
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

PERFORMANCE LIMITATIONS OF BLOCK–MULTITHREADED
DISTRIBUTED–MEMORY SYSTEMS

W.M. Zuberek

Department of Computer Science and Department of Applied Informatics
Memorial University University of Life Sciences

St.John’s, Canada A1B 3X5 02-787 Warsaw, Poland

ABSTRACT

The performance of modern computer systems is increasingly often limited by long latencies of accesses to the memory
subsystems. Instruction–level multithreading is an architectural approach to tolerating such long latencies by switching
instruction threads rather than waiting for the completion of memory operations. The paper studies performance limitations
in distributed–memory block multithreaded systems and determines conditions for such systems to be balanced. Event–
driven simulation of a timed Petri net model of a simple distributed–memory system confirms the derived performance
results.

1 INTRODUCTION

In modern computer systems, the performance of memory is increasingly often becoming the factor limiting the performance
of the system. Due to continuous progress in manufacturing technologies, until recent years the performance of processors
has been doubling every 18 months (the so–called Moore’s law (Hamilton 1999)). However, the performance of memory
chips has been improving by only 10% per year (Rixner et al. 2000), creating a “performance gap” in matching processor’s
performance with the required memory bandwidth. Detailed studies have shown that the number of processor cycles required
to access main memory has been doubling approximately every six years (Sinharoy 1997). In effect, it is becoming more
and more often the case that the performance of applications depends on the performance of machine’s memory hierarchy
and it is not unusual that as much as 60% of processor’s time is spent on waiting for the completion of memory operations
(Sinharoy 1997).

Memory hierarchies, and in particular multi–level cache memories, have been introduced to reduce the effective latency
of memory accesses. Cache memories provide efficient access to information when the information is available at lower
levels of memory hierarchy; occasionally, however, long–latency memory operations are needed to transfer the information
from the higher levels of memory hierarchy to the lower ones. Extensive research has focused on reducing and tolerating
these large memory access latencies. Techniques for reducing the frequency and impact of cache misses include hardware
and software prefetching (Chen and Bauer 1994, Klaiber and Levy 1991), speculative loads and execution (Rogers at al.
1992) and multithreading (Agarwal 1992; Byrd and Holliday 1995; Ungerer et al. 2003, Chaudhry et al. 2005, Emer et al.
2007).

Instruction–level multithreading, and in particular block–multithreading (Agarwal 1992; Boothe and Ranada 1992; Byrd
and Holliday 1995), tolerates long–latency memory accesses and synchronization delays by switching the threads rather than
waiting for the completion of a long–latency operation which can require hundreds or even thousands of processor cycles
(Emer at al. 2007). It is believed that the return on multithreading is among the highest in computer microarchitectural
techniques (Chaudhry at al. 2005).

In distributed–memory systems, the latency of memory accesses is even more pronounced than in centralized-memory
systems because memory access requests need to be forwarded through several intermediate nodes before they reach their
destinations, and then the results need to be sent back to the original nodes. Each of the “hops” introduces some delay,
typically assigned to the switches that control the traffic between the nodes of the interconnecting network (Govindarajan at
al. 1995).

899978-1-4244-5771-7/09/$26.00 ©2009 IEEE

Zuberek

The mismatch of performance among different components of a computer system significantly impacts the overall per-
formance. If different components of a system are utilized at significantly different levels, the component which is utilized
most intensively will first reach its limit (i.e., utilization close to 100%), and will restrict the utilization of all other elements
as well as the performance of the whole system; such an element is called a bottleneck. A system which contains a bottleneck
is unbalanced. In balanced systems, the utilizations of all components are (approximately) equal, so the performance of the
system is maximized because all system components reach their performance limits at the same time.

The purpose of this paper is to study performance limitations in distributed–memory block multithreaded systems by
comparing service demands for different components of the system. The derived results are confirmed by event–driven
simulation of a timed Petri net instruction–level model of the analyzed system.

