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ABSTRACT

The validation of dependability or performance requirements is often done experimentally using simulation experiments. In
several applications, the experiments have a binary output which describes whether a requirement is met or not. In highly
dependable systems the probability of missing a requirement is 10−6 or below which implies that statistically significant
results have to be computed for binomial distributions with a small probability. In this paper we compare different methods
to statistically evaluate simulation experiments with highly dependable systems. Some of the available methods are extended
slightly to handle small probabilities and large samples sizes. Different problems like the computation of one or two sided
confidence intervals, the comparison of different systems and the ranking of systems are considered.

1 INTRODUCTION

Contemporary systems have to fulfill very strict requirements concerning performance and dependability. In many application
areas highly dependable systems are used such that requirements have to hold with a probability of 99.9999% which implies
that probabilities of system failures are in O(10−6). To assure that a system meets such requirements, a detailed model based
analysis becomes necessary. We consider in this paper cases where simulation experiments are applied to analyze whether
a system meets some quantitative requirements that hold with a very high probability. We further assume that the outcome
of a single experiment is binary, i.e., the requirement is met or not. Since the output is stochastic, a statistical analysis is
necessary to obtain reliable results with a predefined significance probability. Consequently, confidence intervals have to
be computed with a range that is determined by the probability of missing the requirement, e.g., one wants to compute a
confidence interval with a width of 10% around the estimated probability of a system failure which implies that the width
of the confidence interval is in O(10−(k+1)) for a probability of O(10−k). For k ≥ 6 a huge number of experiments has to
be performed. However, due to the increase in computing power and the availability of efficient simulation systems such
experiments can be made. Other problems related to the evaluation of a single system are the comparison of two or more
systems and the selection of the system with the highest probability of meeting a requirement from a set of systems. The
later two problems are denoted as (multiple) statistical comparisons and ranking and selection.

The mentioned problems are well known for a long time in stochastic simulation such that various methods for statistical
evaluation exist and are even published in simulation textbooks (Banks, Nelson, and Nicol 2004, Law and Kelton 2000),
but topics like ranking and selection are still important research topics (Swisher, Jacobson, and Yücesan 2003). However,
although the problems we consider in this paper are in principle known in simulation, available evaluation methods usually
make assumptions that do not hold in our case. The common assumption is that observations are independent and normally
distributed. In our case the outcome of the experiments follows a binomial distribution with a very small probability. Thus,
even if according to the central limit theorem the binomial distribution converges towards a normal distribution for the
number of observations n going to infinity, in practical cases, where the number of experiments is finite, the use of the
available methods based on the normal distribution for binomial distributions results often in too optimistic results which
overestimate the true significance probabilities. This is in principle known and has been analyzed in statistics (Chang et al.
2008), in particular for the computation of confidence intervals (Brown, Cai, and DasGupta 2001). However, the approaches
from statistics do not consider small probabilities in the range of 10−6 or large sample sizes and they also do not consider
the use of the statistical techniques for simulation output analysis. In this paper we address the following five problems:
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1. The computation of one and two sided confidence intervals for the estimated probability of missing the perfor-
mance/dependability requirement in Section 3.

2. The comparison of the probability of missing the performance/dependability measure with a standard in Section 4.
3. The comparison of different systems in Section 5.
4. The screening of a set of systems to select inferior systems in Section 6.
5. The selection of the best system from a set of systems in Section 7.

In each section we present different methods which are available in the literature, extend some of the methods slightly, and
perform experiments to analyze the quality of the results. Before we consider the concrete problems, some basic notations
and definitions are introduced in the first section. The paper ends with a short summary of the results we derived from the
experiments.

2 BASIC NOTATIONS AND DEFINITIONS

We consider simulation or real experiments with a binary output, where the output is 0 if the systems meets the requirement
and where it is 1 if the system does not meet the requirement which is denoted as a miss. Let p � 1 be the probability that
the outcome of the experiment is 1. For contemporary technical systems p in the range of 10−6−10−8 is a common value.
We assume that n experiments are performed and denote by s the number of experiments with outcome 1. Then

p̂ =
s
n

(1)

is an estimator for p. The number of misses s is the realization of a random variable S with binomial distribution such that

(
n
s

)
ps(1− p)n−s (2)

is the probability of observing s misses, if the probability of a miss is p. The variance of S equals p(1− p). We use the
notation S ∼ Bin(n, p) to express that S has a binomial distribution with parameters n and p.

