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C.P. 6128, Succ. Centre-Ville
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ABSTRACT

Randomized quasi-Monte Carlo (RQMC) methods estimate the expectation of a random variable by the average of n dependent
realizations of it. In general, due to the strong dependence, the estimation error may not obey a central limit theorem.
Analysis of RQMC methods have so far focused mostly on the convergence rates of asymptotic worst-case error bounds and
variance bounds, when n→∞, but little is known about the limiting distribution of the error. Here we examine this limiting
distribution for the special case of a randomly-shifted lattice rule, when the integrand is smooth. We start with simple
one-dimensional functions, where we show that the limiting distribution is uniform over a bounded interval if the integrand
is non-periodic, and has a square root form over a bounded interval if the integrand is periodic. In higher dimensions, for
linear functions, the distribution function of the properly standardized error converges to a spline of degree equal to the
dimension.

1 INTRODUCTION

When an unknown mathematical expectation µ is estimated by an average of n independent and identically distributed replicates
of an unbiased estimator, as frequently done in simulation experiments, it is common practice to invoke the central-limit
theorem (CLT) to assess the estimation error and compute a confidence interval on µ (Asmussen and Glynn 2007). But when
the replicates are not independent, which happens for example in generalized antithetic variates or randomized quasi-Monte
Carlo (RQMC) settings, then the CLT does not always hold. In this situation, when the limiting distribution of the (properly
standardized) average is not normal, it is of interest to understand what it is. The aim of this paper is to make a few steps
in this direction.

Recall that any estimator computed by a simulation program in practice can be written as a function of a sequence of
independent U(0,1) random variables, i.e., of a random point in the s-dimensional unit hypercube (0,1)s for some integer s,
where s represents the number of calls to the random number generator in the simulation (Lemieux and L’Ecuyer 2000). The
Monte Carlo method averages n independent replicates of the underlying estimator, obtained from n independent random
points in (0,1)s. In the RQMC method, the n independent points are replaced by n dependent random points, each uniformly
distributed over (0,1)s, and that cover the unit hypercube more evenly than typical independent random points (Niederreiter
1992, L’Ecuyer 2009). Two popular ways of achieving this are randomly-shifted lattice rules and digitally-shifted nets
(L’Ecuyer 2009).

A CLT in known to hold for certain special cases of RQMC methods that involve a large amount of randomization for
the dependent points, such as Latin hypercube sampling (LHS) (Owen 1992) and digital nets with full nested scrambling
(Loh 2003). In the LHS case, a bound on the total variation convergence to the normal distribution is also available. See
Loh (2005) for a survey. But LHS is not one of the most powerful RQMC methods, because it ensures good uniformity
only for the one-dimensional projections of the s-dimensional points, and nested scrambling is not widely used because it
is time-consuming.

Here we examine the case where µ is estimated by a randomly-shifted lattice rule. The problem is difficult, so we start
with a simplified situation where µ is defined by the integral of some function f over the interval (0,1). It turns out that for a
non-periodic smooth function f , the asymptotic distribution of the properly standardized average is not normal, but uniform.
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Thus, a CLT does not hold for s = 1, and therefore there is no hope in proving it for general s. When f is periodic in the
sense that f (0) = f (1), the convergence is faster and the limiting distribution of the standardized average has a square-root
distribution function over a finite interval (it behaves as the square of a centered uniform). In higher dimensions, for linear
functions, the distribution function of the properly standardized error converges to a spline of degree equal to the dimension.

In Sections 2 and 3, we recall the definitions of RQMC methods and randomly-shifted lattice rules, and introduce useful
notation. In Section 4, we derive our results for the one-dimensional case and give several examples. In Section 5, we
examine the general s-dimensional case, for which the limiting distributions turn out to be more complicated to handle. We
estimate and plot the distributions for some examples. A conclusion follows.

