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ABSTRACT 

The fundamental principles of financial risk assessment are discussed, with primary emphasis on using simulation to evaluate 
and compare alternative investments.  First we introduce the key measures of performance for such investments, including 
net present value, internal rate of return, and modified internal rate of return.  Next we discuss types of risk and the key 
measures of risk, including expected present value; the mean, standard deviation, and coefficient of variation of the rate of 
return; and the risk premium.  Finally we detail the following applications: (i) stand-alone risk assessment for a capital-
budgeting problem; (ii) comparison of risk-free and risky investment strategies designed merely to keep up with the cost of 
living; (iii) value-at-risk (VAR) analysis for a single-stock investment; (iv) VAR analyses for two-asset portfolios consisting 
of stock and either call or put options; and (v) VAR analyses for two-asset portfolios consisting of both puts and calls. 

1 INTRODUCTION 

The term risk encompasses not only the probability (likelihood) of various outcomes of interest but also the adverse or bene-
ficial consequences resulting from the occurrence of those outcomes.  Risk is not the same as uncertainty or random varia-
tion; that is, a truly risky situation must somehow involve a chance of monetary loss or some other type of adverse conse-
quence as well as a chance of monetary gain or some other type of beneficial consequence.  An individual who elects to take 
the afternoon off to play golf despite a 70% chance of rain may incur risk; but for that individual’s office mate who remains 
in the office, the same uncertainty about the weather may not have an element of risk.  Koller (2005) identifies two parame-
ters associated with risk: (i) the probability of occurrence of a specific outcome; and (ii) the consequence (impact) associated 
with the outcome, which may be expressed in terms of the utility resulting from the outcome or in terms of the monetary loss 
or gain resulting from the outcome.  In each application, both (i) and (ii) must be quantified.   

Wharton (1992) makes a distinction between risk analysis and risk assessment.  Risk analysis is the identification of 
possible outcomes, and risk assessment is the estimation of probabilities and the economic impacts that result from the cor-
responding outcomes.  In many situations the required quantities are not observable, and estimates of these quantities must be 
based on someone’s subjective judgment.  In reality there may be little agreement between perceived and actual risk.  Be-
cause all conclusions derived from any quantitative study will depend heavily on the inputs to that study, risk analysis and 
assessment must be preceded by as complete and accurate perception of the risk as is possible.  Equally important is that risk 
analysis and assessment must include the following: (a) validation of the assumptions underlying the financial model used in 
the analysis; (b) thorough exploration of the sensitivity of the model results to changes in the underlying assumptions and 
changes in the input parameters whose values are uncertain or are subject to random variation; and (c) an honest representa-
tion of the inherent variability (lack of precision) in the final results that is due to uncertainty or random variation in the input 
parameters. 

Complex problems in risk analysis and assessment arise in many application contexts, ranging from personal finance 
(Should I accept the terms of a contract offered for the purchase of my home?) to international banking (Should governments 
inject cash into their economies in an attempt to prevent a global depression?).   Unfortunately, the pervasive nature of these 
applications seriously hinders an accurate perception of risk.  William Schreyer, former chair and CEO of Merrill Lynch, 
once said of business decisions, “The key is not to eliminate risk; it is to measure it and manage it wisely.”  Koller (2005) de-
tails applications of risk analysis and assessment in the following areas: 
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• Legal actions—for example, evaluating the net benefit of settlement vs. the cost of ligation. 
• Environmental health and safety—for example, evaluating the impact of a firm’s doing business in various foreign 

countries in terms of the firm’s profitability and the resulting effect on the environment and on the health and safety 
of the firm’s employees. 

• Logistics systems engineering—for example, ranking and prioritizing various pipeline routes based on political, en-
vironmental, commercial, financial, technical, and other considerations. 

• International economic development—for example, comparing countries as potential recipients of economic aid 
based on political stability, foreign investment conditions, operating environment, transportation infrastructure, etc. 

• Capital project ranking and portfolio management—for example, comparing financial outputs using project safety 
and environmental aspects, cost estimates, incentives, discount rates, etc. 

 
Regardless of the complexity of the problem, the essence of risk analysis and assessment is the same: to compare two or 

more options, where each option features probabilistic outcomes and the associated economic consequences.  Figure 1 is a 
simple decision tree demonstrating the nature of the “basic risk paradigm” (MacCrimmon and Wehrung 1986).  In this figure 
two decision alternatives are represented—a  “sure” action with one outcome; and a “risky” action that has two possible out-
comes, each having some probability of occurrence.  This figure is a simplified ideal in the following respects: (i) in reality, 
the “sure” action may be only less risky than the one labeled “risky”; (ii) there may be more than two possible actions; and 
(iii) each action may have more than two possible outcomes.  The sum of the probabilities of all outcomes must sum to one. 

 

 
Figure 1:  The basic risk paradigm 

 
This paper deals primarily with risk assessment and techniques for processing and summarizing the probabilities and 

outcomes into information that can be used as the basis for evaluating alternative investments, with primary emphasis on the 
use of simulation for evaluating and comparing alternative investments.  The rest of this paper is organized as follows.  In 
Section 2, we discuss the main measures of performance for such investments, including net present value, internal rate of re-
turn, and modified internal rate of return.  In Section 2 we also discuss types of risk and the main measures of risk, including 
expected present value; the mean, standard deviation, and coefficient of variation of the rate of return; and the risk premium.  
In Section 3 we discuss the following applications in detail: (i) stand-alone risk assessment for a capital-budgeting problem; 
(ii) a comparison of risk-free and risky investment strategies designed merely to keep up with the cost of living; (iii) value-at-
risk (VAR) analysis for a single-stock investment; (iv) VAR analyses for two-asset portfolios consisting of stock and either 
call or put options; and (v) VAR analyses for two-asset portfolios consisting of both puts and calls.  Finally in Section 4 we 
recapitulate our main conclusions.  The slides for the oral presentation of this article are available online via 
<www.ise.ncsu.edu/jwilson/files/wsc09itra.pdf>, which also contains hyperlinks to the spreadsheet si-
mulations for the applications discussed in Section 3. 
 

2 ELEMENTS OF FINANCIAL RISK ASSESSMENT 

With most financial investments, individuals or organizations spend money today with the prospect of earning even more 
money at some future time.  So the first step in assessing risk is often to estimate the cash flows associated with the alterna-
tives.  As stated in the introduction, the estimation of the cash flows for each alternative investment is based on subjective 
evaluations by individuals.    For the present we will assume that we have deterministic (fixed, nonrandom) estimates of all 
cash flows, which typically include the following: 

Sure  action

Risky action

Sure outcome

Loss outcome

Gain outcome

Chance of  loss

Chance of Gain
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1. Initial investment outlay—for example, (a) in the case of a project undertaken by a firm, this is the cost of acquiring 

fixed assets and increases to net operating working capital; or (b) in the case of a stock purchase by an individual, 
this is the cost of the stock. 

