
PHRASE BASED BROWSING FOR SIMULATION TRACES OF NETWORK PROTOCOLS

Nathan J. Schmidt
Peter Kemper

Department of Computer Science
College of William and Mary

Williamsburg, VA 23185, U.S.A.

ABSTRACT

Most discrete event simulation frameworks are able to out-
put simulation runs as a trace. The Network Simulator 2
(NS2) is a prominent example that does so to decouple
generation of dynamic behavior from its evaluation. If a
modeler is interested in the specific details and confronted
with lengthy traces from simulation runs, support is needed
to identify relevant pieces of information. In this paper,
we present a new phrase-based browser that has its roots
in information retrieval, language acquisition and text com-
pression which is refined to work with trace data derived
from simulation models. The browser is a new navigation
feature of Traviando, a trace visualizer and analyzer for sim-
ulation traces. The browsing technique allows a modeler
to investigate particular patterns seen in a trace, that may
be of interest due to their frequent or rare occurrence. We
demonstrate how this approach applies to traces generated
with NS2.

1 INTRODUCTION

Simulation of stochastic models of discrete event systems
is a method that is broadly applied in the performance
and dependability evaluation of systems. Examples include
network systems, manufacturing and production systems,
and computational biology and bioinformatics systems to
name a few.

A simulator generates simulation runs that mimic the
dynamic behavior of the system under study to provide
some sample statistical data for evaluation. Most simulation
software has integrated, on-the-fly statistical evaluation to
avoid external storage of simulation runs as trace data. The
Network Simulator 2 (NS2), however, is a notable exception.
NS2 separates the process of trace data generation from
statistical evaluation.

NS2 is a large, open source network simulator that
is freely available from the University of South Carolina
<www.isi.edu/nsnam/ns>. NS2 is well known and

used extensively in the networking research community.
The simulator is frequently used to build traffic models, as
in the paper by Lang, Branch, and Armitage (2004), or to
test new network protocols, as in (Appenzeller, Keslassy,
and McKeown 2004) and (Zapotoczky and Wolter 2008).

In this paper, we will focus on NS2 simulation mod-
els and NS2 generated simulation traces in the NS2 Nam
format. The contribution of this paper is to show how
NS2 traces can be transformed and loaded into Traviando
to analyze, visualize and browse the trace quickly, easily,
and efficiently. Phrase based browsing is a new feature in
Traviando; it reveals details of the dynamic behavior of
a model quicker and more easily than is usually possible
using highly aggregated performance measures or visual
inspection of the NS2 Nam visualizer. The trace browser
is based on Nevill-Mannings Sequitur algorithm (Nevill-
Manning and Witten 1997), which is able to compute a
hierarchical structure based on event labels in linear time.
It performs a single scan of the trace and creates the data
structures on the fly. The key benefit of the browser is to
show events of interest in the specific context they occur in a
trace while also grouping equivalent subsequences of events
such that a modeler can investigate similar locations in a
trace at the same time instead of checking one after another.
This approach is implemented in Traviando (Kemper and
Tepper 2006b) and readily applies to traces generated by
other simulators, such as Möbius (Deavours et al. 2002).

The rest of the paper is structured as follows. In Section
2, we define some terminology with respect to simulation
traces. In Section 3, we describe a few characteristics of
NS2 and how we obtain and transform NS2 traces into a set
of interacting processes which is required by Traviando’s
XML trace format. Section 4 presents the new phrase-
based browser and its underlying technology. In Section
5 we illustrate how phrase-based browsing works for two
example models. We evaluate the approach in Section 6
and conclude in Section 7.

2811 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Schmidt and Kemper

2 DEFINITIONS

A trace is a sequence σ = s0e1s1 . . .ensn of states s0, . . . ,sn ∈
S and events e1, . . . ,en ∈ E over some (finite or infinite) sets
S,E for an arbitrary but fixed n ∈ IN.