2 RANDOMIZED QUASI-MONTE CARLO

Suppose we want to estimate a mathematical expectation µ defined by

µ = µ( f ) =
∫

[0,1)s
f (u)du = E[ f (U)] (1)

for some function f : [0,1)s→ R, where [0,1)s is the s-dimensional unit hypercube and u = (u1, . . . ,us) represents a point
in this cube. An RQMC estimator of µ has the form

µ̂n,rqmc =
1
n

n−1

∑
i=0

f (Ui). (2)

where each point Ui has the uniform distribution over the hypercube (0,1)s, but the entire point set Pn = {U0, . . . ,Un−1}⊂ (0,1)s

covers the hypercube more uniformly than typical independent random points. A meaningful definition of “more uniformly”
requires a specific definition of a figure of merit to measure the uniformity. For such definitions and general background on
quasi-Monte Carlo methods and RQMC, the reader is referred to Niederreiter (1992), Sloan and Joe (1994), L’Ecuyer and
Lemieux (2002), L’Ecuyer (2009).

The RQMC estimator (2) has expectation µ and variance

Var[µ̂n,rqmc] = E[(µ̂n,rqmc−µ)2]. (3)

The usual way of estimating this variance and computing a confidence interval on µ is to obtain m independent realizations
of µ̂n,rqmc, say X1, . . . ,Xm, based on m independent randomizations of Pn, and compute their sample mean X̄m and their
sample variance and S2

x,m. One has E[X̄m] = µ and E[S2
x,m] = mVar[X̄m] (L’Ecuyer and Lemieux 2000). By assuming that X̄m

is approximately normally distributed, one can compute a confidence interval on µ in a standard way. When this assumption
is not true, the normal approximation might still be good for X̄m if m is large (due to the central-limit effect when m→ ∞),
but perhaps not if m is small, which is the usual case. This motivates the need for a better understanding of the distribution
of µ̂n,rqmc.

3 RANDOMLY-SHIFTED LATTICE RULES

An integration lattice is a discrete vector space of the form

Ls =

{
v =

s

∑
j=1

z jv j such that each z j ∈ Z

}
,

where v1, . . . ,vs ∈ Rs are linearly independent over R and where Ls contains Zs, the set of integer vectors. The dual lattice
to Ls is

L∗s = {h ∈ Rs : htv ∈ Z for all v ∈ Ls},

where “t” means “transposed” and all vectors are assumed to be column vectors. It is known that all coordinates of all
vectors of L∗s are integers.
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Let Pn = Ls∩ [0,1)s = {u0, . . . ,un−1} be the set of lattice points that belong to the unit hypercube [0,1)s, where n denotes
the cardinality of Pn. One can show that all coordinates of all vectors of Ls must be multiples of 1/n. A lattice rule is
a numerical integration method that approximates µ by the average of f (u0), . . . , f (un−1). Further details on integration
lattices, lattice rules, and ways of measuring the uniformity of Pn for an integration lattice, can be found in Sloan and Joe
(1994), Tuffin (1998), L’Ecuyer and Lemieux (2000), for example.

To apply a random shift modulo 1 to Pn, we generate a single point U uniformly over (0,1)s and add it to each point
of Pn, modulo 1, coordinate-wise (Cranley and Patterson 1976, Sloan and Joe 1994, L’Ecuyer and Lemieux 2000). For a
lattice rule, this is the same as randomly shifting Ls and then taking the intersection with the unit hypercube [0,1)s. The
shift preserves the global uniformity of the point set Pn and each point Ui = (ui +U) mod 1 of the randomized version of
Pn is uniformly distributed over [0,1)s.

For a randomly-shifted lattice rule, the integration error is the random variable

gn(U) def= µ̂n,rqmc−µ, (4)

which is a function of the random shift U. We are interested in the distribution of this random variable when n is large.
Suppose that the function f has the Fourier expansion

f (u) = ∑
h∈Zs

f̂ (h)exp(2πihtu), (5)

with Fourier coefficients

f̂ (h) =
∫

(0,1)s
f (u)exp(−2πihtu)du,

where i =
√
−1. Then one can show that the Fourier coefficients of gn are ĝn(h) = f̂ (h) if 0 6= h ∈ L∗s , and ĝn(h) = 0

otherwise (L’Ecuyer and Lemieux 2000, Sloan and Joe 1994). Therefore, the Fourier expansion of gn can be written (where
it exists) as

gn(u) = ∑
06=h∈L∗s

f̂ (h)exp(2πihtu). (6)

This expansion may offer a possible path to obtain the distribution of gn(U), or its asymptotic when n→∞, if we can handle
the right side of (6). We will return to this in Section 5. In the next section, we will take a different path.