2. Operating cash inflows and outflows over the investment’s life—for example, in case (a) immediately above, this 
includes after-tax income and depreciation of equipment required for the project; and in case (b), this includes divi-
dends paid to the stockholder. 

3. Terminal year cash inflow and outflow—for example, in case (a), this is the salvage value of the project’s fixed as-
sets adjusted for any taxes and the return of the net operating working capital; and in case (b), this is the estimated 
value of a stock when it is sold. 

2.1 Measures of Financial Performance 

The financial performance of any investment may be measured by the investment’s return, which attempts to relate the future 
cash flow to the expenditures required to obtain that cash flow.  The simplest of the return measures is dollar return, which is 
given by the following simple relation: dollar return = (amount received) – (amount invested).  This, however, gives no indi-
cation of the magnitudes of the amounts received and invested, the relative scales of the return and investment, or the timing 
of the return.  Rate of return, given by the relation ( ) ( )rate of return amount received amount invested amount invested ,= −
considers the return per unit of investment.  Rates of return are typically expressed on an annual basis; for example, a 10% 
annual rate of return implies that after one year a $100 investment will return $10.  The same $100 investment which returns 
$10 after five years results in a 1.92% annual rate of return because of the time value of money—the idea that a dollar re-
ceived today is more valuable than a dollar received at a later time.  More generally if P is a dollar amount received at the 
present time and R is the interest (or discount) rate per year, then n years into the future we see that the future value F of the 
present amount P is given by the relation ( )1 nF P R= + ; conversely the present (today’s) value P of the dollar amount F re-

ceived n years into the future is given by the relation ( )1 .nP F R= +   Although the basic unit of time is a year in this discus-
sion, we could have used a day, a week, a month, or some other time unit instead; and then the formulas given above relate 
the present value P and its future value F after n time periods, where R denotes the interest rate per period. 

In project risk analysis and capital budgeting problems, simulation practitioners find the following measurements of re-
turn useful in ranking and selection from a set of alternative investment options: 

 
1. Net present value (NPV) is the present value of future net cash flows, discounted at some rate, minus the initial in-

vestment. 
2. Internal rate of return (IRR) is the discount rate that equates the present value of a project’s cash inflows to the 

present value of the project’s cash outflows. 
3. Modified internal rate of return (MIRR) is the discount rate that equates the following: (a) the present value of the 

magnitudes of a project’s cash outflows discounted at the firm’s cost of capital, as explained in the paragraph fol-
lowing Figure 2 below; and (b) the present value computed at the discount rate MIRR of the project’s terminal val-
ue, where the latter is the sum of the future values of the cash inflows compounded at the firm’s cost of capital. 

 
NPV is defined by the relation 
 

0

CF
NPV ,

(1 )

n
t

t
t R=

=
+

∑  

 
where n is the number of periods; CFt is the cash flow at time t (that is, the end of period t) for 0, ,t n=  ; and R is the dis-
count (interest) rate per period.  When using NPV to compare several alternatives, we should of course use the same value of 
R to compute all relevant NPVs.  Typically the current cost of capital is used, as elaborated after Figure 2 below.   

The definition of IRR can be stated mathematically as the rate that yields  
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where n  and CFt  are defined as above; 0CF 0< , indicating the initial investment outlay; and CF 0t >  for 1, ,t n=  .  Find-
ing the IRR for a set of cash flows requires an iterative solution method, but most spreadsheet software packages include a 
built-in function for computing the IRR.  Note that when using IRR as a financial performance measure, we usually assume 
that the initial outlay is the only negative net cash flow and all subsequent net cash flows are positive. 
 NPV and IRR are used to rank and select investment options.  Table 1 shows the initial investment and subsequent cash 
flows for two potential projects.  An investment (cash outflow) of $100 at time zero (today) in project A or B would return a 
different set of net cash flows (NCFs) over the next four years, depending on which project is selected.  We assume here that 
the cash inflow is received at the end of the each year.  If we rank projects A and B based on NPV computed at the discount 
rate R = 10%, then project A outranks (is preferred to) project B because A BNPV NPV .>   With respect to IRR, project A al-
so outranks project B  because A BIRR IRR .>  

 
Table 1: Examples of projects that have the same initial investment, but different cash flow streams, 
NPVs, and IRRs 

 
Project A 

  Time Period 0 1 2 3 4 NPV @ 10% IRR 
Net cash flow –100   50   40 30 10 

  Cumulative NCF –100 –50 –10 20 30     
Discounted NCF (@ 10%) –100   45.5   33.1 22.5 6.8 7.9 14.5% 
Cumulative discounted NCF  –100 –54.5 –21.4 1.1 7.9     

 
Project B 

  Time Period 0 1 2 3 4 NPV @ 10% IRR 
Net cash flow –100  10   30   40 60 

  Cumulative NCF –100 –90 –60 –20 40     
Discounted NCF (@ 10%) –100    9.1   24.8   30.1 41.0 5 11.8% 
Cumulative discounted NCF  –100 –90.9 –66.1 –36.0 5.0     

 
For selecting projects, NPV is a better comparison metric than IRR in some respects; however, IRR is widely used in in-

dustry.  An NPV profile, a graph of the NPV of each alternative project as a function of the discount rate R, demonstrates why 
NPV may be a superior in some cases.  For example, in Figure 2 notice that the curve for ANPV  crosses over the curve for 

BNPV  at the crossover rate of 7.2% so that when 7.2%,R <  we have B ANPV NPV>  and project B is preferred; on the oth-
er hand when 7.2%,R > we have A BNPV NPV>  and project A is preferred.   

 

 
Figure 2:  Net present value profiles of projects A and B 
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To continue our discussion of the merits of NPV versus IRR as measures of financial performance, we must consider the 
cost of capital k, which for simplicity we define as the interest rate at which the individual or firm must borrow to finance an 
investment; for more on this subject, see Chapter 9 of Brigham and Houston (2002).  If a single independent project is being 
evaluated without considering other alternatives, then both IRR and NPV lead to the same decision—accept the project if 
NPV > 0  (or equivalently, IRR > k ) and reject the project otherwise.  However, in the case where A and B are mutually ex-
clusive alternatives and k  is used as the discount rate, then if k < 7.2%, we see from Figure 2 that the NPV method chooses 
B, whereas the IRR method always chooses A regardless of the value of k, provided that AIRR 14.5%.k < =   It follows that 
NPV is the preferred measure of financial performance because IRR can select the inferior alternative when the relevant dis-
count rate is on the “wrong” side of the crossover point.  Notice also that compared with the curve for ANPV ,  the curve for 

BNPV  is more sensitive to changes in the discount rate R because of its steeper slope.  The greater sensitivity to the discount 
rate is caused by the longer-term nature of project B compared with project A (that is, the bulk of the cash inflows for project 
B occur later than the bulk of the cash inflows for project A); and this phenomenon is sometimes interpreted as an indication 
that B is a higher risk than A. 