A distributed memory system with 16 processors connected by a 2–dimensional torus–like network is used as a running
example in this paper; an outline of such a system is shown in Figure 1.

Figure 1: Outline of a 16–processor system

It is assumed that all messages are routed along the shortest paths. It is also assumed that this routing is done in a
nondeterministic way, i.e., if there are several shortest paths between two nodes, each of them is equally likely to be used.
The average length of the shortest path between two nodes, or the average number of hops (from one node to another) that
a message must perform to reach its destination, is usually determined assuming that the memory accesses are uniformly
distributed over the nodes of the system (non-uniform distribution of memory accesses, representing a sort of spacial locality
of memory accesses, can be taken into account by adjusting the average number of hops).

Although many specific details refer to this 16–processor system, most of them can easily be adjusted to other systems
by changing the values of a few model parameters.

Each node in the network shown in Figure 1 is a block multithreaded processor which contains a processor, local memory,
and two network interfaces, as shown in Figure 2. The outbound interface (or switch) handles outgoing traffic, i.e., requests
to remote memories originating at this node as well as results of remote accesses to the memory at this node; the inbound
interface handles incoming traffic, i.e., results of remote requests that “return” to this node and remote requests to access
memory at this node.

ProcessorReady
Queue

Interconnecting
Network

Memory
Queue Memory

Outbound
Interface

Inbound
Interface

Figure 2: Outline of a single multithreaded processor

Figure 2 also shows a queue of ready threads; whenever the processor performs a context switching (i.e., switches from

900

Zuberek

one thread to another), a thread from this queue is selected for execution and the execution continues until another context
switching is performed. In block multithreading, context switching is performed for all long–latency memory accesses by
‘suspending’ the current thread, forwarding the memory access request to the relevant memory module (local, or remote
using the interconnecting network) and selecting another thread for execution. When the result of this request is received,
the status of the thread changes from ‘suspended’ to ‘ready’, and the thread joins the queue of ready threads, waiting for
another execution phase on the processor.

The average number of instructions executed between context switching is called the runlength of a thread,
�
t , which is

one of main modeling parameters. It is directly related to the probability that an instruction requests a long–latency memory
operation.

Another important modeling parameter is the probability of long–latency accesses to local, p � , (or remote, pr � 1 � p �)
memory (in Figure 2 it corresponds to the “decision point” between the Processor and the Memory Queue); as the value of
p � decreases (or pr increases), the effects of communication overhead and congestion in the interconnecting network (and
its switches) become more pronounced; for p � close to 1, the nodes can be practically considered in isolation.

The (average) number of available threads, nt , is yet another basic modeling parameter. For very small values of nt ,
queueing effects can be practically neglected, so the performance can be predicted by taking into account only the delays of
system’s components. On the other hand, for large values of nt , the system can be considered in saturation, which means
that one of its components will be utilized in almost 100 %, limiting the utilization of other components as well as the whole
system. Identification of such limiting components and improving their performance is the key to the improved performance
of the entire system (Jain 1991).

2 TIMED PETRI NET MODEL

Petri nets have become a popular formalism for modeling systems that exhibit parallel and concurrent activities (Reisig
1985, Murata 1989). In timed nets (Zuberek 1991, Wang 1998), deterministic or stochastic (exponentially distributed) firing
times are associated with transitions, and transition firings are timed events, i.e., tokens are removed from input places at the
beginning of the firing period, and they are deposited to the output places at the end of this period.

A timed Petri net model of a multithreaded processor at the level of instructions execution is shown in Figure 3. As usual,
timed transitions are represented by “thick” bars, and immediate ones by “thin” bars.

The execution of each instruction of the ‘running’ thread is modeled by transition Trun, a timed transition with the firing
time representing one processor cycle. Place Proc represents the (available) processor (if marked) and place Ready – the
queue of threads waiting for execution. The initial marking of Ready represents the (average) number of available threads,
nt .