4 ERROR DISTRIBUTION IN ONE DIMENSION

We start by studying the distribution of g(U) for the simple case of a randomly-shifted lattice rule in one dimension (s = 1).
In this case, the random shift can be generated uniformly over [0,1/n). That is, the randomly-shifted points can be written
as {U/n,(1+U)/n, . . . ,(n−1+U)/n) where U has the uniform distribution over [0,1). We will write a Taylor expansion
of the error over each interval of length 1/n, and sum up these terms to get a handle on the total error and its distribution.

Suppose that f has a bounded third derivative over the interval [0,1]. Then we can write its Taylor expansion around
the center xi = (i+1/2)/n of each interval [i/n,(i+1)/n) as

f (u) = f (xi)+(u− xi) f ′(xi)+
(u− xi)

2

2
f ′′(xi)+ ei

for i/n≤ u < (i+1)/n and i = 0, . . . ,n−1, where |ei| ≤ supi/n≤u≤(i+1)/n | f ′′′(u)|/48n3. Approximating µ =
∫ 1

0 f (u)du by the
average of f (x0), . . . , f (xn−1) is called the midpoint rule, and it is known (Davis and Rabinowitz 1984) that the integration
error for this deterministic rule is

−1
24n2

∫ 1

0
f ′′(u)du+O(n−3).
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Because f ′ is continuous under our assumption, we also have that
∫ 1

0 f ′′(u)du = f ′(1)− f ′(0), and then

1
n

n−1

∑
i=0

f (xi) = µ− f ′(1)− f ′(0)
24n2 +O(n−3). (7)

Applying the same reasoning with f ′ and f ′′ in place of f , we also obtain

1
n

n−1

∑
i=0

f ′(xi) = f (1)− f (0)− [ f ′′(1)− f ′′(0)]
24n2 +O(n−3) (8)

when f ′′ is continuous over [0,1], and

1
n

n−1

∑
i=0

f ′′(xi) = f ′(1)− f ′(0)− [ f ′′′(1)− f ′′′(0)]
24n2 +O(n−3) (9)

when f ′′′ is continuous over [0,1]. The expressions on the left of the two previous displays are approximations of the average
derivative and average second derivative over the interval (0,1), respectively, by the midpoint rule. Putting these ingredients
together, we obtain that the integration error is

gn(U) =
1
n

n−1

∑
i=0

[
f (xi)−µ +

(U−1/2) f ′(xi)
n

+
(U−1/2)2 f ′′(xi)

2n2 + ei

]
= (U−1/2)

f (1)− f (0)
n

+
[
(U−1/2)2−1/12

] f ′(1)− f ′(0)
2n2 +O(n−3). (10)

In fact, (10) is a second order Euler-MacLaurin expansion of gn(U). The expansion of order m, for a function f having
m+1 continuous derivatives, is (Davis and Rabinowitz 1984, Page 136) or (Dahlquist and Bjorck 2008, page 303):

gn(U) =
m

∑
k=1

Bk(U)
f (k−1)(1)− f (k−1)(0)

k!nk +O(n−(m+1)), (11)

where Bk is the kth Bernoulli polynomial, defined by

Bk(u) =
k

∑
j=0

1
j +1

j

∑
`=0

(−1)`
(

j
`

)
(u+ `)k

(Abramowitz and Stegun 1970). This gives B0(u) = 1, B1(u) = u−1/2, B2(u) = u2−u+1/6, B3(u) = u3−(3/2)u2 +(1/2)u,
B4(u) = u4−2u3 + u2−1/30, and so on. A examination of the proof in (Dahlquist and Bjorck 2008) reveals that f (m+1)

does not have to be continuous; it suffices that it is integrable over [0,1], i.e., that
∫ 1

0 f (m+1)(u)du < ∞.
Proposition 1 (i) If f has an integrable second derivative over [0,1] and f (1) 6= f (0), then

W (1)
n

def=
ngn(U)

f (1)− f (0)
= U−1/2+O(1/n),

so W (1)
n +1/2 converges in distribution to the U(0,1) random variable U when n→ ∞.
(ii) If f has an integrable third derivative over [0,1], f (1) = f (0), f ′(1) 6= f ′(0), and if we define