Another complication in using IRR arises when a project has both inflows and outflows of cash over the course of the 
project so that the net cash flow changes sign at least twice.  For example beyond the initial investment for construction of an 
offshore oil production platform (a negative cash flow at the beginning), the platform must be dismantled at the end of its 
productive life; and the dismantling cost will cause a negative cash flow after all positive cash flows have been realized.  A 
cash flow is said to be nonnormal if it has two more changes in sign, which means that Equation (1) can have multiple real 
roots so that there are multiple possible values for IRR.  To eliminate this problem, a modified internal rate of return (MIRR) 
can be calculated.  From item 3 in the list of financial measures given at the beginning of this section, we see that MIRR is 
the rate that satisfies the equation 

 

 
0 0 0 0

COFCIF (1 ) COF CIF (1 )
NPV 0 or ,

(1 MIRR) (1 ) (1 MIRR) (1 )

n t n tn n n n
tt t t

n t n t
t t t t

k k
k k
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= = = =
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= + = =

+ + + +
∑ ∑ ∑ ∑  (2) 

 
where: n is the number of time periods; k is the cost of capital; COFt  is the cash outflow (a negative number) at time t  so that 

t tCOF COF= −  is the magnitude of the cash outflow at time t for 0,1, , ;t n=   and CIFt   is the cash inflow (a positive 
number) at time t for 0,1, ,t n=  .  Equation (2) has a unique real root, which is the MIRR.  

2.2 Types of Financial Risk 

In addition to defining the metrics of evaluation, we must also identify the type of risk we are trying to quantify and manage.  
Most financial texts recognize three types of risk: 

 
1. An investment’s stand-alone risk is the risk associated with a single investment opportunity, ignoring the fact that 

the investment may represent only one of several assets held by a firm or individual. 
2. Diversifiable risk is the type of risk that can be diluted by viewing one investment as part of a group that may con-

tain other investments, of which some may be less risky and some may be more risky compared with the single in-
vestment under consideration. 

3. Market, or beta, risk is the type of risk that cannot be eliminated by diversification because it stems from pervasive 
factors that typically affect most investments—for example, inflation, recession, and high interest rates.  

 
Diversified risk can be managed in a properly chosen set of investments because by definition it is risk that can be reduced by 
combining investments that are negatively correlated or that at least are not perfectly positively correlated.  (The phenomenon 
of correlation between investments is discussed in detail in Section 2.3 below.)  Given proper diversification, market risk 
outweighs diversifiable risk as an issue of concern.  In investment evaluations (whether projects or stock purchases), stand-
alone risk may sometimes serve as a surrogate for harder-to-measure corporate risk and market risk.  If the economy does 
well (as measured by market risk), then usually firms do well (as measured by corporate risk); and if a firm does well, then it 
can better control a project (as measured by stand-alone risk).  In other words, the three types of risk are often closely related.   

We note that most investors are risk averse, preferring to avoid risk and thereby requiring the promise of higher rates of 
return on risky investments.  The risk premium, RP, is the difference between the expected rate of return on a given risky as-
set and the return on a less risky asset—that is, the additional return that investors require for assuming additional risk. 
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2.3 Measures of Risk  

Because risk assessment must account for the value (gain or loss) resulting from each outcome as well as the corresponding 
probability of occurrence of that outcome, an appropriate performance measure must account for both of these quantities over 
the “sample space” of all possible outcomes.  One such appraisal mechanism is the expected present value, 
 

1
EV ,

m

g g
g

p v
=

= ∑  

where the number of possible outcomes is denoted by m; and for 1, , ,g m=   the value of outcome g is denoted by gv  and 

the probability of outcome g is denoted by gp .  For a risky investment, the performance measure analogous to rate of return 
is the expected rate of return, 
  

 

1
,

m

g g
g

k p k
=

= ∑  (3) 

  
where gk  denotes the rate of return of outcome g for 1, , .g m=   

At this point we have to assign probabilities to each potential outcome and compute the expected rate of return as in Eq-
uation (3) via a payoff matrix.  If we are computing NPV and IRR from a cash-flow analysis similar to that given in Section 
2.1, then using this approach requires considering the probability distribution of all possible outcomes and the associated 
probability distribution of monetary gains and losses for each alternative investment.  For an example in which there are three 
possible demand levels in the overall market for the competing products of companies A and B, see Table 2, which also gives 
the associated probabilities and the anticipated rates of return for each company and for each level of demand in the overall 
market.   

 
Table 2: Computation of expected rates of return on two stock investments 

  
Company A Company B 

Demand Level g 
Probability gp  of 
Demand Level g 

Rate of Return gk  for 
Demand vel g 

Rate of Return gk  for 
Demand Level g 

Strong 0.3 100% 20% 
Normal 0.4   15% 15% 
Weak 0.3 –70% 10% 
Expected Rate of Return k̂  

 
  15% 15% 

Standard Deviation of Return σ  
 

  66%   4% 
 

Because the expected returns from these two alternative investments are equal, we are still in need of a way to compare 
the relative riskiness of these opportunities.  If the alternative investments have the same rate of return, then the risk-averse 
investor will choose the alternative with the lower variability in the rate of return as measured by the standard deviation of 
the rate of return computed over all possible outcomes, 
 

   ( )2
1

ˆ ,
m

g g
g

p k kσ
=

= −∑  

 
where k̂  is the alternative’s expected rate of return as given by Equation (3).  The investment with the smaller standard devi-
ation σ  in its rate of return is usually regarded as being more dependable and hence less risky.  If we do not know the proba-
bilities associated the various outcomes, then we may estimate k̂  and σ  using the sample mean and the sample standard dev-
iation from historical rate-of-return data as follows, 
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where tk denotes the past realized average rate of return in year t for 1, ,t n=  so that estk̂ is the sample average annual re-
turn earned in the last n years and estσ  is the sample standard deviation of the annual return over the same n years. 
If we are choosing between two investments with the same expected return but with different standard deviations as in Table 
2, then we prefer the less-risky alternative, that is, the investment with less variability in its rate of return.  If we are compar-
ing two investments with the same riskiness (standard deviation) but with different expected returns, then we prefer the in-
vestment with the higher expected return.  For the situation described in Table 2, we conclude that investing in company B is 
less risky than investing in company A, which exhibits substantial variability in its rate of return.  For company B, the proba-
bility that the actual rate of return will be close to its expected value of 15% is much higher than for company A.  In the case 
where one alternative has the higher expected return and the other alternative has the lower standard deviation, we use the 
coefficient of variation defined by ˆCV ,kσ=  which gives the risk per unit of return, and provides a basis for comparison 
when two alternatives are otherwise not directly comparable. 