For an event ei that occurs at position i in σ , let a la-
beling function l(ei) = e denote which event e ∈ E is seen.
Furthermore event ei may carry additional information as a
time stamp t(ei) or other data d(ei) which is used for instance
to make events carry some associated packet header infor-
mation for traces of simulation models of network protocols.
We assume that the time stamps form a monotonously non-
decreasing sequence of real-values and that the sequence
starts off at time point 0. With this assumption we can
define the incremental delay of any event to its predeces-
sors as δ t(ei) = t(ei)− t(ei−1) if i > 1 and δ t(ei) = t(ei) for
i = 1. Note that states are irrelevant in the following formal
treatment, yet important for a better understanding why the
system behaves as observed in σ . Hence, we keep states
within our considerations. The length of σ = s0e1s1 . . .sn is
defined as |σ |= n = #events. Let L = {l(e1), . . . , l(en)} de-
note the set of all labels. So |L| ≤ n with the expectation that
usually |L|<< n, i.e., events share labels or events of same
kind (label) occur repeatedly in σ . For σ = s0e1s1 . . .sn and
0 ≤ i < j ≤ n, we define a projection or substring opera-
tion as σi, j = siei+1 . . .s j. We define an equivalence ≈ for
sequences based on the sequence of labels that we observe
for their events. Two sequences σ and σ ′ of equal length
n are equivalent, σ ≈ σ ′, if l(ei) = l(e′i) for i = 1, . . . ,n. A
substring σi, j may have many other substrings in σ that are
equivalent. Let A = {σi1, j1 , . . . ,σik, jk} be a set of substrings
of σ that are all equivalent. The algorithm that we will use
to generate such sets will ensure that any pair of elements of
a set A does not overlap. We want to provide some timing
information with A that we derive from its constituents. We
generalize the definition of δ t() to substrings as follows.
For any σi, j,

δ t(σi, j) =

 t(e j)− t(ei) if 0 < i < j
t(e j) if 0 = i < j

0 if i = j

Based on this definition, we can define for any such
that A 6= /0 common statistical measures including

min(A) = min{δ t(σil , jl)|1≤ l ≤ k,σil , jl ∈ A}
max(A) = max{δ t(σil , jl)|1≤ l ≤ k,σil , jl ∈ A}

mean(A) =
k

∑
l=1

δ t(σil , jl)/k

var(A) = k−1
k

∑
l=1

(δ t(σil , jl)
2)−mean(A)2

These values give some guidance to a modeler if elements
of A are reasonably similar with respect to their timing.

3 NS2 AND NS TRACES

NS2 is a popular simulation tool in the networking research
community used to evaluate current protocols and develop
new ones. NS2 has a rich set of available components and
protocols that can be plugged in as models for network
stack layers. Any of these models can be swapped out
with a new one that implements a different protocol with
relative ease. Using data generated from an NS2 simulation
is, unfortunately, not as easy. Any output generated by
NS2 during a simulation is directed to the terminal or to
a specified trace file. When the simulation has completed,
the output, or trace file, can be either examined to view the
results and specific details of the simulation or processed
by some user given scripts to accumulate data for common
performance figures like throughput or the number of packets
being dropped over time.

While NS2 does not support any graphical results of a
simulation run by itself it does have the Nam visualizer. The
Nam visualizer uses a Nam trace file, which is generated
during the simulation run, to create a visual representation
of the simulation and animates the behavior. Figure 2
shows the Nam visualization for an example considered in
Section 5. While the visualizer is helpful to ensure that
a simulation is working overall, it does not present the
finer details that are produced from the simulation. When
checking and debugging a model, these details need to be
analyzed in order to guarantee correctness of the model.
Simulation results that have been obtained with NS2 and
that are published in the literature are usually derived with
shell/Python/Pearl scripts that a modeler develops in an
adhoc fashion and with possibly a lot of similar work
across the NS2 user community. See Evan Jones’ website
<evanjones.ca/ns2.html> as an example of work
in this direction with Jones making his personal efforts
available to the community. Those scripts generate input
for programs like Gnuplot to generate graphs reported in
the literature.

Recent work by Cicconetti, Mingozzi, and Stea (2006)
has progressed ones ability to collect data and statistical
information from NS2. They contribute a framework that
allows NS2 users to collect data and relevant measures with
the implementation of their C++ class, Stat. Additionally,
they provide two more programs that perform a series of
runs with a simulation model in order to get the recorded
data to a specified level of accuracy. The main deterrence
here, however, is that NS2 users must add additional support
into their existing simulation models for Stat.