W (2)
n

def=
2n2gn(U)

f ′(1)− f ′(0)
= (U−1/2)2−1/12+O(1/n),
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Figure 1: Empirical distribution F̂ of 1000 replicates of ngn(U)+1/2 for one-dimensional lattices with n = 4 points (in red)
and n = 1024 points (in blue), for f (u) = u2.

then W (2)
n + 1/12 converges in distribution to the random variable (U − 1/2)2, which has density 1/

√
x and distribution

function 2
√

x for 0 < x < 1/4 and 0 elsewhere. This means that 2[W (2)
n + 1/12]1/2 converges in distribution to a uniform

random variable over (0,1).
(iii) If f has m+1 derivatives over [0,1],

∫ 1
0 f (m+1)(u)du < ∞, and f (k)(1) = f (k)(0) for k = 0, . . . ,m−2, but f (m−1)(1) 6=

f (m−1)(0), then gn(U) = Bm(U)[ f (m−1)(1)− f (m−1)(0)]/(m!nm)+O(n−(m+1)), and therefore

W (m)
n

def=
m!nmgn(U)

f (m−1)(1)− f (m−1)(0)
= Bm(U)+O(1/n)

converges in distribution to the random variable Bm(U). For m > 2, this random variable is not monotone in U and it has
a more complicated distribution than in the previous cases.

Proof. In case (i), we have gn(U) = (U−1/2)( f (1)− f (0))/n+O(n−2), from which W (1)
n = U−1/2+O(1/n). In case

(ii), gn(U) = [(U−1/2)2−1/12]( f ′(1)− f ′(0))/(2n2)+O(n−3), and therefore W (2)
n = (U−1/2)2−1/12+O(1/n), and so

[W (2)
n + 1/12]1/2 converges to |U − 1/2|, which is uniform over (0,1/2). The result follows. Case (iii) follows similarly

from (11). 2

Example 1 Let f (u) = u2. We have f (1)− f (0) = 1, so we are in case (i) and W (1)
n + 1/2 = ngn(U) + 1/2 is

approximately U(0,1), with O(1/n) approximation error. In fact, from (10), this O(1/n) approximation error is bounded
by |(u2−u+1/6)( f ′(1)− f ′(0))|/(2n)+O(n−2)≤ 1/(12n)+O(n−2). Figure 1 shows the empirical distribution F̂ of 1000
independent replications of ngn(U)+ 1/2 for one-dimensional lattices with n = 4 and n = 210 = 1024 points. Recall that
these lattices have point sets {0,1, . . . ,(n−1)/n}. The observed distribution with n = 1024 is already very close to uniform
over (0,1). To understand the right shift of the curve for n = 4 (compared with the uniform distribution function), observe
that for this function, we have exactly ngn(U)+1/2 = U +((U−1/2)2−1/12)/n, which has expectation 1/2 but takes its
values in the interval (1/6n,1+1/6n). For n = 4, the values are in the interval (1/24, 1+1/24), as observed in the figure.
For n = 1024, the shift is too small to be visible to the eye. 2

Example 2 Let f (u) = u(1− u). We have f (1) = f (0) = 0 and f ′(1)− f ′(0) = −2, so we are in case (ii) and
W (2)

n +1/12 =−n2gn(U)+1/12 converges to (U−1/2)2 in distribution when n→∞. In fact, here we have f ′′′(u) = 0, and
it can be shown that −n2gn(U)+ 1/12 has exactly the same distribution as (U − 1/2)2. That is, 2(−n2gn(U)+ 1/12)1/2

has exactly the U(0,1) distribution. Figure 2 shows the empirical distribution F̂ of 1000 independent replications of
2[−n2gn(U)+1/12]1/2 for one-dimensional lattices with n = 4 and n = 1024 points. 2