It is well known that for large n the distribution of S may be approximated by a normal distribution with mean p and
standard deviation

√
p(1− p). We denote by z1− the 1−-quantile of the standard normal distribution. If the binomial

distribution is approximated by a normal distribution, then the large set of statistical methods based on normal distributions
can be applied. However, it is also known (Brown et al. 2001, Chang et al. 2008) that the convergence of the binomial
distribution towards the normal distribution is very slow if p is much smaller than 0.5 which is in our applications clearly
the case. Several heuristics are available to decide whether the normal approximation is adequate. Some of the heuristics
taken from Brown, Cai, and DasGupta (2001), Leemis and Trivedi (1996) are np ≥ 5, or np(1− p) ≥ 5, or np̂ ≥ 5, or
p̂± 3

√
p̂(1− p̂)/n does not contain 0. As already shown in Brown, Cai, and DasGupta (2001) and also by some of our

examples below, these heuristics are useless in extreme cases where p is small.
One approach to make observations more normally distributed is to batch them before statistical methods are applied.

Let xi the result of the i-th experiment and let b be the batch size, then n̄ = �n/b� values are computed such that

y j =
 j·b−1

i=( j−1)·b xi

b
and p̂ =

n̄
j=1 y j

n̄
. (3)

However, the y j are no longer binomially distributed. The variance of the batched observations is then given by

̂2 =
1

n̄−1

n̄


j=1

(y j − p̂)2 . (4)

For increasing batch sizes the y j become more normally distributed.
If we compare systems (e.g., to find the system with the smallest probability of missing a requirement), then we assume

that K systems are available and denote the related quantities as pk, p̂k, nk n̄k, ̂2
k , sk, y j,k and xi,k, respectively.

The statistical methods we present in the subsequent sections are analyzed analytically, if this is possible, however,
often an experimental evaluation is necessary. Experiments are performed as simple simulation experiments using a binomial
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distribution with probability p which is very small. To analyze the coverage of the different statistical methods we replicate
the experiments m times and measure the percentage of experiments where the result contains the true value. The true value
is computed if the confidence interval includes the probability of a miss or if the best configuration is selected. If  is
the required significance probability, then approximately (1−)m experiments should result in the true value. To evaluate
the coverage we perform the m experiments several times using different random number streams and compute from these
replications the mean coverage and the 90% confidence interval of the coverage. The length of a single experiment depends
on the concrete goal and is partially dynamically selected. However, since p is in the range of 10−6 about 108 experiments
are necessary to observe an average of 100 misses.

3 COMPUTATION OF CONFIDENCE INTERVALS

We first consider the analysis of a single system. The goal is to compute a confidence interval for p̂. We distinguish between
the two sided and the one sided case, i.e.,

Prob[p ∈ [l ,u ]] ≥ 1− and Prob[p ≤ u′ ] ≥ 1− . (5)

3.1 Interval Estimators

The common confidence intervals that are known from simulation textbooks (Banks, Nelson, and Nicol 2004, Law and
Kelton 2000) equal

p̂± z1−/2

√
̂2

n̄
and p̂+ z1−

√
̂2

n̄
(6)

for the one and two sided case where n̄ = n and ̂2 = p̂(1− p̂) if b = 1. If n̄ is small, the quantile of the normal distribution
is substituted by the quantile of a t distribution with n̄−1 degrees of freedom which is denoted as tn̄−1,1−/2. For larger
values of n̄ the difference between t- and normal distribution is negligible.

In most textbooks it is mentioned that the coverage of the above confidence intervals (i.e., the true probability that p is
in the interval) can be much smaller than 1− , if binomial distributions are analyzed and an unlucky combination of the
parameters n and p is chosen.

In the statistical literature a large number of alternative methods is proposed to compute more reliable confidence intervals
for binomial output, e.g., (Agresti and Coull 1998, Brown, Cai, and DasGupta 2001, Wang 2006). We present here some
methods that have shown in the mentioned papers to be much better than the standard confidence interval (6), which is
denoted as Wald’s interval in statistics. The first alternative due to Agresti and Coull (1998) uses a simple redirection of the
standard interval by defining

s̃ = s+ z2
1−/2/2 , ñ = n+ z2

1−/2 and p̃ = s̃/ñ (7)

for the two sided case and the corresponding values with z2
1− for the one sided case. Afterwards, p̃ and ñ rather than p̂

and n̄ are used in (6). For a detailed derivation of the redirection of the values which is based on the Wilson score interval
we refer to the literature (Agresti and Caffo 2000, Brown, Cai, and DasGupta 2001).