If the processor is available (i.e., Proc is marked) and Ready is not empty, a thread is selected for execution by firing the
immediate transition Tsel. Execution of consecutive instructions of the selected thread is performed in the loop Pnxt, Trun,
Pend and Tnxt. Pend is a free–choice place with the choice probabilities determined by the runlength,

�
t , of the thread. In

general, the free–choice probability assigned to Tnxt is equal to � �
t � 1 � � �

t , so if
�
t is equal to 10, the probability of Tnxt is

0.9; if
�
t is equal to 5, this probability is 0.8, and so on. The free–choice probability of Tend is just 1 � �

t .
If Tend is chosen for firing rather than Tnxt, the execution of the thread ends, a request for a long–latency access to

(local or remote) memory is placed inMem, and a token is also deposited in Pcsw. The timed transition Tcsw represents the
context switching and is associated with the time required for the switching to a new thread, tcs. When its firing is finished,
another thread is selected for execution (if it is available).
Mem is a free–choice place, with a random choice of either accessing local memory (Tloc) or remote memory (Trem);

in the first case, the request is directed to Lmem where it waits for availability of Memory, and after accessing the memory
(Tlmem), the thread returns to the queue of waiting threads, Ready. Memory is a shared place with two conflicting transitions,
Trmem (for remote accesses) and Tlmem (for local accesses); the resolution of this conflict (if both requests are waiting) is
based on marking–dependent (relative) frequencies determined by the numbers of tokens in Lmem and Rmem, respectively.

The free–choice probability of Trem, pr, is the probability of long–latency accesses to remote memory; the free–choice
probability of T loc is p � � 1 � pr.

Requests for remote accesses are directed to Rem, and then, after a sequential delay (the outbound switch modeled by
Sout and Tsout), forwarded to Out, where a random selection is made of one of the four (in this case) adjacent nodes (all
nodes are selected with equal probabilities). Similarly, the incoming traffic is collected from all neighboring nodes in Inp,
and, after a sequential delay (the inbound switch Sinp and Tsinp), forwarded to Dec. Dec is a free–choice place with three

901

Zuberek

Inp

Ready

Trun Lmem

Trmem
Tlmem

Rmem

Tloc

Trem

Proc

Memory

Sout
Tsout

Dec

Sinp
Tsinp

Tgo

Mem

to Inp

to Inp

to Inp

to Inp

Tret

Tsel Tend

Tnxt

Pnxt Pend

Out

Rem

Tcsw Pcsw

from Out

from Out

from Out

from Out

Tmem

Figure 3: Instruction–level Petri net model of a block multithreaded processor

transitions sharing it: Tret, which represents the satisfied requests reaching their “home” nodes; Tgo, which represents
requests as well as responses forwarded to another node (another ‘hop’ in the interconnecting network); and Tmem, which
represents remote requests accessing the memory at the destination node; these remote requests are queued in Rmem and
served by Trmem when the memory moduleMemory becomes available. The free–choice probabilities associated with Tret,
Tgo and Tmem characterize the interconnecting network (Govindarajan 1997). For a 16–processor system (as in Figure 1),
and for memory accesses uniformly distributed among the nodes of the system, the free–choice probabilities of Tmem and
Tgo are 0.5 for forward moving requests, and 0.5 for Tret and Tgo for returning requests.

The traffic outgoing from a node (placeOut) is composed of requests and responses forwarded to another node (transition
Tgo), responses to requests from other nodes (transition Trmem) and remote memory requests originating in this node
(transition Trem).

It can be observed that the remote memory access requests do not guarantee that the results of memory accesses return
to the requesting (’home’) nodes. Although a more detailed model representing the routing of messages can be developed
using colored Petri nets (Zuberek at al. 1998), such a more detailed model provides results which are insignificantly different
from a simpler model, discussed in this section. Consequently, only this simpler model is used in performance analysis that
follows.

