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ABSTRACT

The standard leading-digit rule, LDR(1) is to omit point-estimator digits to the right of the leading digit of the point-estimator’s
standard error. Assuming that the original point estimator is normally distributed, the authors previously showed that LDR(1)
guarantees—for all means and for all standard errors—that the truncated estimator’s first omitted digit is correct with
probability no greater than 0.117, not much greater than the 1-in-10 chance for a random digit. We consider two variations
of the previously studied LDR(1) truncated point estimator, which in the worst case has non-negligible bias. The first is the
truncated estimator with an implied appended digit “5”. The second is the rounded estimator, which truncates after appending
the “5”. Both point estimators have nearly identical statistical properties, including negligible bias. Because of the omitted
digits, however, the statistical quality of the two LDR(1) point estimators cannot be better than that of the original point
estimator. In terms of root mean squared error and in terms of correlation with the original estimator, we establish here that
the worst-case LDR(1) degradation is about four percent.

1 INTRODUCTION

The classic issue in statistical inference is how to estimate and report the precision or confidence of a conclusion based on a
sample from a population. In its simplest form, a point estimator ̂ computed from the sample is used to estimate the value
of an unknown performance measure  of the population.

We say that the jth digit of ̂ is correct if it matches the jth digit of  , where the jth digit is in the 10 j position. Digits
to the left of ̂ have a high probability of being correct; digits to the right of ̂ are randomly distributed, with each value
zero through nine having probability 0.1 of being correct.

Our research issue is how to report the value of the point estimator ̂ . How many of the left-most non-zero digits of
̂ should be reported? And given the number of reported non-zero digits, what point-estimator value should be reported?
Song and Schmeiser (2009) discuss the former question. In this paper we discuss the latter question.

2 PROBLEM DEFINITION

Based on simple classical assumptions, we discuss the two questions. The discussion of Question 1 is a summary of the
results in Song and Schmeiser (2009). The discussion of Question 2 defines notation for the point estimators that are studied
in Sections 3 and 4.

2.1 Assumptions

Throughout, we assume that the point estimator ̂ is normally distributed, is unbiased, and has a standard error that decreases
with the sample size, say n, which can be either discrete or continuous. These assumptions are true in much of statistical
inference, and especially in our motivating application of Monte Carlo simulation, where typically the sample size n is large.
The results are general in that the performance measure  does not need to be a mean; the assumptions are asymptotically
true for essentially every reasonable point estimator of a finite  . Included are sample variances, sample standard deviations,
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sample coefficients of variation, sample covariances, sample correlations, and sample quantiles. Also included are both
independent and dependent sampling. (See Lewis and Orav 1989.)

We do not consider how the point estimator ̂ or its standard error  are obtained. We assume that the value of  is
known. (The effect of using an estimated standard error is a future topic.)

2.2 Question 1: The Number of Reported Digits

Let ̂l denote the truncated point estimator, where l is the position of the left-most digit of the standard error  . The digits
to the right of position l are omitted; the reported digits are those of ̂ . Choosing l too small results in reporting many
digits that clutter the report and are misleading when the reader thinks that all reported digits are meaningful. Choosing l
too large reports too few digits, degrading the value of the point estimator.

Song and Schmeiser (1994) and Song and Schmeiser (2009) discuss the problem of deciding which of the right-most
digits of a point estimate ̂ to omit. LDR, the family of leading-digit rules, omits all digits of ̂ to the right of the leading
digit of  , the standard error of the point estimator. In particular, LDR(a) omits all digits to the right of the position of the
leading digit of a . Because of its reasonable statistical properties and ease of implementation, we focus on LDR(1), the
standard LDR.

Song and Schmeiser (2009) show that LDR(1) guarantees that the left-most omitted digit has correctness probability of
less than 0.117, conditional that the reported digits are correct. This worst-case bound occurs when the sample size n yields
a standard error  that is a power of ten. At that point, a bit more sampling would increase the value of n, reduce the value
of  , and the current left-most omitted digit of ̂ would be reported. At this instant, the probability of the left-most omitted
digit being correct is maximized. At other times, the probability of the left-most omitted digit being correct is closer to one
in ten, the probability that a random digit is correct.

2.3 Question 2: The Reported Point Estimator

LDR determines only which right-most digits to omit. That leaves the question of what to do with the left-most digits that
are reported.

