Algorithm 2 as:

JT (θ ,y,v) = ((K− ey
T )+− v)2

G(v,y j,y,a) = verε +a(ey j − ey+rε).

The above expressions for quadratic call option, shortfall call option, and shortfall put option can be written similarly.

4.2 Simulation Setup

We ran simulations on four hedging problems (e.g quadratic-call, quadratic-put, shortfall-call and shortfall-put) with the
following parameters:

1. Strike price of the European Put/Call option: K = 110;
2. Riskless interest rate: r = 0.05;
3. Volatility: x0 = 0.15, λ = 0.1, η = 0.1;
4. Number of periods: T = 5, time between periods: ε = 0.2;
5. Initial state: µ0 = 0.1, σ0 = 0.6, Y0 = ln110 = 4.7;
6. Number of particles in Algorithm 1: N = 88;
7. Discretization: M = 396 on (µ,σ) ∈ [0.1,0.2]× [0,1], MV = 100 or 300 on V ∈ [−10,40].

The model parameters (K, r, x0, λ , η , T ε , Y0) are the same as in (Corsi, Pham, and Runggaldier 2007) for comparisons
that we will discuss later.

4.3 Numerical Results

For each of the four risk-option combinations, we solve for a hedging policy, and plot its initial value function J0 (i.e., the
final risk of the hedging policy) and initial action a0 (i.e., the number of shares held on the risky asset at time 0) against
the initial wealth V0. Figures 1-16 present these results.

4.4 Analysis of the Results: Quadratic Risk

We will first briefly describe the form of the optimal hedging strategy, a tuple of (V0,{ρk}{0≤k≤T−1}), where V0 is the initial
wealth/captital, and {ρk}{0≤k≤T−1} is the investment strategy. Next, we verify our simulation method by comparing the
simulated relationship between initial wealth V0 and initial action a0 with their theoretical relationship. Finally, we will
compare prices implied by our optimal hedging strategy against the arbitrage-free prices.
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Figure 1: Put Quadratic Value Function (MV =100) Figure 2: Put Quadratic Initial Action (MV =100)

Figure 3: Call Quadratic Value Function (MV =100) Figure 4: Call Quadratic Initial Action (MV =100)

The theoretical analysis starts with recognizing the price process Sk is a semimartingale, and transforming it into a
martingale by considering the discounted price process S̃k = Ske−rkε . Applying the Kunita-Watanabe decomposition to the
discounted option payoff h̃ = ∑

T
k=0 hke−rkε gives

h̃ = h̃0 +
T−1

∑
k=0

ρ
h̃
k ∆S̃k +Lh̃

T (13)

where h̃0 = E[h̃|S̃0], ρ h̃
k is a process adapted to the filtration generated by the discounted price process S̃k, ∆S̃k = S̃k+1− S̃k,

Lh̃
T is orthogonal to ∑

T−1
k=0 ah̃

k∆S̃k. If we choose to optimize over only the self-financing policies, the discounted wealth process
is written as:

ṼT = Ṽ0 +
T−1

∑
k=0

ρk∆S̃k (14)

Comparing (13) with (14), it can be derived that the optimal strategy is:

ρ
∗
k = ρ

h̃
k , Ṽ ∗0 = h̃0, (15)
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Figure 5: Put Quadratic Value Function (MV =300) Figure 6: Put Quadratic Action Function (MV =300)

Figure 7: Call Quadratic Value Function (MV =300) Figure 8: Call Quadratic Initial Action (MV =300)

and the minimum risk achievable is Var(Lh̃
T ). For a more detailed treatment of this topic, please refer to (Heath, Platen, and

Schweizer 1998).
While (15) gives the optimal tuple (V ∗0 ,{ρ∗k }{0≤k≤T−1}), we are also interested in the optimal number of shares to invest

in the risky asset given an initial wealth and price. Looking at Figures 2, 4, 6, and 8, we observe that a0 appears to be an
affine function of V0, for a fixed Y0. Indeed, it agrees with Theorem 5.1 from (Gourieroux, Laurent, and Pham 1998), which
at time 0 can be written as

a∗0(V0) = τ1V0 + τ2.

where a∗0(V0) is the optimal initial action for a given initial wealth V0, and τ1 and τ2 are constants. While Theorem 5.1
from (Gourieroux, Laurent, and Pham 1998) gives the structure of the solution, the values of τ1 and τ2 are not directly
computable. However, doing linear regressions on our numerical results (as shown by the lines in Figures 2, 4, 6, and 8),
we get estimates for τ1 as shown in Table 1. Interpreting initial wealth as the amount the seller receives from writing the
option, the seller allocates a constant proportion, τ1, of it to the risky asset. We can think of this constant as the seller’s
relative risk exposure with respect to his initial wealth. A similar argument can be made for the European call case.