3 PERFORMANCE ANALYSIS

The parameters which characterize the model of the block multithreaded distributed–memory system include:

902

Zuberek

np – the number of processors,
nt – the number of threads,�
t – the thread runlength,
tp – the processor cycle time,
tm – the memory cycle time,
ts – the switch delay,
nh – the average number of hops,
p � – the probability to access local memory,
pr – the probability to access remote memory, pr � 1 � p � .

For performance analysis, it is convenient to represent all timing information in relative rather than absolute units, and
the processor cycle, tp, has been assumed as the unit of time. Consequently, all temporal data are expressed in processor
cycles; e.g., tm � 10 means that the memory cycle time (tm) is equal to 10 processor cycles, ts � 5 means that the switch
delay (ts) is equal to 5 processor cycles.

For a single cycle of state changes of a thread (i.e., a thread going through the phases of execution, suspension, and then
waiting for another execution), the service demand at the processor is simply the thread runlength,

�
t .

The service demand at the memory subsystem has two components, one due to local memory requests and the other due
to requests coming from remote processors. The component due to local requests is the product of the visit rate (which is
the probability of local accesses), p � , and memory cycle, tm. Likewise, the component due to remote accesses is pr � tm; this
expression is obtained by taking into account that for each node the requests are coming from � N � 1 � remote processors,
and that remote memory requests are uniformly distributed over � N � 1 � processors, so the service demand due to remote
requests is pr � tm.

The service demand due to a single thread (in each processor) at the inbound switch is obtained as follows. The visit rate
to an inbound switch due to a single processor is the product of probability of remote accesses, pr, average number of hops
(in both directions), 2 � nh, and the switch delay, ts. Remote memory requests from all N processors are distributed across
the N inbound switches in the multiprocessor system. Hence, the service demand due to a single thread in an inbound switch
is 2 � pr � nh � ts. For the outbound switch, the service demand is dso � 2 � ts � pr; the number of hops, nh, does not affect
dso since each remote request and its response go through the outbound switch once at the source and once at the destination
processor (this also explains the factor 2 in the above formula).

The service demands are thus:

dp =
�
t ;

dm = p � � tm � pr � tm � tm;
dsi = 2 � pr � nh � ts;
dso = 2 � pr � ts �

A balanced system is usually defined as a system in which the service demands for all components are equal (Jain 1991).
So, in a balanced system,

�
t � tm � 2 � pr � nh � ts (since dso is always smaller than dsi for nh � 1, the output switch cannot

become the system’s bottleneck and is therefore disregarded in balancing the system; in the discussed system this switch is
simply “underutilized”).

Figure 4 shows the utilization of the processors, in a 16–processor system, as a function of the number of available
threads, nt , and the probability of long–latency accesses to local memory, p � , for fixed values of other parameters.

Since for a 16–processor system nh � 2 (Zuberek 2000), so for ts � 10 the balance is obtained for pr � 0 � 25 (or p � � 0 � 75),
which is very clearly demonstrated in Figure 4 as the “edge” of the high utilization region. Figure 5 shows the utilization
of the processor and the switch as functions of pr, the probability of accessing remote memory (the processor utilization
plot corresponds to the crossection of Figure 4 at nt � 10). It can be observed that the only region of high utilization of the
processor is when the switch is utilized less that 100% (and then it is not the bottleneck). The balance corresponds to the
intersection point of the two plots.

If the information is uniformly distributed among the nodes of the distributed–memory system, the value of pr � � np �
1 � � np, so the utilization of processors is rather low in this case (close to 0.3 in Figure 4). This indicates that the switches are
simply too slow for this system.