The so called Clopper-Pearson interval (Brown, Cai, and DasGupta 2001) uses directly the binomial distribution and
computes the interval [l,u] or the upper bound u′ as

l = min∈[0,1] P[Bin(n, )] ≥ s] = /2, u = max∈[0,1] P[Bin(n, )]≤ s] = /2 and u′ = max∈[0,1] P[Bin(n, )]≤ s] =  .
(8)

This interval is sometimes denoted as the exact interval. However, as described in Brown, Cai, and DasGupta (2001), Wang
(2006) several other “exact” intervals exist. The direct computation of the values in (8) is cumbersome but it is well known
that the binomial distribution is related to the beta function (Brown et al. 2001, Press et al. 2002). Let B(a,b) be the beta
function, Bp(a,b),0 ≤ p ≤ 1 be the incomplete beta function and Ip(x,y) the regularized beta function that are defined as

B(x,y) =
1∫
0

tx−1(1− t)y−1dt, Bp(x,y) =
p∫
0

tx−1(1− t)y−1dt and Ip(x,y) = Bp(x,y)
B(x,y) . (9)
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The cumulative distribution function of the binomial distribution can then be represented as

n


i=x

(
n
i

)
pi(1− p)n−i = Ip(x,n− x+1) (10)

with 0 ≤ p≤ 1 and 0 < x≤ n. For x = 0 the sum becomes 1 for all p. Note that the regularized beta function is monotonic in
p, which simplifies the determination of minimal and maximal values. The values of the beta distribution can be computed
numerically, the corresponding procedures are given in (Press et al. 2002) such that

/2 = Il (s,n− s+1) and (1−/2) = Iu (s+1,n− s) (11)

have to be solved for l and u , respectively. Similarly,

1− = Iu (s+1,n− s) (12)

has to be solved in the one sided case. Let (a,b) be the -quantile of the regularized beta function with parameters (a,b).
Since Ip(x,y) is only defined for x,y > 0 the remaining cases have to be defined separately. If s = 0, then no miss has

been observed in the experiments. In this case the lower bound is zero (i.e., l = 0.0). The upper bound u has to be chosen
such that the significance level of the confidence interval becomes  . We obtain

1− =
n

i=1

(n
i

)
ui
(1−u)n−i = 1− (1−u)n ⇒ u′ = u = 1− n

√
 . (13)

The case s = n is not interesting here since we consider small miss probabilities but may be handled similarly.
For the determination of the Clopper-Pearson interval numerical computations have to be performed. With today’s

computing power the boundaries can be computed efficiently and in a numerically stable way. However, the Clopper-Pearson
interval is known to be conservative such that in the statistical literature often other intervals are recommended (Agresti and
Coull 1998, Brown, Cai, and DasGupta 2001, Leemis and Trivedi 1996, Wang 2006). One recommended alternative from
Brown, Cai, and DasGupta (2001) is Jefferey’s interval which is defined by the following boundaries.

l = /2(s+0.5,n− s+0.5), u = 1−/2(s+0.5,n− s+0.5) and u′ = 1−(s+0.5,n− s+0.5) . (14)

For s = 0 the interval is computed via (13). As shown in Brown, Cai, and DasGupta (2001) (14) is always contained in (8).

3.2 Experimental Results

For a fixed number of samples and a batch size of one, coverage and width of the confidence intervals can be computed
analytically by a complete enumeration of the number of misses. For every number of misses s the probability can be
computed via (2) and the different confidence intervals can also be computed such that coverage and average width can
be computed without experiments. If p is small, then a complete enumeration is not necessary because the probability of
observing s misses converges rapidly towards 0 for an increasing s. If the batch size is larger than one, an enumeration is
too costly and experiments are performed to determine coverage and average width.

Table 1 shows the results for p = 10−6, 107 samples and  = 0.05. The standard interval (6) has the smallest width
but it has only a coverage of 0.926 which is less then the required coverage of 0.95. Batching does not really improve
the situation. We tried several batch sizes and the best was 106 such that only 10 observations are evaluated in a single
experiment to compute the confidence interval. A larger batch size does not increase the coverage but it increases the width.
A smaller batch size results in a lower coverage. However, even for batch size 106, the required coverage of 0.95 lies outside
the confidence interval for the coverage and the width of the confidence intervals is larger than in all other cases. From the
other three intervals, the Jefferey interval has a coverage of 0.944 which is below 0.95. (7) and (8) have a coverage above
0.95 and also have a similar width. The examples show nicely that even for a large number of observations, it is preferable
to apply the more sophisticated methods rather than the textbook approach. If we consider only 106 observations, then the
coverage of the standard interval goes down to 0.63, whereas the other methods have a coverage of 0.98.