Example 3 Take f (u) = u3 +u2−2u. We have f (0) = f (1) = 0, f ′(1)− f ′(0) = 5, and f ′′′ does not vanish. Here,
2n2gn(U)/5+1/12 has approximately the same distribution as (U −1/2)2, and 2[2n2gn(U)/5+1/12]1/2 is approximately
U(0,1), but this distribution is not exact. Figure 3 shows the empirical distribution F̂ of 1000 independent replications of
2[2n2gn(U)/5+1/12]1/2 for one-dimensional lattices with n = 64 and n = 16324 points. 2
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Figure 2: Empirical distribution F̂ of 1000 replicates of 2[−n2gn(U)+1/12]1/2 for one-dimensional lattices with n = 4 points
(in red) and n = 1024 points (in blue), for f (u) = u(1−u).
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Figure 3: Empirical distribution F̂ of 1000 replicates of 2[2n2gn(U)/5+1/12]1/2 for one-dimensional lattices with n = 64
points (in red) and n = 214 = 16384 points (in blue), for f (u) = u3 +u2−2u.

Example 4 Consider now f (u) = sin(2πmu) for an arbitrary positive integer m. In this case, we have f (k)(1) = f (k)(0)
for all k≥ 0. This implies that gn(U) converges faster than any polynomial in 1/n. In fact, if n is even and n≥ 2m, gn(U) = 0
(exactly) for all U . In this case, this function is integrated exactly, regardless of the shift. 2

It is interesting to note that an integrand f with f (0) 6= f (1) can be transformed into a integrand f̃ having the same
integral and with f̃ (0) = f̃ (1) (a periodic function), by defining f̃ (1− u) = f̃ (u) = f (2u) for 0 ≤ u ≤ 1/2. With this, we
can switch from case (i) to case (ii) in Proposition 1, i.e., from O(n−1) to O(n−2) convergence for gn(U). The resulting
function f̃ also symmetric with respect to u = 1/2. This transformation is equivalently achieved by keeping f unchanged
and transforming the randomized points Ui via Ũi = 2Ui if Ui < 1/2 and Ũi = 2(1−Ui) if Ui ≥ 1/2. This is called the baker’s
transformation; it stretches the points Ui by a factor of two and then folds back those that exceed 1. After applying this
transformation, the lattice points become locally antithetic in each interval of the form [i/n,(i +2)/n] if n and i are even,
in the sense that they are at equal distance from the center of the interval, on each side. As a result, they integrate exactly
any linear function over this interval. This holds for every such interval, so a piecewise-linear approximation which is linear
over each interval is integrated exactly.

Example 5 We apply the baker’s transformation to the randomly-shifted points to integrate f (u) = u2, the same
function as in Example 1. The transformed function is f̃ (u) = 4u2 for u ≤ 1/2 and f̃ (u) = 4(1− u)2 for u > 1/2. We
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Figure 4: Empirical distribution of 1000 replicates of 2[n2gn(U)/4 + 1/12]1/2 for lattices with 16 and 1024 points (n is
even), for f (u) = u2 with the baker’s transformation.

obtain
∫ 1

0 f̃ ′(u)du = 0, but
∫ 1

0 f̃ ′′(u)du = 8 6= f ′(1)− f ′(0), which can be explained by the fact that f̃ ′ is discontinuous at
u = 1/2. If n is even, this point of discontinuity lies at the boundary between two intervals, and the result of case (ii) of
Proposition 1 still stands with f ′(1)− f ′(0) replaced by 8. That is, n2gn(U)/4 + 1/12 converges to (U −1/2)2, and then
2[n2gn(U)/4+1/12]1/2 is approximately U(0,1). Figure 4 shows the empirical distribution of 1000 independent replications
of 2[n2gn(U)/4+1/12]1/2 for one-dimensional lattices with n = 16 and n = 1024 points. If n is odd, then it can be shown
that the middle interval contributes another non-negligible quantity to n2gn(U)/4. 2

The integrands f encountered in practice are often discontinuous, and sometimes they are also unbounded and have
unbounded derivatives. The next examples give simple illustration of when can happen in these cases, in one dimension.

Example 6 Consider the step function f (u) = 0 for u < a and f (u) = 1 for u ≥ a, for some constant a ∈ (0,1).
For a given n, let δ (n) = dnae/n−a. The integration error with a randomly shifted lattice rule is then gn(U) = −δ (n) if
U/n < 1/n− δ (n), and gn(U) = 1/n− δ (n) if U/n ≥ 1/n− δ (n), where U is U(0,1). Thus, the error is distributed over
only two possible values, and the variance is O(n−2), unless a is a multiple of 1/n, in which case there is no error.

