

TOWARD ON-DEMAND WAFER FAB SIMULATION USING FORMAL STRUCTURE & BEHAVIOR MODELS

Edward Huang
Ky Sang Kwon
Leon McGinnis

School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332-0205 USA

ABSTRACT

Contemporary factories in capital intensive industries such
as semiconductor manufacturing are very complex, with
many sources of risk. The highly competitive and global
business environment forces companies to analyze, design,
and continuously re-design factories with distributed multi-
disciplinary teams. Traditional factory design approaches
using spreadsheets and stand-alone simulations cannot
adequately cope with the resulting time, cost, and risk re-
quirements. In this paper, we address the opportunity to
support fab design teams by providing on-demand simula-
tion. The method for achieving this combines formal fab
descriptive models with a process for generating fab analy-
sis models from relatively standard sources of fab data.

1 INTRODUCTION

The contemporary 300mm wafer fab may contain over a
thousand process tools, several thousand foups, or front-
opening unified pods, hundreds of material transporters,
and thousands of foup storage locations. It must cope with
risks associated with uncertain future product design and
production requirements, uncertain future technology
availability and performance, and the risks inherent in very
large-scale automated systems. The investment cost for
even one such wafer fab is so large that poor design deci-
sion making may threaten the owning firm’s existence.
With technology in constant flux, and with pressure to re-
duce time to first good wafer out, there is enormous pres-
sure on the fab design team, which may span a number of
locations, corporate functions, and professional disciplines.
Further complicating the design process are differences
within the fab design team in terms of culture and language,
and the technical tools, models, and metrics used. Once
the fab is in operation, it will undergo almost constant re-
design to accommodate new tools and technologies.

In this environment, traditional ad-hoc approaches to
fab simulation, using spreadsheets, documents, and CAD
layout drawings to convey design intent to simulation ex-

perts is inadequate for unambiguously communicating this
complexity. What is needed is a new generation of fab
simulation tools that uses formal models of the fab and its
essential systems to enable unambiguous communication
of design intent, and also supports on-demand full fab
simulation.

One reason this is a realistic goal is that contemporary
300mm wafer fabs are approaching full automation, at
least in terms of production activities (see, Hunter and
Humphreys 2003). Fully automated production, unlike
production involving “touch labor,” is constrained by the
software systems controlling the automation. Thus, at least
in terms of how individual devices respond to specific
events, fully automated systems are more predictable. In
addition, their behavior already is “formally” described, by
the control software. As a consequence, despite the com-
plexity of the 300mm wafer fab, it is an aggregation of ob-
jects with relatively simple behavior and interaction logic.

A second reason it is realistic to aspire to a new gen-
eration of fab simulation tools is the tremendous advance-
ments in computational infrastructure (CI) made over the
past decade. High bandwidth communication enables real-
time collaboration between remotely located computing
resources. Inexpensive grid computing supports on-
demand simulation studies. Perhaps most important, the
emergence of new modeling tools, particularly SysML
(OMG 2008), provides the expressiveness needed for mod-
eling complex systems in a formal but relatively easy to
use language.

In this paper, we propose an approach to developing
on-demand fab simulation tools based on formal models of
two distinct types: descriptive models and analytic mod-
els. A modeling framework will be described which sup-
ports the description of both fab resources and their behav-
iors using a formal modeling language. An application
framework will be described, in which knowledge about
both the application domain and analysis models is cap-
tured in appropriate libraries and (re)used. A key element
of this framework is on-demand automated translation

2341 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Huang, Kwon, and McGinnis

from instance descriptive models to instance simulation
models.

This paper is organized as follows. Traditional ap-
proaches to analyzing wafer fabs is discussed in section 2.
In section 3, we discuss issues arising from traditional ap-
proaches to fab simulation, and discuss requirements to
address them. In section 4, we propose a new wafer fab
modeling and analysis framework, and describe implemen-
tation examples proving the concept in section 5. We end
with conclusions and suggestions for future work.

2 LITERATURE REVIEW

There are two categories of published papers related to fab
modeling: those directly addressing formal models of fabs,
and those primarily focused on fab design.

2.1 Formal Fab Models

Arief and Speirs (1999) propose automatic generation of
discrete event simulation models from formal system mod-
els created with UML. They defined the language SML,
Simulation Modeling Language, to map from the UML
system model into the target simulation language, which
was C++ SIM (Arjuna Team 1994), although the actual
translation was performed manually.

Whittle (2000) proposed using UML as the formal
modeling language. UML is a powerful modeling language
but additional semantic requirements must be specified to
make it useful for modeling specific systems. The author
presented an overview of some of the attempts to specify
the application-specific semantics of UML, but no imple-
mentation or proof of concept was provided.