2812

Schmidt and Kemper

Figure 1: Example of an expanded tree in Traviando’s Trace Browser

3.1 NS2 Trace Formats

NS2 currently supports a number of different types of trace
files. In addition to its own format, NS2 also has the Nam
trace format, which contains the necessary information from
the simulation to drive the Nam visualizer. Both of these
trace formats are very specific when it comes to giving
details about the events that occur during an NS2 simulation.
State information generated by both trace formats generally
consists of updates on whether a node, or link, is up or down.
Both of these formats are open formats and are published in
the NS2 manual (Fall and Varadhan 2008). However, there
are also further formats such as the cmu-trace and traffictrace
formats. The trace formats mentioned are included in most
protocols and new protocols are adapting the trace formats
as they are added. All existing trace formats can be enabled
or disabled in the OTcl script that describes a model. Figure
3 shows some lines extracted from Nam formatted traces
that we generated with NS2 for the examples in Section
5. The format is ascii based and line oriented to simplify
processing with scripting languages. Single letters serve as
keywords to specify the meaning of subsequent numerical
values.

We chose to use the Nam trace format for three reasons.
A Nam trace contains sufficient information that is needed
to track a packet’s path as it moves from node to node. It
is commonly supported in modeling with NS2 due to the
fact that the Nam visualizer requires it and that visualizer
is the only immediate way to receive visual feedback from

a simulation. Finally, the Nam trace format is open and its
documentation is available within the NS2 manual.

3.2 Reformatting Nam Traces

In order to view the NS2 simulation in Traviando, we
need to format the NS2 Nam trace data into Traviando’s
open XML format as documented in (Kemper and Tepper
2006a). The XML format requires the trace data to be
organized into processes, actions that are either performed
by a single process or by several processes in a jointly
manner, and state variables, whose values change as an
effect of the actions performed in a simulation run. The
sets of processes, actions and state variables are finite and
declared ahead of the sequence of events that document
the events performed in a simulation. An event denotes
which action (label) is performed and can carry additional
information as new values for state variables, a time stamp
and additional optional information.

In order to match this with Nam traces, we need to map
NS2 nodes, links and events to processes, actions and state
variables. We derive two different sets of processes from
a Nam trace. For the first set, we define one process for
each node in the NS2 network. This allows one to view all
actions that occur at a node in a single, vertical timeline in
the MSC visualization of Traviando. For the second set of
processes we define one process for each link between nodes.
Links need to be represented as processes because packets
need to belong to a process when they are transitioning

2813

Schmidt and Kemper

between two nodes. Links also carry state information and
can be either up or down. The link (process) describes
the shared communication medium. For wireless models,
we introduce an additional process that models the single
shared communication medium and nevertheless keep the
link processes since those are present in the trace data as
well. Link processes can have the following actions: send,
receive, up and down. The actions up and down happen
if a link between two nodes is restored or severed and the
other two actions represent a link receiving a packet from
a node or sending a packet to a node. Send and receive
actions are jointly performed by a link and a corresponding
node process. So, node processes have send and receive
actions and also up and down actions that correspond to
when a node comes online or goes offline. In addition to
that a node has further actions: enqueue, dequeue, and drop.
Each node on the network has a queue. This queue is of a
certain size and acts as a buffer for packets waiting to be
sent. So, for example, when a node receives a packet that
needs to be forwarded along to another node, it receives
the packet and then enqueues the packet onto its sending
queue. The packet waits in the queue until it is dequeued
at which time it is then sent to link that connects the two
nodes. The drop action occurs when the queue at a node
is full and additional packets are received and need to be
sent to other nodes. The type of queue each node uses
determines which packet is dropped if too many packets
are enqueued at once. Time stamps associated with events
directly carry over from the Nam format to Traviando’s
format while packet ids are mapped to additional optional
information associated with events in Traviando’s format.

Lastly variables are defined for each process. Each link
process only has a single variable that maintains its state,
which is set to one if operational or zero if it is down. Node
processes also have a similar state variable keeping track
of whether or not the node is online or offline. In addition,
node processes also have the variables: sendcounter, drop-
counter, and receivecounter. These variables keep track of
the number of sent, dropped, and received packets for a
node.

All of this is done in Nam2Traviando. Nam2Traviando
is currently a stand alone Java program that converts Nam
trace files into the Traviando’s open XML format with no
additional work. After the XML file is produced it can be
opened from within Traviando to view the NS2 trace.