Song and Schmeiser’s (2009) correct-probability bound of 0.117 is for the truncated point estimator ̂l , where l is the
position of the left-most non-zero digit of  . The digits to the right of position l are omitted; the reported digits are those
of ̂ .

We consider here two variations of the truncated point estimator ̂l . Both point estimators require the same space in an

output report as ̂l . Both eliminate the first-order bias caused by the truncation in ̂l . The first variation, ̂ (5)
l , is to append a

“5” in position l−1 of ̂l ; this appended digit is not reported, but is part of the interpretation of the reported ̂ . The second

variation, ̂ (r)
l , is to round ̂ to position l; that is, add 5×10l−1 to ̂ and truncate to the lth position.

We compare all four point estimators: the Original point estimator ̂ , the Truncated point estimator ̂l , the Append-5

point estimator ̂ (5)
l , and the Rounded point estimator ̂ (r)

l .
The statistical properties of the three LDR(1) point estimators cannot be as good as those of the original point estimator

̂ , because of the digits that are omitted to the right of the LDR position l. The results in Sections 3 and 4 show the amount
degradation in terms of mean squared error (mse) and in terms of correlation with ̂ .

3 MEAN SQUARED ERROR

We consider here the mse of three LDR(1) point estimators—the Truncated point estimator ̂l , the Append-5 point estimator

̂(5)
l and the Rounded point estimator ̂(R)

l . For most values of  and  , the mse of all three LDR(1) point estimators
are essentially the same as that of the Original point estimator. Therefore, the mse analyses of this section focus on the
worst-case for the three LDR(1) point estimators, when the sample size n yields a value of  that is a power of ten; that is,
just before the left-most omitted digit would be reported.

LDR truncation never increases the absolute value; that is, |̂l| ≤ |̂|. Therefore, two cases need to be considered. The
two cases represent the extremes of the effects of the truncation. In the first case, represented here by = 10 and  = 1, ̂
always has the same sign, so truncation always is in the same direction, which can cause non-negligible bias. In the second
case, represented here by  = 0 and  = 1, the Truncated point estimator ̂l is always closer to  than the Original point
estimator ̂. In this second case, the mse of the LDR point estimators can be better than that of the Original point estimator.
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So unlike most comparisons of point-estimator behavior, the smallest mse is not necessarily the best. The ideal mse is that
of the Original point estimator, with no bias for any value of  and standard error  .

For these two extreme cases, Table 1 shows the means and standard errors for the three LDR(1) point estimators. The
results depend upon our standing assumptions that the Original point estimator is normally distributed with mean a and
standard deviation  . All table entries have simple explanations or approximations, as discussed in the Appendix. The table
entries were also obtained by Monte Carlo experimentation; the standard errors of the table entries are so small that the
digits shown are correct.

As an aside, notice that this table is an example of our topic, the need to decide the number of digits to report. Here the
truncation is chosen for practical significance; additional digits are not useful to support the message. In fact, the standard

errors are so small that ̂l, ̂
(5)
l , and ̂(r)

l are equal.
In the worst case, Truncated has non-negligible bias, whereas both Append-5 and Rounded have negligible bias always.

Among the three estimators shown in Table 1, we recommend to use the Rounded estimator ̂(r)
l because it posses the

best statistical property and is more natural than the Append-5.

Table 1: Worst-Case Moments of the three LDR(1) variations, where ̂ has mean  and standard error  = 10l.

cases ̂l ̂(5)
l ̂(r)

l
(Truncated) (Append-5) (Rounded)

 = 10 9.50 10.00 10.00

 = 1 1.04 1.04 1.04
√

mse = 1 1.15 1.04 1.04

 = 0 0.00 0.00 0.00

 = 1 0.68 1.04 1.04
√

mse = 1 0.68 1.04 1.04

4 CORRELATION

Another way to measure the performance of LDR(1) point estimators is the extent to which they predict that value of the
Original point estimator ̂. Although the LDR(1) point estimators are not normally distributed, assume for the moment

that the pairs (̂,̂l), (̂,̂(5)
l ), and (̂,̂(r)

l ) are bivariate normal. Consider the Truncated point estimator. If ̂l = c, the
conditional distribution of the Original point estimator is normal with conditional expectation

For most values of  and  , the correlations are close to one. Therefore, we again focus on the two extreme cases of
Section 3. Table 2 shows the extreme-case performance of the three LDR(1) point estimators.