It is known that for small sample sizes the coverage of all methods is irregular and depends on p and the sample size
(Brown, Cai, and DasGupta 2001). Figure 1 shows that the same holds for small p and fairly large sample sizes. We
computed the coverage of the different methods for p = 10−6 and vary the sample size from 10 millions to 50 millions
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Table 1: Quality of the confidence intervals for 107 samples

method avg. width coverage
Eq. (6) (b = 106) 1.379 ·10−6 (±1.66 ·10−8) 0.940 (±0.0061)
Eq. (6) (b = 1) 1.223 ·10−6 0.926
Eq. (7) 1.341 ·10−6 0.963
Eq. (14) 1.244 ·10−6 0.944
Eq. (8) 1.344 ·10−6 0.975

in steps of 1 million. It can be be seen that the standard interval has the worst coverage which is always below 0.95, the
exact approach (8) is always above 0.95 and the remaining two approaches are most times but not always above 0.95. The
general structure of our results is similar to the small sample size case with larger values of p (Brown, Cai, and DasGupta
2001). However, apart from the observation that results become better with an increasing sample size, not much can be said
about specific cases. One can see that for each method there are lucky and unlucky sample sizes and the behavior is non
monotonic. Unfortunately, lucky cases may become unlucky if p is modified slightly.
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Figure 1: Coverage of the methods for p = 10−6

In a second series of experiments we compute confidence intervals with a width of 20% of the estimated mean and
set  = 0.1. Experiments are stopped when the confidence intervals are small enough. Confidence intervals are computed
dynamically during the experiment (Banks, Nelson, and Nicol 2004, pp. 414). This setting cannot be evaluated analytically.

The results are shown in Table 2. For these experiments we consider the average number of samples which is needed
to compute the confidence intervals of the required width. All methods reach the required coverage of 0.9. The “exact”
method (8) is slightly more conservative than the other approaches and, consequently, needs about 5% more samples than
the other methods which are all very similar. The effort for computing the confidence intervals (14) and (8) is slightly higher
than in the cases, where the quantile of the t or normal distribution is used because the beta function has to be evaluated
numerically. However, a single run computing the confidence interval with a width of 20% of p̂ needs about 9.7 second for
(6), (7) and about 11.3 seconds for (14), (8). If real simulation experiments are applied, which need much more time than
the simple generation of random numbers, then the difference for computing the confidence intervals becomes negligible.

4 COMPARISON WITH A STANDARD

In the following we consider the case where we compare the miss probability of one or more systems with a standard. The
approach may be used to compute the probability that a system fullfils the requirement to have a miss probability of less
than a predefined threshold q.
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Table 2: Quality of the confidence intervals with a width of less than 20% of p̂

method samples coverage
Eq. (6)(b = 1) 2.710 ·10+8 (±2.47 ·10+5) 0.907 (±0.0039)
Eq. (7) 2.701 ·10+8 (±2.83 ·10+5) 0.908 (±0.0036)
Eq. (14) 2.711 ·10+8 (±2.47 ·10+5) 0.907 (±0.0033)
Eq. (8) 2.811 ·10+8 (±2.47 ·10+5) 0.912 (±0.0109)

4.1 Statistical Methods

In principle, we can use the approaches from the previous section to compute one sided confidence intervals. We denote
by u′ the upper bound for the miss probability computed with one of the methods presented above. If u′ ≤ q, then the
probability of missing the threshold is less than  . To compute a better bound for the probability, one can compute

 = arg min
∈(0,1)

(
u′ ≤ q

)
(15)

using one of the approaches presented in the previous section to compute one sided confidence intervals. 1−  is then an
estimate for the probability of having miss probability less or equal to q.

The approach can also be applied to compute probabilities for K systems resulting in probabilities k (k = 1, . . . ,K). If
all experiments are independent, then the probability that all systems have miss probability less than or equal to q is denoted
as 1:K and can be computed as

1− 1:k =
K


k=1

(1− k) . (16)

4.2 Experimental Results

Since in (7), the confidence interval depends on  which is computed as a result here, it is impractical to use the method
of Agresti and Coul for this setting. Furthermore, our experiments showed that also the use of Jefferey’s method is not
recommended since it is not better than the other methods (6) and (8).

We set q = 10−6 and examine three cases for p, namely p = 9 ·10−7, p = 10−6 and p = 1.1 ·10−6. In the first case,
the probability that p̂ < q should converge towards 1 for an increasing n. In the second and third case, it should converge
towards 0.5 and 0.0, respectively. Table 3 summarizes the results which can be determined analytically. The results show
that both methods, the standard approach and the exact approach behave very similar for this problem. The exact approach
is slightly better for p < q and the standard approach is better for p > q.