Next we consider measures of diversifiable risk and market risk in a stock-investment context.  In a diversified portfolio, 
we again begin by determining the expected returns of each asset.  Then we compute the portfolio’s expected return, which is 
simply the weighted average of the expected returns on the individual assets, 

 

 
1

ˆ ˆ ,
a

P i i
i

k w k
=

= ∑
 

 
where a is the number of assets in the portfolio; and iw  is the fraction of the portfolio’s monetary value that is invested in 

stock (asset) i for 1, ,i a=  .  For asset i, we let ik denote the realized rate of return over some previous period; and we note 

that ik  usually deviates somewhat from the expected rate of return îk .  Similarly, the portfolio’s realized rate of return,  
 

 
1

a

P i i
i

k w k
=

= ∑  

 
(i.e., the return that the portfolio actually earned during the previous period under consideration), usually deviates from the 
portfolio’s expected return, ˆ

Pk .  However, the realized rates of return { }1, , ak k  on the individual assets in the portfolio, 

although perhaps deviating substantially from their individual expected rates { }1̂
ˆ, , ak k , may tend to have deviations that 

offset (cancel) each other and result in a realized portfolio rate Pk  that is reasonably close to the expected portfolio rate ˆ
Pk . 

Computing the standard deviation of a portfolio’s return is slightly more complicated than the analogous computation for a 
stand-alone investment because of the possible existence of correlation between the returns on the different assets in the port-
folio.  The covariance between the returns X and Y on two investments is given by 

Cov( , ) E[( )( )] ,XY X YX Y X Yσ µ µ= = − −  where Xµ  and Yµ  denote the expected value of the returns X and Y, respectively.  
The correlation between the two returns is defined to be ( ) ,XY XY X Yρ σ σ σ=  where Xσ  and Yσ  denote the standard devi-
ations of the returns X and Y, respectively.  For a portfolio in which w and 1 w−  are the fractions of the portfolio’s value in-
vested in X and Y, respectively, the variance of the portfolio’s return is  

 
 [ ]2 2 2 2 2Var (1 ) (1 ) 2 (1 ) .P X Y XYwX w Y w w w wσ σ σ σ= + − = + − + −  (4) 

 
 If the two returns X and Y were perfectly positively correlated (so that 1.0XYρ = ), then diversification would increase 
the risk of the resulting portfolio compared with investing everything in the stock with the smaller standard deviation.  If the 
returns X and Y were perfectly negatively correlated (so that 1.0XYρ = − ), then theoretically diversification could lead to the 
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elimination of all risk, at least in the case that ( )Y X Yw σ σ σ= + so that 2 0.Pσ =   Brigham and Houston (2000) state that 
“on average the correlation coefficient for the returns on two randomly selected stocks would be about +0.6, and for most 
pairs of stocks, XYρ  would lie in the range of +0.5 to +0.7.”  Table 3 displays the average annual returns over a five-year pe-
riod for two stocks C and D whose correlation coefficient is 0.67.  Notice that although both stocks have not only the same 
expected return but also the same standard deviation, a portfolio containing both stocks has a smaller standard deviation than 
either of the individual stocks.  This example shows the benefit of diversification—although risk cannot be eliminated, it can 
be reduced by diversification. 

 
Table 3: Comparison of expected returns and standard deviations of two stocks and a 

portfolio consisting of both equally  
Year Stock C               Stock D Portfolio 50% Invested in 

both C and D 
2004   40.0%   28.0%   34.0% 
2005 –10.0%   20.0%     5.0% 
2006   35.0%   41.0%   38.0% 
2007   –5.0% –17.0% –11.0% 
2008   15.0%     3.0%     9.0% 

Average Return   15.0%   15.0%   15.0% 
Standard Deviation   22.6%   22.6%   20.6% 

 
 If we have a stocks with returns { }1, , aX X  where the values of the stocks respectively represent the fractions 

{ }1, , aw w of the portfolio’s total value, then the variance of the portfolio’s overall return is an extension of Equation (2), 
 

 
1

2 2

1 1 1 1
Var Var( ) 2 Cov( , ).

a a a a

P i i i i i j
i i i j i

w X w X X Xσ
−

= = = = +

 
= = + 

  
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As the number of stocks in a portfolio increases, the risk in the portfolio generally decreases to some limit—namely, the risk 
in a portfolio consisting of all stocks in the market.  The return Mk  of a portfolio consisting of all stocks (a market portfolio) 
has a standard deviation Mσ  approximately equal to 20.4%; and this is much smaller than the standard deviation of an aver-
age stock, which historically has been approximately 35% (Brigham and Houston 2000).  This market risk, also called syste-
matic risk, is the risk that all stock investors must bear.  For an individual security, the systematic risk is measured by its “ β
coefficient,” which describes how the stock’s return moves in relation to the return of the general market as gauged by some 
market index such as the Dow Jones Industrial Average.  A stock’s coefficient 1.0β = implies that if the market increases by 
20%, then  the value of the individual stock will also increase by 20%.  See Figure 3 for theoretical examples of high, aver-
age, and low volatility stocks. 

For the thi stock in a portfolio, its β  coefficient may be expressed in terms of the mean and standard deviation of its re-
turn as well as its covariance with the market return and the standard deviation of the market return as follows, 

 
 2

, Cov( , ) ,i i M i M i M Mk kβ ρ σ σ σ= =

  
where: ik  is the return on stock ;i  iσ  is the standard deviation of the return on stock ;i  Mk  is the market return; Mσ  is the 
standard deviation of the market return; and ,i Mρ  is the correlation between the return of stock i and the market return.  A 
portfolio consisting of stocks with all coefficients 0.5iβ = can be only half as volatile as the market, provided that the corre-
lations between the returns of the stocks in the portfolio are not too large.  If we plot the return of stock i  as a function of the 
market return, then we see that iβ  is the slope of the regression line for which the return of stock i  is the dependent variable 
(plotted on the vertical axis) and the market return is the independent variable (plotted on the horizontal axis).  The β  coeffi-
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cient of a portfolio is the weighted average of its individual iβ ’s.  Therefore, since the coefficient iβ for stock i determines 
how the stock affects the riskiness of a diversified portfolio, it is the most relevant measure of the stock’s risk.   