4 PHRASE BASED BROWSING IN TRAVIANDO

A simulation usually generates large amounts of trace data
which creates a demand for some form of automated support
to analyze this data. NS2 is a prominent example for
this effect. Using the NS2 Nam trace format, a fairly
simple seven node network simulation generates almost
11000 lines of trace data in under five simulated seconds.

If analysis shall go beyond a calculation of highly aggregated
performance figures like buffer occupancy or throughput,
the usual scripting efforts made by NS2 users become a real
challenge. We propose a phrase-based browsing technique
to help a user investigate the detailed behavior of a simulation
run and, in particular, to help debug a simulation model.
For instance, if a modeler is interested in what events
happen before a packet is dropped at some node, then
he/she can visit sequentially all locations in a trace σ where
the corresponding event of a packet loss takes place. If those
locations are numerous, it is very likely that neighboring
events are of similar kind. Since for most traces, |L|<< n,
i.e., a simulation model performs events with labels selected
from a relatively small reservoir L, a trace σ contains many
substrings σi, j that are equivalent with respect to their labels.
This has potential for supporting a browser that shows a
particular event as it appears at different locations in σ and
groups locations if they belong to equivalent substrings. The
key concept is to help a modeler see events in the context
of other events in the trace and to group those locations
according to contexts (or substrings) that are equivalent. Let
l be the label of interest and let l be present in σ ′, a substring
of σ , and let σ ′ be present k times at different locations of
σ , i.e., there is A = {σi, j|σi, j ≈ σ ′} of cardinality k. The
benefit in this case would be that it is possible to inspect all
k locations at once based on σ ′. If the sequence of labels in
σ ′ gives sufficient information to help the modeler decide
if these locations require further attention or can safely be
ignored, then this saves an inspection of k−1 locations of
same kind. Note that the notion of equivalence is based on
labels only. To provide more information associated with
a set A of substrings, we added its cardinality, the length
of any of its elements, and timing information min(A),
max(A), mean(A), and var(A) to the representation of A in
the browser. This additional information helps a modeler
recognize if the timing characteristics of substrings in A are
rather homogenous or differ greatly. If A requires further
attention, the browser allows a modeler to partition A into
smaller subsets, investigate those subsets and to iterate on
this till a particular, single location in σ is reached, where
full detailed information on states, time stamps, and context
is available to the full level of detail contained in σ . This
approach has the potential to largely improve productivity
in tracking errors in simulation runs, be it obvious ones
whose effects are seen frequently in a trace or the rare ones,
’the needles in the haystack’, that are difficult to find.

4.1 Sequitur Browser Details

The Sequitur Browser uses a tree type structure to browse
the trace file for each individual event. Hence the first
level lists all of the different events possible in the trace
with the corresponding number of occurrences in the trace.
These items serve as roots for individual trees whose nodes

2814

Schmidt and Kemper

expand on the context the event associated with the root
nodes appears in. An example of this can be seen in Figure
1. When browsing an NS2 trace, these events consist of
the nodes and links on the network sending, receiving,
enqueueing, dequeueing, and dropping packets.

Subsequent nested levels at each tree display groups of
locations in the trace where the event at level 1 is present.
The tree-type structure is based on a grammar with a set of
rules that characterize σ as the only word of its language.
Following a path in a tree and expanding its nodes towards
a leaf node corresponds to navigating in the rule set of that
grammar. Nodes at some level k > 1 are accomplished by
using the phrases, or rules, which group together equivalent
event sequences σi, j in the trace file. Numeric information
that is given with any particular node at a level k > 1
represents the number of locations in σ that rule represents,
the length of the substring as well as additional timing
information. In its current stage, the browser also shows
which rules of the grammar are used. Rules are shown in
the format R#, where # represents the number of the rule.
Following the rule name is a selection of part of the contents
from the specific rule. These contents include simulation
events from the rule and at least one occurrence of the
event from level 1. The event from level 1 is surrounded
by double stars (**) to draw the modeler’s attention to it
because this is the event that the modeler is searching for.
The selection, by default, displays the previous three events
and the next three events that occur before and after an
occurrence of the event from level 1. Depending on screen
size and how much surrounding information is desired, any
number of previous events and events after the level 1 event
can be displayed.