When an option is attainable in the sense that it can be written as (13) with Lh̃
T = 0, then h̃0 is its arbitrage-free price.

If both the call and put options are attainable, then the following put-call parity (Hull 2002) should be satisfied:

C0 = P0 +S0 +Ke−rT (16)
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where C0 and P0 are arbitrage-free prices for European call and put options, respectively. However, if the option is not
attainable, the smaller the difference from the arbitrage-free price, the better the option price. Our simulated option prices
for the put and call options are the initial wealth corresponding the the minimum risk on Figures 1, 3, 5, and 7. By plugging
our simulated call price into (16), we compute the corresponding arbitrage-free put price, to compare with our simulated
put price, as all shown in Table 2. We observe the differences between the arbitrage-free put prices and the simulated
counterparts become smaller with an increasing MV . We compare our results with other numerical results such as (Corsi,
Pham, and Runggaldier 2007), and find them to be comparable.

In Table 3, we compare our minimum quadratic risk against the numerical results in (Corsi, Pham, and Runggaldier
2007), and find ours to be an improvement.

Table 1: Slope of Initial Action vs. Initial Wealth with Quadratic Cost

MV = 100 MV = 300
Option Simulated Simulated

Call 0.0462 0.0465
Put 0.0532 0.0557

Table 2: Compare Arbitrage-Free Price with Simulated Price

MV = 100 MV = 300
Option Loss Function Arbitrage-Free♦ Simulated Diff Arbitrage-Free♦ Simulated Diff

Put Quadratic - 1.6162 - - 1.7057 -
Call Quadratic 6.9810 7.1717 0.1907 7.0705 6.8896 0.1809
Put Shortfall - 3.1313 - - 3.0435 -
Call Shortfall 8.4961 9.1919 0.6958 8.4083 8.2274 0.1809

♦: obtained using (16)

Table 3: Minium Quadratic Value/Risk

MV = 400 MV = 300
Option (Corsi,Pham,andRunggaldier2007)♦ Ours

Put ∼ 7.7 2.9248
Call ∼ 8.0 2.9199

♦: the number is interpreted from graphs in (Corsi, Pham, and Runggaldier 2007)

4.5 Analysis of the Results: Shortfall Risk

Under the shortfall risk criterion, our simulation results (Figures 9, 11, 13, and 15) show that a larger initial capital/wealth
helps to reduce the risk of hedging until it reaches a threshold after which the risk stays at zero. Compared with the
quadratic-risk induced option price, the shortfall-risk induced option price is always higher. These two observations are due
to the fact that the shortfall risk function only penalizes losses, whereas quadratic hedging that penalizes both losses and
gains.

4.6 Simulation Efficiency

We benchmark our results against the results obtained by (Corsi, Pham, and Runggaldier 2007). It has no analysis or data
on the computation time; however, we can approximate the computational effort by the the number of grid points. Table
3 displays the comparison between their optimal values and ours. While their grid size is 1500×400 = 600,000, we only
use 396×300 = 118,800 points. Our simulation obtains comparable results in terms of put-call parity and better results in
terms of minimum value, with grid size less than one fifth of theirs.
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Figure 9: Put Shortfall Value Function (MV =100) Figure 10: Put Shortfall Initial Action (MV =100)

Figure 11: Call Shortfall Value Function (MV =100) Figure 12: Call Shortfall Initial Action (MV =100)

5 CONCLUSIONS

We have formulated several financial decision problems under stochastic volatility in the framework of a stochastic control
problem under partial observation, for which we have developed an efficient numerical method. We have applied our method
to the hedging of European options under quadratic risk and shortfall risk criteria, discussed the implications of the results,
and compared our results with other analytical and numerical results. We believe the method presented in this paper has
wide applications in financial engineering.
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