 

 
Figure 3: Examples of high ( 2.0β = ), average ( 1.0β = ), and 

low ( 0.5β = ) volatility stocks 
 
The riskiness of an investment as measured by its β coefficient is related to a level of return that we would require for 

compensation of the risk assumed.  We measure the premium that investors require for bearing the risk of an average stock as 
 
   RFRP ,M Mk k= −  

 
where: kM  is the required rate of return on a portfolio consisting of all stocks and is also the required rate on an “average” 
stock (that is, a stock with avg 1.0β = ); and RFk  is the risk free rate of return, usually measured by the return on long-term 
treasury bonds.  The risk premium RPM  measures the additional return above the risk-free rate that is required to compensate 
for the “average” (that is, market) risk.  Unfortunately, it is hard to estimate kM .  

Assuming that we have an estimate for RP ,M  then an expression for the risk premium for investment i is  
 
 RP RP .i M iβ=  

 
It follows that the required return on investment i is  

 
 RF RP .i M ik k β= +  (5) 

 
The Security Market Line (SML) given by Equation (5) specifies the relationship of the required rate of return on a risky in-
vestment and the investment’s β coefficient.  The SML is depicted in Figure 4.  The SML and an investor’s position on it 
may change over time because of changes in interest rates, the investor’s aversion to risk, and individual investments’ β val-
ues.  Inflation will also affect the risk-free rate, kRF.  In fact, we may think of kRF  as consisting of a “real” inflation-free rate, 
k*, and an inflation premium, IP, that is the additional premium required by the investor to compensate for inflation so that 
we have *

RF IP.k k= +   The “real” inflation-free rate k* is typically between 2% and 4%.  
This discussion leads us to the following questions: 
  

1. What do we use as a discount rate when computing NPV? 
2. What is the threshold value for the rate of return that is necessary for acceptance of an investment option? 
3. How is risk related to the rate of return required to make an investment attractive? 
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As mentioned in Section 2.1, the cost of capital to the firm or individual is often used as the discount rate for the calculation 
of NPV and is referred to as a “hurdle rate” in that an investment’s rate of return should exceed this rate in order to be ac-
cepted.  For more detail on how to arrive at an appropriate cost of capital to use as the hurdle rate, see, for example, Brigham 
and Houston (2000).  In this paper, we will proceed on the assumption that this rate has already been determined.  If the IRR 
exceeds the cost of capital, then of course NPV > 0 when computed at the cost of capital.  We will also assume that in the 
case of diversified investments, we have determined a risk-adjusted rate of return. 

 

 
Figure 4: Security market line 

 
3 APPLICATIONS 

3.1 Capital Budgeting Problem in Stand-Alone Risk Context   

A typical application of stand-alone risk assessment is found in the case of a firm that is considering investing in a project.  
This may be the development of new product, entrance into a market previously untapped, the building of a new manufactur-
ing facility, or the expansion of an existing facility, etc.  In order to analyze whether an investment is worthwhile, the compa-
ny must estimate many of the input parameters.  Gathering this data may involve the use of historical data (costs, sales prices, 
inflation rates, etc.) as well as other sources (market research, etc.); and some of the required inputs may be only someone’s 
best guess.  Of course, all these input parameters are subject to uncertainty and variability.  Typically, the analysis will begin 
with some sort of “base case.”  This case may represent one possible outcome on a decision tree and is often the “most like-
ly” scenario.   

Table 4 shows a base case for a hypothetical company considering the construction of a new production facility.  The in-
put parameters are the best guesses at current costs, prices, demand, etc.; demand growth rate is zero; and inflation of costs 
and product price is moderate.  Of course,  the outcome is uncertain, and we must be compensated for the risk assumed.  
Therefore we must modify the discount rate used for NPV and the threshold rate used for IRR.  In essence, we require a risk-
adjusted discount rate for the NPV analysis and risk-adjusted threshold for IRR. 
 The certainty equivalent approach to this problem involves scaling down cash flows that are not certain.  This is based 
largely on subjectively judging which CFs to scale down and by how much.  We could also use a risk-adjusted rate of re-
turn—average risk projects are discounted at an average cost of capital; less risky ones, at a lower-than-average cost of capi-
tal; etc.  But we are again forced to choose somewhat arbitrarily how much adjustment must be made. 

After estimating and evaluating a base case, the next step is to run a worst-case scenario where, for example, initial de-
mand is lower, fixed and variable costs are higher, and high inflation affects costs but not sales price.  We also ran a best-case 
scenario where demand is initially higher and grows over time, initial fixed cost is lower, there is no inflation on costs, and 
there is moderate inflation on product price.  Table 5 displays the output from a “scenario manager” typically available with 
spreadsheet packages.  Again, this approach requires changing all input parameters simultaneously for some limited number 
of  possible outcomes. 

 If we wish to arrive at an expected NPV or expected rate of return from these three scenarios, then we must somehow 
assign probabilities to the worse, base, and best cases and compute the expected outcomes based on these probabilities.   
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However, the estimates are crude, because we may not have a good idea of the probability that the worst-, base-, or best-case 
values of all input parameters will be achieved simultaneously. 

 
Table 4. Base case NPV analysis of potential production facility 

Discount Rate 10%   Initial Variable Cost/Unit  $1.00  
Initial Annual Prod. Qty. 21,500 

 
Variable cost inflation Rate 3% 

Demand Growth Rate 0% 
 

Initial Product Sale Price  $50  
Initial Fixed Cost  $200,000  

 
Product Price Inflation Rate 3% 

Fixed Cost Inflation Rate 3%   Salvage              $100,000  
Year 0 1 2 3 4 5 
Capital Exp.     $3,000,000                                                                                   
Prod. Qty. (units) 

 
                21,500  21,500 21,500 21,500 21,500 

Fixed Costs 
 

 $200,000   $206,000   $212,180   $218,545   $225,102  
Variable Costs 

 
             $21,500                     $22,145               $22,809               $23,494                  $24,198  

Total Costs 
 

           $221,500                   $228,145             $234,989             $242,039                $249,300  
Revenue 

 
        $1,075,000                $1,107,250          $1,140,468          $1,174,682             $1,209,922  

Salvage 
     

              $100,000  
Cash Flow  –$3,000,000           $853,500                  $879,105            $905,478             $932,642             $1,060,622  
Disc. CF  –$3,000,000           $775,909                  $726,533            $680,299            $637,007               $658,563  
NPV @ 10% Discount Rate = $478,311  IRR = 15.8516% 

  
Table 5: Sample output from Excel’s Scenario Manager for the production facility example 