As usual, the Truncated point estimator degrades more than the Append-5 and Rounded point estimators. The correlation
of 0.88 is substantially worse than the 0.96 correlation obtained by Append-5 and Rounded. Since correlation squared is
the fraction of variance explained, both Append-5 and Rounded explain about 92% of the variance of the Original point
estimator ̂.

5 THE ROUNDED LDR(1) ESTIMATORS ̂(r)
l

Among the three estimators shown in Table 1, we prefer the Rounded estimator ̂(r)
l because it possesses good statistical

properties in terms of
√

mse/ and corr(̂,̂(r)), and it is more natural than the Append-5, which requires users sophistication
(i.e., knowing to append the digit “5.”) In this section, we further investigate the statistical properties of the Rounded LDR(1)

estimator ̂(r)
l as functions of  .
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Table 2: Worst-Case correlations of the three LDR(1) variations with the Original point estimator, where ̂ has mean  and
standard error  = 10l .

cases ̂l ̂(5)
l ̂(r)

l
(Truncated) (Append-5) (Rounded)

 = 10 9.50 10.00 10.00

 = 1 1.04 1.04 1.04

corr 0.96 0.96 0.96

 = 0 0.00 0.00 0.00

 = 1 0.68 1.04 1.04

corr 0.88 0.96 0.96

1

1.01
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1.03

1.04

√
mse/


1 10 102 103

Figure 1: Relative root mse as a function of  for the rounded estimator ̂(r)

Figure 1 shows that the root relative mse (
√

mse/ ) of ̂(r) is maximized with a value of 1.04 when the standard error
 is a power of 10. Moreover, we observe that the

√
mse/ dramatically decreases when log is in the range (i, i+0.5],

and decreases slowly when log is in the range [i+0.5, i+1), where i = 0,1,2, . . ..
Figure 2 shows that the correlation between ̂l and ̂(r) is minimized with a value of 0.96 when the standard error  is

a power of 10. Moreover, we observe that the correlation dramatically increases when log is in the range (i, i+0.5], and
increases slowly when log is in the range [i+0.5, i+1), where i = 0,1,2, . . ..

According to Figures 1 and 2, we conclude that Rounded LDR(1) is a good rule for omitting meaningless digits for
statistical estimates because it is easy to implement and has a good statistical property in terms of

√
mse/ and corr(̂,̂(r)).

6 SUMMARY AND FUTURE RESEARCH

The Truncated, Append-5, and Rounded LDR(1) estimators require the same reporting space, but the Append-5 and Rounded
estimators have better statistical properties. Always, the worst-case comparison to the original point estimator ̂ is when
the standard error  is a power of ten, just before the next digit is to be reported.

Because both the Append-5 and Rounded estimators have negligible bias their worst-case root mse performance is
substantially better than that of the Truncated estimator. They both have about a four-percent worst-case degradation
compared to the original estimator̂. They both have worst-case correlation of about 0.96 with the original point estimator.
Other than when  is only a bit larger than a power of ten, the root mse is essentially the same as that of the original point
estimator and the correlation with the original point estimator is essentially one.
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Figure 2: Correlation of the estimators ̂ and ̂(r) as a function of 

Because the Append-5 point estimator requires reader sophistication—knowing to append the digit “5”—the Rounded

point estimator is preferable. We advocate the use of LDR(1) with the point estimator ̂(r)
l .

Other point estimators based on ̂l are useful. In a future paper we consider appending a random digit or a random
fraction to ̂ to allow confidence-interval procedures to have reasonable coverage probabilities.

APPENDIX

The results in Table 1 are based on Monte Carlo experimentation. Some of the results also are obtained by approximation,
as discussed in the Appendix.
Case 1:  = 10, = 1

• se(̂l) ≈
√

1+ 1
12 ≈ 1.04

• se(̂(5)
l ) ≈

√
1+ 1

12 ≈ 1.04

• se(̂(r)
l ) ≈

√
1+ 1

12 ≈ 1.04

Case 2:  = 0, = 1

• se(̂l) =
√

2


i=0

i2[(i+1)−(i)] ≈ 0.684

• se(̂(5)
l ) =

√
2



i=0

(i+0.5)2[(i+1)−(i)] ≈ 1.04

• se(̂(r)
l ) =

√
2



i=0

(i+0.5)2[(i+1)−(i)] ≈ 1.04
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