There are two basic ways to reduce the limiting effects of the switches; one is to use switches with smaller switch delay
(for example, ts � 5), and the other is to use parallel switches and to distribute the workload among them. It appears that

903

Zuberek

both solutions produce very similar results (Zuberek 2002) because what counts in the case of heavily used components is
the throughput rather than the switch delay.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (16 proc)

prob to access local mem

pr
oc

es
so

r
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Figure 4: Processor utilization – 16 processor system;
tcs � 1,

�
t � 10, tm � 10, ts � 10

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Pr
oc

es
so

r/s
w

itc
h

ut
ili

za
tio

n

Probability of accessing remote memory

(p)

(s)

Figure 5: Utilization of processors (p) and switches (s) – 16 processor system;
tcs � 1,

�
t � 10, tm � 10, ts � 10, nt � 10

Figure 6 shows the utilization of the processors in the same 16–processor system when the switch delay is reduced to 5
processor cycles.

It can be observed that the region of high utilization of the processors is significantly extended, but there is still the
limiting effect of the switches for pr close to 1 (or p � close to 0). Figure 7 shows the balance for the case of ts � 5 and
nt � 10 in greater detail.

The balance is now obtained for pr � 0
�

5, which is still quite distant from the values corresponding to the uniform
distribution of accesses among the nodes of the system.

A reorganization of the information in the distributed memory may be possible to make as much information needed for
processing local as possible. If such a reorganization can reduce the probability pr from almost 1 to say 0.5, the balance
could be obtained without further hardware improvements.

904

Zuberek

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r
ut

ili
za

tio
n

Switch delay: 5 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Figure 6: Processor utilization – 16 processor system;
tcs � 1,

�
t � 10, tm � 10, ts � 5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Pr
oc

es
so

r/s
w

itc
h

ut
ili

za
tio

n

Probability of accessing remote memory

(p)

(s)

Figure 7: Utilization of processors (p) and switches (s) – 16 processor system;
tcs � 1,

�
t � 10, tm � 10, ts � 5, nt � 10

4 CONCLUDING REMARKS

The paper presents a timed Petri net model of block multiprocessor system at the instruction execution level, and analyzes
the effects of system bottlenecks on the performance of system components. System bottlenecks are identified by analyzing
service demands for the components of the system. Removing the bottlenecks (or balancing the system) can significantly im-
prove its performance; reducing the delay of switches in the original system practically doubles the utilization of processors
in the critical region of small values of p � (Figures 4 and 6).

Balancing the system by improving performance characteristics of its components may sometimes be difficult because
the components with improved characteristics may not be available. There is, however, an alternative solution; an improved
performance can be obtained by replicating the components and using several identical components working concurrently;
simulation studies (Zuberek 2002) indicate that such a solution is practically as efficient as the components with improved
performance characteristics.

Since the utilization of processors is probably the simplest indicator of the performance of the whole system, there may
be a tendency to keep this utilization high. The simplest way to achieve this is to make the processor the bottleneck of the
system.

905

Zuberek

The results obtained for a 2–dimensional torus–like network are also valid for other interconnecting networks with the
same connectivity characteristics. For example, Figure 8 shows a hypercube network for a 16–processor system that is
composed of two 8–processor subsystems. Since the average number of hops in this network is the same as in the two–
dimensional network shown in Figure 1, the performance characteristics of both networks are also the same (although the
two interconnecting networks scale in different ways).

Figure 8: Outline of a 16–processor system

Although the discussion and presented results refer to a 16–processor system, the model needs only a few small changes
to represent other multiprocessor systems. For example, the only changes that need to be made to represent a 25–processor
or a 36–processor system, are the values of the free–choice probabilities associated with the transitions of Dec (and, conse-
quently, the value of nh).

ACKNOWLEDGEMENT

The Natural Sciences and Engineering Research Council of Canada partially supported this research through grant RGPIN-
8222.

REFERENCES

Agarwal, A. 1992. Performance tradeoffs in multithreaded processors; IEEE Transactions on Parallel and Distributed
Systems 3 (5): 525-539.

Boothe, B. and A. Ranade. 1992. Improved multithreading techniques for hiding communication latency in multiprocessors.
In Proceedings of the 19-th Annual International Symposium on Computer Architecture, 214-223.