Navigating from a node at level k to a node at level
k+1 refines the set of locations seen at level k into subsets
of smaller cardinality but longer substrings (more context)
that is taken into account. This process can continue until
a leaf node is reached. It is important to note that the level
prior to a leaf node in the tree alerts the user to the face that
the following leaf nodes are occurrences from R0, the start
rule. The leaf nodes below this show all occurrences of the
rule/event represented one level above this node. A leaf node
represents a single location in the trace that corresponds to
a substring of the rule above the alert (which is the one
two levels above the leaf node). Lastly, the number at the
beginning of the leaf node represents the location within the
trace where the rule/event from two levels above begins. An
expanded tree showing intermediate levels and leaf nodes
can be seen in Figure 1.

The textual display in the browser is accompanied
by a message sequence chart (MSC) like visualization in
Traviando that is more instructive and shown on demand with
a right click on the corresponding tree node in the browser.
The MSC visualization shows processes with corresponding
time lines (vertical lines) and events either as events local

at some process (points) or events performed jointly by
several processes (horizontal lines, directed or undirected).
In the MSC visualization, events of the rule are highlighted
in dark red, the particular event of interest in bright red. If
a node represents more than one location in the trace, the
first matching location is taken as a representative of that
set.

4.2 Underlying Technology

In order to make this approach operational, some technical
issues need to be resolved. Obviously the length of any
considered σ ′ relates to the cardinality of the corresponding
set of locations A. In order to have a large cardinality of A,
σ ′ needs to be short, yet to be able to recognize interesting
behavior in σ ′ its length cannot be too short. It remains
to be determined which substrings shall be considered for
browsing and if those substrings and their groups shall
be computed on demand or once and independently of
what events are of interest. While the former has more
potential benefits from a users perspective, the latter will
turn out to be efficiently possible in practice based on the
Sequitur algorithm from Nevill-Manning (Nevill-Manning
and Witten 1997). We use the Sequitur algorithm to generate
a grammar that serves as a rule base for navigation of the
entire trace. The rules of the grammar are what group
similar sequences of events together into rules. The Sequitur
algorithm is known for generating a concise grammar from
a sequence of symbols with the in a single scan with a time
complexity that is linear in the length of the sequence and
modest memory requirements. For more information on the
Sequitur algorithm please see Nevill-Manning’s PhD thesis
(Nevill-Manning 1996), available with more information at
<sequitur.info>.

4.3 Other Features of Traviando

In addition to the new phrase based browser, Traviando pro-
vides a variety of features to consider the detailed behavior
of a simulation model. For a single trace, it provides basic
statistical information on the number of changes made to
state variables and on the number of times events occur. It
sheds light on the progressive or repetitive character of a
trace, i.e., if states are frequently revisited and the behavior
is cyclic or if a simulation never returns to a previously
reached state. There are two ways to illustrate this, one is
with the help of a measure called progress (Kemper 2007),
which shows distinctive patterns that allow a simple clas-
sification of models. Another visualization plots the state
indices along with the trace. Both features help to identify
certain types of errors in simulation models. All features
of this category aim at general characteristics of traces.

In order to check particular properties, Traviando sup-
ports LTL model checking of traces. Formulas are specified

2815

Schmidt and Kemper

Figure 2: Example of the Nam visualizer.

in an editor that provides multiple predefined skeletons for
commonly applied types of formulas (model checking pat-
terns (Kemper and Tepper 2006b)) which only need to be
adjusted by adding appropriate atomic propositions. Model
checking results are shown by color highlighting those events
in a MSC visualization that lead to states that fulfill a given
formula. Colors can be freely associated with formulas
and subformulas. The MSC visualization is enhanced with
more features to support process interaction models and to
highlight congestion of entities at resources (Kemper and
Tepper 2005) .

Finally, clustering of a set of simulation traces is sup-
ported with respect to a set of given features. The motivation
is to help a modeler group traces that result from a series of
simulation experiments such that one may examine a group
of traces with a particular property or on traces taken from
different groups to investigate the differences.