Table 3: Probability that p is smaller than 10−6

P[p < 10−6]
Eq. (6) Eq. (8)
samples samples

p 107 109 109 107 109 109

0.9 ·10−6 0.621 0.775 0.990 0.635 0.777 0.990
10−6 0.530 0.509 0.503 0.550 0.514 0.505

1.1 ·10−6 0.443 0.254 0.015 0.457 0.256 0.015

Figure 2 shows the probability of P[p < 10−6] for p between 0.5 · 10−6 and 1.5 · 10−6 using 107 and 108 samples,
respectively. The difference between the standard and the exact method is negligible and almost not visible in the figure.
The results show that 107 experiments are not sufficient to validate or disprove p < 10−6, if p is not much smaller or larger
than 10−6, whereas the results for 108 experiments are much better and allow a clear decision as long as p is not close to
the threshold.
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Figure 2: P[p < 10−6] for different values of p and 107 or 108 samples

5 MULTIPLE COMPARISONS

Let p1 and p2 be the probabilities for two different systems to miss a performance or dependability requirement. The goal
is to compute a confidence interval for p1− p2.

5.1 Methods to Compute Confidence Intervals for Comparisons

The comparison of two or more systems is a commonly known problem which is treated in many textbooks on stochastic
simulation (Banks, Nelson, and Nicol 2004, Law and Kelton 2000). We consider first the case of two systems and assume
that experiments are independent. Since the variance equals pi(1− pi), we have to use for the computation of confidence
intervals for p̂1− p̂2 an approach for unequal variances. The standard textbook approach for normal distributed data results
in the following confidence interval (Banks, Nelson, and Nicol 2004, Law and Kelton 2000).

(p̂1− p̂2)± t,1−/2

√
̂2

1

n̄1
+
̂2

2

n̄2
where  =

(
̂2

1 /n̄1 + ̂2
2 /n̄2

)2((
̂2

1 /n̄1
)2

/(n̄1−1)+
(
̂2

2 /n̄2
)2

/(n̄2−1)
) (17)

is an approximation for the degrees of freedom used in the t distribution which is usually rounded to the nearest integer. The
formula can be applied to the original data such that ̂2

i = p̂i(1− p̂i) or using batches like for the computation of confidence
intervals.

The computation of confidence intervals for the parameters of two binomial distributions is also a topic in statistics
(Santner et al. 2007). In Agresti and Caffo (2000) the authors propose to use the idea of (7) also for two binomial distributions.
Thus, rather than nk and pk

s̃k = sk + z2
1−/2/4, ñk = n+ z2

1−/2/2 and p̃k = s̃k/ñk . (18)

are used. Then (17) becomes

(p̃1 − p̃2)± t ′,1−/2

√
p̃1(1− p̃1)

ñ1
+

p̃2(1− p̃2)
ñ2

(19)

where  ′ results from (17) with n̄k = ñk and ̂2
k = p̃k(1− p̃k) (k = 1,2).

The following method has been developed by Newcombe (1998) as a result of comparing 11 methods for computing
confidence intervals for the difference between two binomial parameters. The interval is given by

(p̂1− p̂2)−
√

(p̂1 − x1)2 +(y2− p̂2)2, (p̂1− p̂2)+
√

(p̂2 − x2)2 +(y1− p̂1)2 (20)
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where

xk =
2sk+z21−/2−z1−/2

√
z21−/2+4sk(1−sk/nk)

2(nk+z21−/2)
, yk =

2sk+z21−/2+z1−/2

√
z21−/2+4sk(1−sk/nk)

2(nk+z21−/2)
. (21)

There are several other methods to compute confidence intervals for the difference of two parameters. In particular
methods based on the inversion of some test statistics have been developed and are included in several statics program
packages (Santner et al. 2007). However, these methods require numerical computations to evaluate test statistics over the
search space with n1n2 elements. In the small-sample case which is considered in the mentioned papers and supported
by the software packages, the computation is manageable. If n1 and n2 are large, then the required computations become
prohibitive such that the methods in their current form cannot be applied and are not considered here.

It is straightforward to modify all approaches such that instead of a two sided, one sided confidence intervals are
computed.

If K different systems should be compared, then the comparisons are no longer independent. Assume that C comparisons
have to be made and the probability that all confidence intervals include the true differences should be at least 1− , then
according to the Bonferroni inequality (Banks, Nelson, and Nicol 2004, p.468) the following relation holds.

(1−)≥ (1−
C


c=1

c) (22)

where c is the significance probability of comparison c. Usually this gives a conservative bound, in particular if C is large.
If all systems are compared, we have C = K(K − 1)/2. The above equation implies that for a single confidence interval
c = /C has to be chosen.