Byrd, G.T. and M.A. Holliday. 1995. Multithreaded processor architecture. IEEE Spectrum 32 (8): 38-46.
Chen, T-F. and J-L. Baer. 1994. A performance study of software and hardware data prefetching scheme. In Proceedings of

the 21-st Annual International Symposium on Computer Architecture 223-232.
Chaudhry, S., P. Caprioli, S. Yip and M. Tremblay. 2005. High–performance throughput computing. IEEE Micro 25 (3):

32-45.
Emer, J., M.D. Hill, Y.N. Patt, J.J. Yi, D. Chiou and R. Sendag. 2007. Single-threaded vs. multithreaded: where should we

focus? IEEE Micro 27 (6): 14-24.
Govindarajan, R., S.S. Nemawarkar and P. LeNir. 1995. Design and performance evaluation of a multithreaded architecture.

In Proceedings of the First IEEE Symposium on High–Performance Computer Architecture 298-307.
Govindarajan, R., F. Suciua and W.M. Zuberek. 1997. Timed Petri net models of multithreaded multiprocessor architectures.

In Proceedings of the 7-th International Workshop on Petri Nets and Performance Models 153-162.
Hamilton, S. 1999. Taking Moore’s law into the next century. IEEE Computer Magazine 32 (1): 43-48.
Jain, R. 1991. The art of computer systems performance analysis. J. Wiley & Sons.
Klaiber, A.C. and H.M. Levy. 1991. An architecture for software-controlled data prefetching. In Proceedings of the 18-th

Annual International Symposium on Computer Architecture 43-53.
Murata, T. 1989. Petri nets: properties, analysis and applications. Proceedings of IEEE 77 (4): 541-580.
Reisig, W. 1995. Petri nets – an introduction (EATCS Monographs on Theoretical Computer Science 4). Springer–Verlag.

906

Zuberek

Rixner, S., W.J. Dally, U.J. Kapasi, P. Mattson and J.D. Ovens. 2000. Memory access scheduling. In Proceedings of the
27-th Annual International Symposium on Computer Architecture 128-138.

Rogers, A. and K. Li. 1992. Software support for speculative loads. In Proceedings of the 5-th Symposium on Architectural
Support for Programming Languages and Operating Systems 38-50.

Sinharoy B. 1997. Optimized thread creation for processor multithreading. The Computer Journal 40 (6): 388-400.
Ungerer, T., B. Robic and J. Silc. 2003. A survey of processors with explicit multithreading. ACM Computing Surveys 35

(1): 29-63.
Wang, J. 1998. Timed Petri nets. Kluwer Academic Publ.
Zuberek, W.M. 1991. Timed Petri nets – definitions, properties and applications. Microelectronics and Reliability 31 (4):

627-644.
Zuberek, W.M. 2000. Performance modeling of multithreaded distributed memory architectures. In Hardware Design and

Petri Nets 311-331. Kluwer Academic Publ.
Zuberek, W.M. 2002. Analysis of performance bottlenecks in multithreaded multiprocessor systems. Fundamenta Informat-

icae 50 (2): 223-241.
Zuberek, W.M., R. Govindarajan and F. Suciu. 1998. Timed colored Petri net models of distributed memory multithreaded

multiprocessors. In Proceedings of the Workshop on Practical Use of Colored Petri Nets and Design/CPN 253-270.

AUTHOR BIOGRAPHY

WLODEKM. ZUBEREK received M.Sc. degree in Electronic Engineering and Ph.D. and D.Sc. degrees in Computer Sci-
ence, all from Warsaw Technical University. Currently he is a Professor in the Department of Computer Science of Memorial
University in St.John’s, Canada, and is also associated with the Department of Applied Informatics of the University of Life
Sciences in Warsaw, Poland. His research interests include modeling and performance analysis of concurrent systems, and
in particular applications of timed Petri nets, hierarchical modeling and discrete–event simulation to analysis of complex
systems. His email address is <wlodek@mun.ca>.

907