5 ANALYSIS OF NETWORK PROTOCOL
MODELS

5.1 A Simple Network Model

We consider a simple network model taken from Marc
Greis’ online tutorials that teaches one how to create a
larger network topology and how to simulate a link failure
with NS2, see tutorial 6 at <www.isi.edu/nsnam/ns>.
The Nam visualizer is able to visually display the events
of this NS2 simulation graphically to the user. An example
of the Nam visualizer running on corresponding trace data
can be seen in Figure 2.

In this example, Node 0 is trying to send UDP packets
to node 3. At time 1.0 seconds, the link between node 1 and
node 2 goes down, which can be seen in Figure 2. Node 0
is forced to reroute it’s traffic through nodes 6, 5, and 4 in

Figure 3: Lines in Nam trace file of simple network model.

Figure 4: MSC Visualization triggered from Sequitur Trace
Browser for the event of a link going down.

order to send its packets to node 3. The Nam visualizer is
helpful here to show that the experiment is working, but it
does not present the finer details that are produced from this
simulation. When checking and debugging a model, these
details need to be analyzed in order to guarantee correctness.
Unfortunately, such details are either not seen or unclear in
the Nam visualizer.

The particular NS2 trace of this model that we consider
contains 10917 lines. By loading the trace into Traviando
we are able to quickly produce graphs calculating statistical
information about the number of events and resulting vari-
ables in the NS2 trace. We see that of the 823 packets sent
by node 0, 812 of them were received by node 3. Node
0 dropped 3 packets and the rest must have been lost in
transit. We are using the new Sequitur Trace Browser in
Traviando to quickly browse the trace file. The grammar

2816

Schmidt and Kemper

generated by the Sequitur algorithm for this trace contains
120 rules. After expanding a couple of layers in the browser
window as shown in Figure 1, we immediately see various
repetitious patterns. For example R112, R105, R32, and
R18 all contain sequences of events where a node receives
a packet, enqueues the packet, dequeues the packet, and
then sends the packet to another node. These patterns may
have not been detected by the usual means of extracting
data from NS2 source files.

We can also immediately find the trace events where
packets were dropped when the link connecting nodes 1
and 2 goes down. We do this by looking at level 1 nodes in
the Sequitur Trace Browser tree and finding the action that
describes that a link goes down. We can then expand this
event to see the alert representing rule R0. After selecting
the first leaf node below the alert, we immediately jump
to that position in the MSC of the trace and the action is
highlighted in bright red as shown in Figure 4. Analogously,
we can identify events where packets are dropped. Figure
4 shows a location where packets are dropped as well. It
is important to point out that the event of a packet being
dropped is very rare because only 3 packets are dropped
when the link goes down. As a result, the event of a packet
being dropped does not belong to a phrase/rule, which is
unusual and should draw the modelers attention when the
modeler is browsing through the trace file with the Sequitur
Trace Browser.

Another interesting observation is that when a link goes
down the NS2 Nam trace format dumps four events for this
one action as shown in Figure 4. The four events come as
a pair of two events that are subsequently repeated once.
The pair of events contains of one event to describe that a
link from node A to node B goes down and a second event
for the link from B to A going down. So links are treated
as directed in this model. However it is unclear, why this
is reported twice for each direction and with all four events
having the same time stamp of 1.0. In the trace file these two
events are one after the other and occur two times during the
simulation, so they are grouped into R38. R38 occurs twice
in the start rule, R0, which we thought to be interesting
behavior for NS2 since the second occurrence of R38 is
unexpected. We confirmed that this identical event exists
by finding it in the Nam trace file generated by NS2 seen
in Figure 3. A similar thing happens when the link comes
back online. NS2 generates four link ON trace messages
when the link comes back online at 2.0 seconds. This
information is also visible in the Sequitur Trace Browser.
This is interesting because a person using bash scripting to
generate data from a trace file may calculate an incorrect
count for the number of times a given link goes down or
up.

5.2 AN 802.11e Protocol Model

Zapotoczky and Wolter (Zapotoczky and Wolter 2008) in-
crease the performance of the 802.11e protocol by introduc-
ing access category shifting. They point out that 802.11e
does not give good service quality to low priority class
clients when the only clients on the network are the low
priority class clients. They propose that for this specific
case all the low priority clients should temporarily shift up
to a higher priority in order to better utilize the network
and achieve a higher throughput. They experiment with
this proposed change both with hardware and with simu-
lation and show that they are able to achieve up to 20%
higher overall throughput by using access category shifting.
For their simulations they use NS2 version 2.31 with the
802.11e EDCA and CFB Simulation Model (Wietholter,
Emmelmann, Hoene, and Wolisz 2006). Here we explore
one of the trace files from a simulation of this model.