Scenario Summary         

 
  Current Values: Worst Best 

Changing Cells:         
Discount Rate   10% 10% 10% 
Initial Annual Production Quantity 21500 21500 15000 
Demand Growth Rate   0% 0% 5% 
Initial Fixed Cost   $200,000  $220,000  $180,000  
Fixed Cost Inflation Rate   3% 10% 0% 
Initial Variable Cost/Unit    $1.00   $5.00   $0.75  
Variable cost inflation Rate   13% 10% 0% 
Initial Product Sale Price    $50   $30   $75  
Product Price Inflation Rate   3% 0% 3% 
Salvage    $100,000   $90,000   $110,000  
Initial Capital Expenditure 

 
 $3,000,000   $500,000   $2,700,000  

Result Cells:         
NPV @ 10% Disc Rate    $461,162  –$3,079,172  $8,114,226  
IRR   15.6585% <<0% 93.4354% 

 
Additionally we might want to examine the sensitivity of NPV and IRR to various input parameters, considered one at a 

time.  There are several ways to do this.  We can use the scenario manager to generate the information in a tabular format 
similar to Table 5.  Alternatively, after Excel’s scenario manager is used to generate NPV and IRR at various changes to the 
input parameters, we can display the results as shown in Figure 6.   
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Figure 6: Sensitivities of production facility NPV and IRR to input parameters 

 
Simulation enables us to obtain substantially more information than can be obtained from a small number of user-defined 

scenarios such as those depicted in Figure 6, where the input parameters (demand growth rate, initial annual demand, variable 
cost inflation rate, and initial fixed costs) are varied one-at-a-time with all other input parameters fixed.  Using simulation, we 
may generate a large number of observations of the NPV and IRR metrics computed from a set of randomly generated scena-
rios in which all input parameters subject to uncertainty are simultaneously varied.  We achieve this by defining appropriate 
probability distributions for those input parameters based on whatever information is available about those parameters.  Then 
on each replication of the simulated project, we randomly sample new values of those input parameters from their corres-
ponding distributions.  For example, in the new production facility problem, we obtained subjective estimates (that is, esti-
mates based on expert opinion) of the minimum, most likely, and maximum values for each input parameter listed as a 
“Changing Cell” in Table 5; and then we fitted a beta distribution to these three estimates using the approach detailed in Kuhl 
et al. (2009a, b).  (Note that each resulting beta distribution is not the so-called “beta-PERT” distribution or the “RiskPert” 
distribution; for more on this issue, see Kuhl et al. (2009a, b).)   

We implemented the fitted beta distributions using the “Define Assumption” option in Crystal Ball (Oracle Corporation 
2008); and we performed 100,000 independent replications (runs) of the project simulation.  This simulation experiment 
yields a multiway probabilistic sensitivity analysis that reveals the uncertainty (lack or precision) in the final results.  Cumu-
lative frequency histograms for NPV and IRR from the Crystal Ball simulation of 100,00 independent replications are shown 
in Figures 7 and 8. 

 

 
Figure 7: Crystal Ball frequency distribution of NPV for the production facility  
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Figure 8: Crystal Ball frequency distribution for the IRR for the production facility 

 
The probability that the output measure of interest exceeds the value in the lower left-hand side box (in Figure 8, cutoff 

value IRR = 0.0%) is displayed in the “Certainty” box (in Figure 8, Certainty = 88.9%).  In other words, over 100,000 runs of 
the simulation, we observed that on 88.888% of those runs, condition IRR > 0 occurred.  We may change the values in the 
lower far left- and right-hand side boxes to view the relative frequencies of IRR values below or above any desired cutoff 
value.   

3.2 Risky vs. Risk-Free Investment Comparison  

This example (Strong 2008)  illustrates how simulation using Crystal Ball (Oracle Corporation 2008) can facilitate complex 
stock market scenario analysis.  Suppose there are two available asset classes, large-capitalization common stock and long-
term U.S. Government treasury bonds.  A risk-averse investor wants to distribute his money across these two asset classes so 
as to maximize the likelihood that he at least earns the rate of inflation over a twenty-year time horizon.  The objective is not 
to achieve the largest terminal portfolio value; it is to keep up with the cost of living. 

Table 6 shows historical means and standard deviations for the annual rates of return on the asset classes and for the an-
nual inflation rate.  As is standard practice, we assume that these rates are distributed as normal random variables in the simu-
lation.  Table 7 gives the correlation coefficients for the three rates.  The simulation also includes the historical serial correla-
tion of 0.65 for the inflation rate.  These statistics are from Ibbotson Associates (2005). 

 
Table 6:  Asset class statistics 

 Mean Standard Deviation 
Return on Large-Cap Stocks 12.4% 20.3% 

Return on Government Bonds 5.8% 9.3% 
Inflation 3.1% 4.3% 

 
Table 7:  Correlations 

 Large-Cap  
Stocks 

Government 
 Bonds 

Inflation 

Return on Large-Cap Stocks 1.00   
Return on Government Bonds  0.12 1.0  

Inflation –0.02 –0.14 1.0 
 

 The simulation investigates 101 different asset allocations of an initial $10,000 investment, ranging from 0% stock and 
100% bonds to 100% stock and 0% bonds, with allocations changing by 1% increments.  The distribution surrounding the 
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stock return, bond return, and actual inflation are modeled according to the data in Tables 6 and 7.  The Crystal Ball model is 
set to run 100,000 replications of each portfolio.  Each replication covers a 20-year time period, and therefore replication re-
quires the sampling of 20 stock returns, 20 bond returns, and 20 inflation values.  A total of  6 million random samples are 
generated from the underlying probability distributions for each of the 101 scenarios.  On a 1.6 GHz computer with 2 GB of 
RAM, each replication takes approximately 28 seconds to complete.  Figure 9 is an example of the Crystal Ball output from 
one portfolio combination. 
 

 
Figure 9:  Sample Crystal Ball output of one asset allocation scenario 

Table 8 shows a portion of the results for various asset allocations.  We make the following observations about column 
(e) in Table 8: with the introduction of a relatively small percentage in stock, there is a dramatic increase in the probability 
that the terminal portfolio value (column (c)) exceeds inflation (column (d)); moreover, this probability levels off once the 
portfolio is about one-third invested in stock.  Figure 10 shows the complete scenario results graphically.   

 
Table 8:  Sample simulation results for varying asset allocations 

Percentage in 
stock 

(a) 

Percentage in 
bonds 

(b) 

Terminal Value 
median 

(c) 

Inflation 
Threshold 

(d) 

Probability 
Terminal Value 

> Inflation 
(e) 

0 100 $18526 $18164 53.8% 
5 95 22066 18189 79.0 
10 90 24963 18184 87.0 
15 85 27628 18189 90.1 
20 80 30330 18158 91.9 
25 75   33097  18183    92.9 
30 70 35926 18208 93.4 
35 65 38679 18190 93.8 
40 60 41458 18137 94.1 
45 55 44145 18173 94.3 
50 50 46932 18176 94.4 
55 45 49701 18166 94.5 
60 40 52521 18175 94.5 
65 35 55008 18175 94.5 
70 30   58168  18169    94.5 
75 25 61066 18179 94.6 
80 20 63775 18151 94.7 
85 15 66599 18118 94.7 
90 10 69405 18194 94.5 
95 5 72208 18174 94.6 

100 0 74824 18181 94.7 
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Figure 10:  Probability of return on portfolio exceeding the inflation rate 

3.3 Determination of Value at Risk (VAR) Using Simulation 

Another important use of Monte Carlo simulation in financial risk assessment lies in the calculation of Value at Risk 
(VAR).  This concept has become increasingly important as the financial markets and their regulators pick up the pieces after 
the subprime disaster and subsequent market meltdown. 