More generally, if f is twice continuously differentiable, except at a single point a where it has a jump. Then f can be
written as f = fj + fc, where fj is a step function as above and fc is a smooth function that obeys Proposition 1. The error
gn(U) is then the sum of two terms: an O(1/n) error distributed over two values as above, and another term obtained by
applying Proposition 1 to fc. 2

Example 7 We now consider the unbounded function f (u) = g(F−1(u)) where F is the distribution function of a
random variable with infinite support [0,∞). Let n0 be a (fixed) large integer and let b = 1− 1/n0. Suppose that n→ ∞

while n remains a multiple of n0. The error for the integral over the interval [0,b] has a distribution that obeys a modified
version of Proposition 1, with f (k−1)(1) replaced by f (k−1)(b), and n replaced by n−n/n0. Over the last interval [b,1), the
distribution is more complicated, and the error is unbounded. In fact, the error over the interval [(n−1)/n,1) is distributed
as a random variable generated from the tail of the distribution F , so the total error will have a right tail that resembles the
right tail of F . It will not be uniform. 2

5 ERROR DISTRIBUTION FOR MULTI-DIMENSIONAL INTEGRALS

In s dimensions, recall that the Fourier expansion of gn(u), for an arbitrary shift u ∈ [0,1)s, is

gn(u) = ∑
06=h∈L∗s

f̂ (h)exp(2πihtu). (12)
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Let w1, . . . ,ws be a basis of the dual lattice L∗s and let W be an s× s matrix with columns w1, . . . ,ws. Note that all these
vectors have integer coordinates. Thus, L∗s is the set of all integer vectors h that can be written as

h = Wz =
s

∑
j=1

z jw j

for z = (z1, . . . ,zs)t ∈ Zs. By summing over the vectors z instead of the vectors h (a change of variable), we can rewrite

gn(u) = ∑
06=z∈Zs

f̂ (Wz)exp(2πiutWz) = ∑
06=z∈Zs

v̂n(z)exp(2πiutWz) = vn(utW) (13)

for some function vn whose Fourier coefficients are v̂n(z) = f̂ (Wz). This function vn depends on n and on the selected lattice
(via W).

If we can recover vn explicitly from its Fourier coefficients, this would give an explicit formula for gn(u), the error as
a function of the shift. If this gn turns out to be not too complicated (which could occur in very simple situations), we may
also be able to approximate its distribution. This remains to be explored and studied. For now, we give some small examples.

Example 8 In one dimension, the dual lattice contains all multiples of n. Thus, the matrix W is one by one and
contains the single entry n. The Fourier coefficients of vn are then v̂n(z) = f̂ (nz), for z ∈ Z, and we have gn(u) = vn(nu).

As a special case, if Bk is the kth Bernoulli polynomial, then its Fourier expansion is

Bk(u) = ∑
06=h∈Z

−k!
(2πih)k e2πihu

for u ∈ (0,1), and we have

v̂n(z) =
−k!

(2πinz)k = B̂k(z)n−k.

We can then conclude that vn(u) = n−kBk(u) and gn(u) = vn(nu) = n−kBk(nu mod 1) for all u∈ (0,1). But if U is U(0,1), then
nU mod 1 is also U(0,1), and therefore nkgn(U) has exactly the same distribution as Bk(U). This agrees with Proposition 1.

2

Example 9 Suppose f : [0,1)s→ R is a linear combination of s Bernoulli polynomials, of the form

f (u) = f (u1, . . . ,us) =
s

∑
j=1

a jBm j(u j)

for some arbitrary real numbers a j. This is just a sum of one-dimensional functions, and the total error gn(U) is the sum of
the integration errors made in approximating the integrals of these one-dimensional functions. From the previous example,
gn(U) has exactly the same distribution as ∑

s
j=1 a jn−m j Bm j(U j), where U = (U1, . . . ,Un).