5.2 Experimental Results

Table 4 contains the results for two different configurations where 20 and 100 millions of samples are drawn. For 100 million
samples, the coverage of all methods is very close to 95% the required significance probability. In this case also the width
of the confidence intervals is very similar. For 20 million samples the standard method does not reach the required coverage
whereas for the other two methods the coverage is in all experiments above 95%. Since (18) usually gives a slightly tighter
confidence interval than (20), this method is recommended.

6 SCREENING PROCEDURES

The decision which of a set of K systems to choose can be formulated in two different ways. First, one can select a subset
of H ≤ K systems which contains with probability of at least 1− the best system or, second, one can select the “best”
system with a predefined probability. In this section we analyze methods for the first formulation which is denoted as subset
selection or screening in simulation (Swisher, Jacobson, and Yücesan 2003). The second formulation is analyzed afterwards.

Before we consider the statistical methods, we describe the general setting. We consider K different systems with miss
probabilities pk and assume without loss of generality p1 ≤ p2 ≤ . . . ≤ pK . Furthermore it is not possible to select the best
system, when probabilities are arbitrarily close. Thus, it is usually assumed that  > 0 is available such that differences
that are smaller than  are insignificant. In our setting the goal is to find a system k such that |pk − p1| ≤  . Of course, if
|p2− p1| >  , then the first system is the only system that should be selected.  is denoted an indifferent zone parameter.

6.1 Statistical Methods

A screening procedure which is often used in simulation has been proposed in (Bechthofer, Santner, and Goldsman 1995)
and used for subset selection in simulation by (Boesel, Nelson, and Kim 2003, Nelson, Swann, Goldsman, and Song 2001).
We assume that  is chosen from (0,(K−1)/K).

The idea of the screening procedure is to perform a pairwise comparison of systems and eliminate all systems which
have shown to be inferior to at least one system which remains in the subset. Define the following coefficients which are
similar to the confidence interval in (17),

Wij =

√√√√ t2
ni−1,(1−/2)1/k̂2

i

ni
+

t2
n j−1,(1−/2)1/k̂2

j

n j
. (23)
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Table 4: Confidence intervals for p1− p2 with  = 0.05

n1 n2 method avg. width coverage n1 n2 method avg. width coverage
p1 = p2 = 10−6 p1 = 5 ·10−7 and p2 = 1.5 ·10−6

(17) 1.994 ·10−6 0.930 (17) 2.231 ·10−6 0.932
5 ·106 1.5 ·107 (18) 2.156 ·10−6 0.964 5 ·106 1.5 ·107 (18) 2.377 ·10−6 0.960

(20) 2.247 ·10−6 0.958 (20) 2.243 ·10−6 0.955
(17) 1.742 ·10−6 0.948 (17) 1.742 ·10−6 0.946

107 107 (18) 1.826 ·10−6 0.959 107 107 (18) 1.826 ·10−6 0.957
(20) 1.905 ·10−6 0.958 (20) 1.901 ·10−6 0.958
(17) 1.994 ·10−6 0.930 (17) 1.728 ·10−6 0.947

1.5 ·107 5 ·106 (18) 2.156 ·10−6 0.964 1.5 ·107 5 ·106 (18) 1.913 ·10−6 0.972
(20) 2.247 ·10−6 0.958 (20) 2.046 ·10−6 0.963
(17) 9.03 ·10−7 0.947 (17) 1.009 ·10−6 0.946

2.5 ·107 7.5 ·107 (18) 9.17 ·10−7 0.953 2.5 ·107 7.5 ·107 (18) 1.022 ·10−6 0.952
(20) 9.25 ·10−7 0.951 (20) 1.027 ·10−6 0.951
(17) 7.83 ·10−7 0.950 (17) 7.83 ·10−7 0.949

5 ·107 5 ·107 (18) 7.91 ·10−7 0.952 5 ·107 5 ·107 (18) 7.91 ·10−7 0.952
(20) 7.98 ·10−7 0.952 (20) 7.98 ·10−7 0.951
(17) 9.03 ·10−7 0.947 (17) 7.82 ·10−7 0.949

7.5 ·107 2.5 ·107 (18) 9.17 ·10−7 0.953 7.5 ·107 2.5 ·107 (18) 7.99 ·10−7 0.954
(20) 9.25 ·10−7 0.951 (20) 8.12 ·10−7 0.953

The subset H ⊂ {1, . . . ,K} which contains the system with the smallest miss probability is defined as

H =
{
h|h ∈ {1, . . . ,K}∧∀k �= h : p̂h ≤ p̂k +(Whk −  )+

}
(24)

where (a)+ = max(0,a). The proof that H contains for normally distributed observations the “best” configuration with a
probability of at least 1− can be found in the online companion of (Boesel, Nelson, and Kim 2003). Substitution of the
maximum by the minimum yields the required result. Although we argued above that the indifferent zone parameter should
not be zero for the selection of the best system, for screening also  = 0 may be used. In this case H has to contain
the system or one of the systems with the smallest miss probability. If  > 0, then H has to contain one system k with
|pk − p1| ≤  .