In any kind of investment strategy, a very reasonable question is “What is the most we can lose?”  For years a useful an-
swer to this question was elusive. Theoretically, if we buy a U.S. Treasury bond we could lose 100% of our money, but this is 
highly unlikely and not a particularly helpful answer.  It would not be informative to use “all our money” as the default an-
swer to the question regardless of the asset in question.  Losing all our money on a penny-stock speculation is a much more 
likely outcome than losing all our money with a government bond investment. 

 A better answer would incorporate an estimate of what realistically can go wrong over a particular time horizon.   If 
we spend $1,500 on 100 shares of Harley-Davidson stock today, we may lose all our money, but it probably will not happen 
this week or this month.  A more precise question might be “What is the most we can lose in one day?”  Again, the answer is 
100%, but in the 5,455 trading days between November 5, 1987, and July 6, 2009, there were only 15 days in which the stock 
fell by 10% or more.  There were only 122 days when it fell by 5% or more.  In fact, the average daily change was 0.099% 
with a standard deviation of 2.51%.   Such an investment becoming worthless overnight would be a 40-σ event (that is, an ex-
tremely rare event).   

 A convention has developed within the finance industry to quote VAR on the basis of the distribution of daily price 
movements.  When we ask “What is our value at risk?” we are asking for the size of the loss associated with a 5% tail of dai-
ly price changes.  In other words there is a 95% probability that the loss in one day will not exceed the VAR.  In the Harley 
Davidson example, 1.96 standard deviations of 2.51% each results in a 4.92% price movement.  Therefore on a $1,500 in-
vestment, the VAR is about $74.  A 100-share investment certainly has down days when it loses more than this, but over the 
past twenty plus years they have not been common.   VAR has become the standard currency in answering the question about 
what can go wrong. 

3.3.1 Single-Stock Investment VAR Using Simulation 

Consider an investment position consisting solely of  10,000 shares of a stock, currently selling for $55 per share, for a 
total value of $550,000.  We can simulate performance of this portfolio over a one-day period using the same historical input 
parameters as given in Table 6; that is, average annual return equals 12.4% and average annual standard deviation is 20.3%.  
There are typically about 252 trading days during the year, so to convert these annual values into daily values we divide the 
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mean by 252 and the standard deviation by the square root of 252, resulting in 0.0452% and 1.2851%, respectively.  Again, 
assuming return rates are normally distributed and performing 100,000 replications yields the results in Table 9.  

 
Table 9:  Example of single-stock investment VAR 

Initial Purchase Results after 100,000 replications of one simulated day 
Quantity (Shares) Price Value Average Price Price Range 5th Percentile Value VAR 

10,000 $55 $550,000 $55.03 $46.09–$63.86 $515,041 $34,959 
 
The mean stock price after one day being slightly above the starting price is not surprising given that we input a positive 
mean return.  The stock price range, however, is more than $8 on either side of the initial $55.  Price swings of this magni-
tude do not happen very often, but most investors can recall instances when they experienced such an event.  It is a simple 
matter with Crystal Ball to find the portfolio value beyond which 5% of the adverse distribution lies.  Note that the VAR 
concept is one-tailed; good days in the market (i.e., a big price rise if you own the stock) are not cause for concern. 

 

3.3.2  Portfolio VAR 

The plot thickens when we consider that we seldom hold investments in isolation; they are normally part of a portfolio.  
Sometimes the portfolio components have market risk sensitivities that are opposite in sign, such as Harley Davidson’s put 
and call options.  A call option gives an investor the right (but not the obligation) to buy the underlying asset at a set price for 
a set time period.  A put option is similar except it is the right to sell.  Certain factors, such as the price of the underlying as-
set, that would push a call price up would depress the price of a put.   Other factors, such as the passage of time, affect puts 
and calls in a similar direction; both types of options lose value as their expiration approaches. 

 Those factors which may be negatively or positively correlated to each other have implications in a VAR context.  
In a slow market with little volatility, there may be days in which both the puts and the calls decline in value because they are 
close to expiration and some of the “time value” has evaporated.  On an active day, if the market moves sharply up the call 
will increase in value while the put will decrease.  Conversely, with a big down day the puts will rise in value while the calls 
will decline.  Therefore a portfolio holding some of each type of asset cannot lose on both when there is a significant change 
in the value of the underlying asset.  Logically, the answer to the question “What is the worst that can happen?” should rec-
ognize this fact rather than simply aggregating the individual VARs.  

A merger arbitrage hedge fund is one type of institutional player for which the VAR concept is especially relevant.  This 
investor seeks opportunities arising because of the planned acquisition or merger of two (or more) companies.  Often the 
stock of the acquiring firm declines while the stock of the acquired firm rises.  The hedge fund may have an array of stock 
option holdings (puts and calls) on both of these firms as well as positions in the actual shares.  The merger process is filled 
with uncertainty pending the resolution of regulatory concerns, shareholder approval, potential for competing bids, etc.  Us-
ing Monte Carlo simulation, we can test various scenarios that might develop and see their consequences in a VAR frame-
work.  

Simulation results provide very helpful information to those involved with risk management and strategy oversight.  
Given a value for the underlying asset, the option valuation is relatively straightforward (although complex) and is likely to 
be determined from the Black-Scholes option pricing model.  If C is the current value of the call option, S is the current stock 
price, K is the exercise (or strike) price of the option (that is, the set price at which the owner of the call has the right to pur-
chase the underlying asset), and T is the remaining time until the option expires (in years), then the Black-Scholes model is 
given by 

 
 ( )1 RF 2( ) exp ( ) ,C S d K k T d= Φ − − Φ  (5) 

 

where ( )2( ) exp 2 d
z

z u u
−∞

Φ = −∫  denotes the cumulative distribution function for the standard normal distribution, and 
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and as usual RFk denotes the risk-free interest rate and σ denotes the estimated standard deviation of the stock’s rate of return 
over the life of the option.  See Black and Scholes (1973) for a derivation of Equation (5). 