The simulation model represents a wireless network
with 4 mobile nodes. Node 1 generates traffic using a CBR
generator while node 0 acts as a sink and listens to the traffic.
The Nam trace file generated by the simulation is 1960108
lines (130M in size) long, which represents 16.01 seconds
worth of data. Here we only examine the first 15000 lines
of the trace (about 2.10 seconds) and our observations relate
to only those lines. Unfortunately Nam visualizer version
1.13 segmentation faults when attempting to visualize both
the shortened trace and the full trace.

After loading the shortened trace into Traviando, we
found the following data. Within the first 2.10 seconds,
node 1 sends out 4293 packets, nodes 0, 2, and 3 send out
1 packet each, and node 0 receives 473 packets. Wireless
networks result in slightly different and particular NS2
models. NS2 references a node with id -1 in the Nam trace.
We interpret this node to be the wireless network. For
this model, the set of processes in the MSC visualization
contains links between each node and node -1 along with a
link from node 1 to node 0, so we used a structuring feature
of Traviando to combine processes into groups. This is
helpful to retain a clear graphical representation in cases
like this as it makes logical sense to combine all links and
node -1 into one process called Radio. This process then
represents the medium when packets are sent wirelessly
across the network. One can also see by looking at the
event count from the Sequitur Trace Browser that nodes 2
and 3 do not really do much in the simulation. We therefore
group them together into one process called Other-Nodes.
The resulting MSC is a condensed version of the previous
MSC, however, no events have been cut out and the MSC
is still complete. The resulting MSC can be seen in Figure
6.

One interesting thing about this simulation is that pack-
ets appear to be generated in the medium. The usual order
of events consist of: node A sends packet to link AB, link

2817

Schmidt and Kemper

Figure 5: Sequitur Trace Browser from 802.11e protocol simulation.

AB receives packet and sends it to node B, and finally node
B receives the packet. At the beginning of the simulation,
this is not the case as node -1 receives packets from nodes
1, 3, and 2 without nodes 1, 3, or 2 sending any packets
(this can also be seen in Figure 6). Upon seeing this, we
manually examined the Nam trace file to confirm that this
was actually happening. For the given model, it is not clear
why NS2 performs these events.

Another interesting behavior seen in this simulation is
how node 0 receives packets. By looking at both the MSC
and at the Sequitur Trace Browser in Figure 5 it appears
that all the packets received by node 0 are received from
itself. Again, we manually checked the Nam trace file to
ensure that this is actually the case. Again, it is not clear
why NS2 performs these events.

In summary, trace based analysis and the Sequitur Trace
Browser helped us to identify interesting details of simulation
traces generated from NS2 models. We did not track down
the particular reasons for that behavior within NS2 for the
time being, since the main purpose for the discussion of
these examples is to illustrate how our approach can be
applied in practice.

6 EVALUATION

The Sequitur Trace Browser helps to display patterns and
repetitions to modelers that might otherwise be missed by
the usual scripting methods of collecting and aggregating
data. The browser’s ability to aggregate data into phrases in
linear time and form it into an effective visual representation

of what really occurs during the simulation is the browser’s
primary benefit.

In its current form the Sequitur Trace Browser does not
provide the modeler with any control over how the phrases
are constructed. As a result, if the modeler is looking
for specific repetitious behavior, the browser may or may
not group that specific behavior into a phrase. This is the
tradeoff that is paid in order to achieve linear complexity
and it is important to achieve this when dealing with large
trace files, which is usually the case. Sequitur tends to
create rather short rules of at least 2 symbols in order to
achieve a small rule base which implies that the expansion
of rules in the browser tends to duplicate the length of the
considered sequence in each step.

At this point, the Sequitur Browser applies to a single
trace. The generalization to browse a set of traces is imme-
diate at a conceptual level. However, additional information
needs to be incorporated into the rule base to keep track
of which trace(s) a substring refers to. We leave this for
future work.