The procedure is valid for normally distributed observations and only asymptotically valid for binomial distributions.
To make the data more normally distributed, one can use batching and compute the variance via (3) and (4). Alternatively,
one can extend the approach by applying the modified values s̃k, ñk and p̃k from (18) such that the coefficient Wij become

Wij =

√
t2
ni−1,(1−/2)1/k p̃i(1− p̃i)

ñi
+

t2
n j−1,(1−/2)1/k p̃ j(1− p̃ j

ñ j
. (25)

These coefficients are afterwards used to compute H .

6.2 Experimental Results

We compare the behavior of the screening procedure with (23) or (25), respectively. The goal of the experiments is to analyze
the coverage and the size of the selected subsets. Coverage for these examples means the percentage of experiments where
the selected subset contains a system k with |pk− p1| ≤  . Experiments are performed for K = 5,10,20,  = 0,5 ·10−8,10−7

and  = 0.05. We consider as an example p1 = 9 · 10−7, p2 = 10−6, p3 = 1.1 · 10−6 and p4, . . . , pK uniformly distributed
between p2 and p3. For (23) we use n = 5 and batch sizes of 103,104, . . . ,108 and for (25) n = 5 ·104,5 ·104, . . . ,5 ·109.
Consequently, for both variants the same number of evaluations is performed. For each setting 200 replications are made
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which assures that the confidence intervals for the coverage and the size of the subset are so small that they are not visible
in the following graphs.

Figure 3 shows the size of H for the different experiments. As expected |H | can be reduced by increasing the number
of evaluations and  . It can also be observed, that less than 5 · 107 evaluations are insufficient for a successful selection
since no systems are removed from the initial set. On the other hand 5 ·108 evaluations lead to a correct selection of the
best system in most cases. (25) reduces H significantly faster than (23). (23) and (25) are both relatively conservative and
therefore the coverage (i.e. the ratio of correct selections) is in both cases larger than 95% (98% and 96%). It is interesting
to note that the coverage reaches the smallest value for a medium number of samples. This seems to be due to the fact that
in these cases very few misses are observed and a single miss can be responsible to remove a system from the set H .
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Figure 3: Size of H of (23) (left side) and (25) (right side)

7 RANKING AND SELECTION

In contrast to a screening procedure where clearly inferior systems are screened out, the goal of a ranking and selection
procedure is to find an ordering of systems or to select the “best” system. We restrict our attention to the problem of selecting
the system with the smallest probability. The selection procedure should select some system k with |pk − p1| ≤  with a
probability of at least 1− . Ranking and selection procedures are most times based on the analysis of the so called least
favorable configuration. Then a sample size n is determined such that the selection of a system with the smallest number of
misses results with probability 1− in the selection of a system k with |pk− p1|<  . The least favorable configuration is in
our case p1 < p2 = . . . = pK−1 = pK = p1 + and p1 ≈ 0.5− (Buzaianu and Chen 2005, Mulekar and Young 1993, Sobel
and Huyett 1957). The ranking and selection procedure for binomial populations from (Sobel and Huyett 1957) computes
n with respect to  and  such that the selection of a system with the smallest sk will result in a correct selection with
probability 1− . The correct values for n depending on  and  can be taken from tables in the literature or have to
be computed or approximated. However, for our applications  has to be very small in the range of 10−7 or below. The
corresponding values for n are not available yet but can be generated from the following equation which computes the
probability that for the first system s = 0,1, . . . ,n misses are observed and for the systems 2, . . . ,K at least s misses are
observed. In case of an equal number of misses, the best configuration is selected randomly.

1− ≥ n


s=0

(n
s

)
(p−  )s(1− p+  )n−s

(
K−1


k=0

(K−1
k

)
1

k+1

((n
s

)
ps(1− p)n−s

)k( n


t=s+1

(n
t

)
pt(1− p)n−t

)K−k−1
)

(26)

The bound for the correct selection holds for known p1 = p−  and pk ≥ p. It says that if n samples are drawn for each
system and one of the systems with the smallest number of misses is chosen randomly, then it will be the first system with
a probability of at least 1− . However, the value of p is unknown and the use of p ≈ 0.5 which would result in the largest
 is too conservative if p is known to be small and the values are hard to compute for large n as necessary when  is in
the range of 10−7. We present some example results below.