The case where f is a linear function corresponds to the special case where m j = 1 for all j. Then, ngn(U) has the same
distribution as W = ∑

s
j=1 a j(U j−1/2), which is a linear combination of independent uniform random variables. Theorem

1 of Barrow and Smith (1979) tells us that the (exact) cumulative distribution function of W is a non-decreasing spline of
degree s with s−1 continuous derivatives, and its support is the finite interval [−b,b], where b = ∑

s
j=1 a j/2. This distribution

function is exactly

F(w) = P[W ≤ w] =
1

s!∏
s
j=1 a j

∑
J⊆{1,...,s}

(−1)|J|
[

max

(
0, w+b−∑

j∈J
a j

)]s

(14)

for −b≤ w≤ b. Its density is given by a spline of degree s−1. 2

Example 10 As a concrete illustration of the previous example, let s = 2 and f (u1,u2) = 5u1 +3u2−4 = 5B1(u1)+
3B1(u2). Note that the constant −4 has no effect on the error, so we can forget it. Here, we have b = 4 and the distribution
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Figure 5: Empirical distribution F̂ of 1000 replicates of ngn(U1,U2) for two-dimensional lattices with n = 1024 points, for
f (u1,u2) = 5u1 +3u2.

function Fw of ngn(U) = ngn(U1,U2) is a spline of degree 2 defined by

Fw(w) =

 (w+4)2/30 for −4≤ w≤−1,
(6w+15)/30 for −1≤ w≤ 1,
−(w+1)2/30+(w−1)/3+25/30 for 1 < w≤ 4.

The corresponding density is a “table mountain” function, defined by

fw(w) =

 (4+w)/15 for −4≤ w≤−1,
1/5 for −1≤ w≤ 1,
(4−w)/15 for 1 < w≤ 4.

Figure 5 displays the empirical distribution F̂ of ngn(U1,U2) obtained from 1000 independent replications of a randomly-shifted
lattice rule with n = 1024, v1 = (1/n,271/n), and v2 = (0,1). In Figure 6, we plot the empirical distribution of the 1000
replicates of Fw(ngn(U1,U2)), which really looks uniform over (0,1), as expected. 2

Example 11 Suppose now that f : [0,1)s→ R is a product of Bernoulli polynomials as follows:

f (u) = f (u1, . . . ,us) =
s

∏
j=1

Bm j(u j).

Its Fourier expansion is then

f (u) = ∑
06=h∈Z

s

∏
j=1

−m j!
(2πih j)m j

e2πih ju j =
(−1)sm1! · · ·ms!
(2πi)m1+···+ms ∑

06=h∈Z

1
hm1

1 · · ·h
ms
s

e2πihtu

for u = (u1, . . . ,us)t ∈ (0,1)s. In this case, the Fourier coefficient v̂n(z) = f̂ (Wz) can be written as

v̂n(z) =
s

∏
j=1

−m j!
(2πi)m j(w( j)z)m j

,

where w( j) is the j-th row of the matrix W. Here, (w( j)z)m j is a multivariate polynomial in z. 2

Example 12 Let s = 2 and f (u1,u2) = B1(u1)B1(u2) = (u1−1/2)(u2−1/2). We do not have an exact expression
for the distribution of gn(U) in this case, but Figure 7 shows the empirical distribution obtained with the two-dimensional
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Figure 6: Empirical distribution F̂ of 1000 replicates of Fw(ngn(U1,U2)) for two-dimensional lattices with n = 1024 points,
for f (u1,u2) = 5u1 +3u2.

lattice with n = 8192, v1 = (1/n,1530/n), and v2 = (0,1). It resembles a spline of degree 2. This seems to indicate that the
error is dominated by some linear combination of U1 and U2. 2

0-1.2 1.2

1

u

Figure 7: Empirical distribution F̂ of 1000 replicates of ngn(U1,U2) for two-dimensional lattices with n = 8192 points, for
f (u1,u2) = B1(u1)B1(u2) = (u1−1/2)(u2−1/2).

6 CONCLUSION

We made a few steps toward understanding the limiting distributions of RQMC estimators obtained via a randomly-shifted
lattice rule. The examples analyzed in this paper are admittedly very simple. Further analysis and empirical exploration
for higher-dimensional functions is certainly needed. Other RQMC methods than lattice rules also need examination. For
example, what we did for randomly-shifted lattices using Fourier expansions in this paper can be transposed to digital nets
with random digital shifts, if we replace the Fourier expansions by Walsh expansions, and using the correspondence explained
in L’Ecuyer (2004), for example.
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