7 CONCLUSION

We describe a transformation of NS2 Nam traces of both
network and wireless network models into an XML input
format for Traviando, a trace visualizer and analyzer. We
propose a new phrase-based trace browser that has been
integrated into Traviando, which lets a modeler browse
and investigate sets of equivalent parts of a simulation
trace simultaneously. In combination with other features
of Traviando, this browser makes debugging NS2 models

2818

Schmidt and Kemper

Figure 6: Condensed MSC.

easier and more productive. We report on our initial findings
when applying our technique to traces obtained from NS2
models found in the literature, one is that of a Token
Ring type network protocol and a second one that models
aspects of the 802.11e protocol for wireless networks. In
both cases we were able to quickly see behavior from the
simulation that motivates further investigations and is not
trivially explained.

REFERENCES

Appenzeller, G., I. Keslassy, and N. McKeown. 2004. Sizing
router buffers. SIGCOMM Comput. Commun. Rev. 34
(4): 281–292.

Cicconetti, C., E. Mingozzi, and G. Stea. 2006. An integrated
framework for enabling effective data collection and
statistical analysis with ns-2. In WNS2 ’06: Proceed-
ing from the 2006 workshop on ns-2: the IP network
simulator, 11. New York, NY, USA: ACM.

Deavours, D. D., G. Clark, T. Courtney, D. Daly, S. Derisavi,
J. M. Doyle, W. H. Sanders, and P. G. Webster. 2002.
The Möbius framework and its implementation. IEEE
Trans. Software Eng. 28 (10): 956–969.

Fall, K., and K. Varadhan. 2008. The ns manual (formerly ns
notes and documention). Technical report, UC Berkeley
and LBL and USC/ISI and Xerox PARC.

Kemper, P. 2007. A trace-based visual inspection technique
to detect errors in simulation models. In Winter Simu-
lation Conference, 747–755: ACM.

Kemper, P., and C. Tepper. 2005. Trace based analysis
of process interaction models. In Winter Simulation
Conference, 427–436: ACM.

Kemper, P., and C. Tepper. 2006a. Trace analysis - gain
insight through modelchecking and cycle reduction.
Technical Report 06007, Universitat Dortmund, SFB
559, Modeling Large Networks in Logistics.

Kemper, P., and C. Tepper. 2006b. Traviando - debugging
simulation traces with message sequence charts. In 3rd
Int. Conf. on Quantitative Evaluation of Systems, 135–
136: IEEE.

Lang, T., P. Branch, and G. Armitage. 2004. A synthetic
traffic model for quake3. In ACE ’04: Proceedings of
the 2004 ACM SIGCHI International Conference on
Advances in computer entertainment technology, 233–
238. New York, NY, USA: ACM.

Nevill-Manning, C. 1996, May. Inferring sequential struc-
ture. Ph. D. thesis, University of Waikato.

Nevill-Manning, C. G., and I. H. Witten. 1997. Identify-
ing hierarchical structure in sequences: A linear-time
algorithm. J. Artif. Intell. Res. (JAIR) 7:67–82.

Wietholter, S., M. Emmelmann, C. Hoene, and A. Wolisz.
2006. Tkn edca model for ns-2. Technical report, Tech-
nische Universitat Berlin.

Zapotoczky, J., and K. Wolter. 2008. Increasing perfor-
mance of the 802.11e protocol through access category
shifting. In Proc. 14th Conf. Measuring, Modelling and
Evaluation of Computer and Communication Systems:
VDE-Verlag.

AUTHOR BIOGRAPHIES

NATHAN J. SCHMIDT is a graduate student in the
Department of Computer Science at the College of
William and Mary. His research interests include net-
working, simulation, and model checking and debugging
techniques. His email address is <njschm@cs.wm.edu>.

PETER KEMPER is an associate professor in the De-
partment of Computer Science at the College of William
and Mary (previously Universität Dortmund and TU Dres-
den, Germany). His research interests include model-
ing techniques and tools for performance, performability
and dependability analysis of systems. He contributed to
analysis techniques for the numerical analysis of Markov
chains, model checking stochastic models, techniques for
simulation optimization. His web page can be found via
<www.cs.wm.edu/˜kemper> and his email address is
<kemper@cs,wm.edu>.

2819