An alternative to the use of ranking procedures for binomial distributions are those for normal distributions which are
only asymptotically valid. Several of those procedures are available (Swisher, Jacobson, and Yücesan 2003). Most of these
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approaches are based on the two stage selection procedure by (Rinott 1978). However, this approach is based on the normal
distribution assumption such that the selection probabilities is only asymptotically valid for binomial distributions.

7.1 Experimental Results

We evaluate (26) for  = 10−7 to obtain the number of samples to select the best configuration with the predefined significance
probability. Figure 4 shows the value 1− for K = 5 or 10, n = 108 or 109 and different values of p. For K = 5 and 109

samples per system, we select with probability of at least 0.952 the best system, if we choose the system with the smallest
samples mean and assume that p = 10−6. If we do the same with K = 10, then the probability goes down to 0.914. 108

samples are not sufficient, since we obtain only probabilities of 0.483 and 0.329, if we select the system with the smallest
sample mean out of 5 or 10 alternatives. The situation is even more worse, if we consider the course of 1− when we
increase p. The probability of making the right choice decreases quickly and for p = 10−3 we have even for 109 samples
only probabilities of 0.224 and 0.116 to select the best system out of 5 or 10 systems. This is not much better than a random
selection and clearly shows that the use of the least favorable configuration as recommended in statistics is not usable. A
priori information about the size of p1 is necessary and may be gained by doing some experiments with one of the systems to
compute an upper bound for the miss probability according to some significance probability  ′ using the methods presented
in section 3. The resulting upper bound can then be used in (26) to compute the probability of a correct selection. If 1−
is the probability of a correct selection and we do not reuse the results that have been used to estimate the upper bound, then
the overall probability of a correct selection becomes (1−)(1− ′). Unfortunately, our results indicate that fairly exact
results have to be available for the miss probability to obtain higher probabilities of choosing the correct system because the
selection probability is very sensitive for the choice of p.

0.00

0.20

0.40

0.60

0.80

1.00

1.00e-06 1.00e-05 1.00e-04 1.00e-03

p

1-alpha

K=5, 10^8 samples
K=10, 10^8 samples

K=5, 10^9 samples
K=10 10^9 samples

Figure 4: Probability of the right selection for varying values of p

8 CONCLUSIONS AND SUMMARY OF RESULTS

The paper presents methods for the statistical analysis of experiments with highly dependable systems that have a small
probability of missing a performance or dependability requirement. It is shown that the use of standard evaluation methods
known form stochastic simulation is often crucial since the methods tend to overestimate the significance of the results such
that confidence intervals become too small or systems are selected with a smaller probability than expected. On the other
hand statistical methods for binomial distributions are usually not designed for very small probabilities and large sample
sizes. However, experiments in this paper indicate that these methods can often be adopted for small probabilities and large
samples sizes and can also be used to improve the quality of screening or ranking and selection procedures, if they are
combined appropriately with methods for normally distributed data. These combined methods usually outperform standard
methods for normally distributed data applied to batched observations.

Experiments in the paper are restricted to the independent cases. I.e., all results are stochastically independent. It is
known that for simulation the use of common random numbers often results in much more efficient methods when different
systems are compared or ranked (Law and Kelton 2000). However, it is also known that common random numbers are often
not applicable if different systems are described by different simulation models. Nevertheless, the use of common random
number in combination with the different selection methods will be a future research topic.
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Swisher, J. R., S. H. Jacobson, and E. Yücesan. 2003. Discrete-event simulation optimization using ranking, selection, and
multiple comparison procedures: A survey. ACM Transactions on Modeling Computer Simulation 13 (2): 134–154.

Wang, W. 2006. Smallest confidence intervals for one binomial proportion. Journal of Statistical Planning and Interference 136
(12): 4293–4306.

AUTHOR BIOGRAPHIES

PETER BUCHHOLZ received the Diploma degree (1987), the Doctoral degree (1991) and the Habilitation degree (1996)
all from the TU Dortmund, where he is currently a professor for modeling and simulation. His current research interests
are efficient techniques for the analysis of stochastic models, formal methods for the analysis of discrete event systems, the
development of modeling tools, as well as performance and dependability analysis of computer and communication systems.
His e-mail address is <peter.buchholz@udo.edu>.
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