VAR becomes an increasingly important concept when derivatives are present in a portfolio.  We will now introduce call 
options into the portfolio.  There are a variety of reasons why an investor might do this, but suppose we sell call options on 
the full 10,000 shares giving someone else the right to purchase those shares at $55 by a set future date.  This is the most 
common use of options and is referred to as writing a covered call.   Options are valued using the Black-Scholes option pric-
ing model, Equation (5).  Once we have the value of the call option, we can use the put-call parity model,  
 

   RFexp( ) ,C P S K k T− = − −  
 

to determine the value P of the put.  Complete coverage of option pricing is beyond the scope of this paper, but these two 
models help demonstrate the mathematical complexity of complicated derivative portfolios that scenario analysis can help 
mitigate. 

In our example, we let S = K = $55, RFk  = 6%, T = 87 days or 0.2384 years, and σ = 34%.  Solving (5), we obtain C = 
$4.00 and P = $3.25.  To calculate the VAR with this two-asset portfolio, we also describe a probability distribution around 
the estimate of σ.  Future volatility is the one variable in the pricing model that is not observable and must be estimated.  The 
model is quite sensitive to the input used.  We initially chose a triangular distribution with a mean of 34% and a min and max 
10% (or 3.4 percentage points) on either side of 34% to model the distribution of σ.  Results of this simulation are in Table 
10.   

Note that the VAR of this portfolio, which contains options, is less than the stock-only portfolio.  Table 10 has an addi-
tional column in the far right indicating the portfolio delta.  Delta is the first derivative of the Black-Scholes model with re-
spect to the underlying stock price.  Another convenient interpretation of position delta is the common stock equivalency of 
the aggregate portfolio.  In Table 10, a position delta of 4,338 means this covered call position will experience price changes 
equivalent to 4,338 shares of stock, provided the price changes in the underlying asset are not large.  In the options world, 
second derivatives are important; VAR helps mine the information they carry. 

 
 

Table 10:  Covered call VAR 
Position Quantity Price Value Delta 
Stock   10,000 $55 $550,000 10,000 
Calls –10,000 $4   –40,000 –5,662 

  Total $510,000   4,338 
 

Simulation Results: 
Stock price range:  $45.88 – $64.17 

Mean stock price:  $55.03 
95% threshold:  $491,050 

VAR = $510,000 – $491,050 = $18,950 
 

 Market volatility in the past year was substantially higher than the historical average.  A risk manager may want to in-
corporate the potential for renewed high volatility in the future, and consequently model σ  with a much higher maximum 
than normal.  Suppose we alter the triangular distribution for σ  to specify a maximum value of twice the base case mean, or 
68%.   Higher expected future volatility will increase the value of both the puts and the calls, but this does not have a clear 
influence on the stock price.  If we rerun the simulation, the results change dramatically:  VAR is more than twice as much as 
the base case. 

Stock price range:  $46.05 – $65.63 
Mean stock price:  $55.03 
95% threshold:  $470,870 

VAR = $510,000 – $470,870 = $39,130 
 

 Stock with Puts  Now consider another two-asset portfolio, this time with stock and put options.   Table 11 shows this 
portfolio has fewer shares of stock, contains no calls, and has a long position in puts.  Its initial value and position delta are 
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very similar to the values for the covered call portfolio in Table 10.   The VAR shows, however, that this portfolio is much 
safer than either of the previous two.  The 95% threshold is $506,165 meaning the VAR is $509,903 - $506,165 = $3,738. 

 
Table 11:  Stock and Puts VAR 

Position Quantity Price Value Delta 
Stock 8,680 $55 $477,400   8,680 
Puts 10,000 $3.25     32,500 –4,338 

  Total $509,900   4,342 
 

 Straddle Writer  A speculator writing a straddle contemplates a very different market direction than the previous exam-
ples.  This speculative position involves selling both put and call options on the same underlying asset, and with similar 
terms.  Suppose we have the two-asset portfolio in Table 12. 

 
Table 12:  Writing a Straddle VAR 

Position Quantity Price Value Delta 
Calls –65,800 $4.00 –$263,200 –37,243 
Puts –75,900 $3.25  –246,675   32,925 

  Total –$509,875   –4,318 
 

As time passes, the value of an option deteriorates if the underlying asset does not change in price.  This is what the 
straddle writer wants.  The negative dollar value in Table 12 reflects the fact that the writer does not own the options; he 
created them and sold them to someone else.  To close out the position, the writer would have to buy them back.  If their val-
ue deteriorates over time, this is good from the perspective of the writer.   
 However, sharply rising or falling prices can result in big losses from this strategy.  The 100,000-run scenario analysis 
with Crystal Ball gives a 95% threshold of –$893,035 for a whopping VAR of (–$509,875) – (–$893,035) = $383,160.   
 Straddle Buyer  If the strategy of writing the straddle seems likely to result in a large loss, logically the opposite strate-
gy (buying the straddle) should be attractive.  The danger here is that the market may reduce its estimate of future volatility 
and return to more normal input parameters.  If we change the distribution for σ  back to the original triangular distribution 
of 34% mean plus or minus 10%, the threshold becomes $484,333 for a VAR of $25,664.  The ability to test the “what if” 
scenarios is the primary advantage of Crystal Ball in a VAR Analysis.  The following three figures are a portion of the Crys-
tal Ball report showing the 95% threshold with the increased future volatility assumption (Figure 11), the “normal” volatility 
assumption (Figure 12), and the sensitivity analysis showing that the real driver of the results is the market’s assessment of 
future volatility (Figure 13).  These simulation results give the risk manager plenty to think about. 

 

 
Figure 11:  Increased volatility assumption 
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Figure 12:  Normal volatility assumption 

 

 
 Figure 13:  Sensitivity analysis 

4 CONCLUSION 

Several themes run through this tutorial on financial risk assessment.  First, spreadsheet-based Monte Carlo simulation can 
provide the user with a powerful tool for implementing financial models to perform risk assessment in complex applications.  
Second, Monte Carlo simulation enables the user to do the following: (i) check the validity of the assumptions underlying a 
financial model; (ii) explore the sensitivity of the model results to the input parameters whose values are uncertain or are sub-
ject to random variation; and (iii) honestly represent the inherent variability of the final results.  For example, in the Black-
Sholes model used for VAR analyses of portfolios containing stocks, call options, or put options, the standard deviation of 
the relevant rate of return per year is unknown and must be estimated either from subjective information (expert opinion) or 
historical data; and the results in Section 3.3 demonstrate the sensitivity of the simulation-based results to changes in the as-
sumptions made about this key input parameter.  Clearly the proper accounting for uncertainty and random variability in the 
inputs and outputs of a financial model is a critical element of financial risk assessment; and simulation provides an effective 
mechanism for doing this. 
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