Saldhana et al (2001) also tried to use UML as the
formal language for modeling wafer fabs. They proposed
using Petri nets as the interface between the formal system
model and the corresponding simulation model. They de-
veloped Object Net Models from UML state-chart dia-
grams. A Colored Petri Net was generated with compo-
nents defined from the Object Net models and connections
between components defined using the information in
UML collaboration diagrams. Finally, the Colored Petri
Net model is translated into the simulation model. How-
ever, in this approach, only the structure of the system is
considered, and not its behavior.

Allam and Alla (1998) proposed using hybrid Petri
Nets as the formal semiconductor manufacturing system
model since traditional Petri Net models present difficul-
ties for modeling and analysis of large scale systems.
However, their work only considers the production re-
sources; AMHS is not incorporated. While they compared
the resulting hybrid Petri Net model to the corresponding
Petri Net, they assumed the modelers would work directly
with the hybrid Petri Net models.

Zhou and Jeng (1998) use Petri Nets to model semi-

conductor manufacturing because Petri Nets can be used to
describe such complex discrete event systems precisely
and enable both qualitative and quantitative analysis, for
example to guarantee deadlock free operation. The authors
point out that realistic scheduling rules still are too compli-
cated to be captured precisely in Petri Net models.

Muller (2007) took a different approach to using Petri
Net models to support simulation. He first created an ob-
ject model representing the data required to describe a fab
in sufficient detail to support simulation modeling: in-
cluded were process tools, product routes, yields, and
ramps. Then he created standard Petri Net models for spe-
cific tool types, e.g., single wafer processing, batch proc-
essing, etc., and a method for generating the composite
Petri Net model from the object oriented data description.
His approach does not require the designer to work directly
with Petri Nets, and provides very fast simulations, but it
does not incorporate AMHS.

Both Petri Nets and UML have been examined as tools
for creating formal system models. Petri Nets can be very
useful to automate input for simulation software, but are
not easy for application domain experts to understand or to
use for describing design intent. In addition, Petri Net
models do not consider AMHS, a critical component in
300 mm wafer fabs. UML is somewhat easer for the appli-
cation domain modelers to understand and use, but using
UML requires agreement on standard syntax, and UML
models can’t be directly translated into simulation models.

2.2 Fab Design Models

Yang et al (1999) described the problem of designing the
layout of AMHS (Automated Material Handling system)in
a wafer fab so that material handling supports the produc-
tion requirements in the most cost effective manner. The
authors model the problem as Mixed Integer Programming
Problem and use Tabu search and Simulated Annealing to
solve it. Clearly, only a limited description of behavior is
available in such a model.

Kumar and Kumar (2001) also discussed semi-
conductor system design and analysis. Instead of a mixed
integer programming model, they use Queuing Networks
to analyze the system performance. However, when the
system is large, it is difficult to apply queuing theory. The
probability assumptions for each input parameter are also
very critical for the model.

3 MODELING REQUIREMENTS

3.1 Drawbacks in Tradition Approaches

Published research relevant for the fab modeling problem
tends to be narrowly focused on a particular analysis. No
matter how useful the particular analysis might be, there is
no existing computational infrastructure to support the de-

2342

Huang, Kwon, and McGinnis

ployment of the analysis in practice. As a result, there re-
mains a large gap between fab modeling research and prac-
tice.

Formal models in the fab design literature are pre-
dominantly based on UML or Petri Nets. UML is designed
for software engineering, and appears to have gained little
traction in the factory modeling domain. Petri Net models
become large and very intricate when modeling the kinds
of complicated behavior typical of wafer fabs, and their use
requires deep methodology expertise. Thus, they are not a
good tool for factory domain experts to use to describe a
particular application.

Petri Net and UML-based approaches, in general, ad-
dress either the structure of the system or its behavior but
not both. In addition, prior approaches attempt to construct
a complete instance model, which in the case of a wafer
fab, would lead to very large and unwieldy models with a
great deal of very repetitive information.

A practical approach to formal models of wafer fabs
must overcome these drawbacks, i.e., must be based on
formal models that the domain experts can use, must ad-
dress both structure and behavior, and must lead to models
that are manageable in terms of size, yet still provide a
complete and unambiguous specification. There are addi-
tional desirable attributes of a fab design tool, as described
in the following subsections.

3.2 COTS Tools

Engineers commonly use a variety of commercial off the
shelf (COTS) tools for authoring and analyzing factory da-
ta. Some tools relevant for fab simulation are: Excel and
Access for numeric data; and Visio, AutoCAD, or Fac-
toryCAD for layout data. Any new tool for supporting fab
design decision making should be integrated with these
kinds of standard authoring tools.

In addition, there are a variety of COTS solvers that
are often or sometimes used in analyzing factory data.
These include: statistical tools; math solvers like Mathe-
matica or MathCAD; optimization tools; and discrete
event simulation tools like Arena, AutoMOD, or eM-Plant.
Any new tool for supporting fab design decision making
also should easily integrate with these types of analysis
tools.

3.3 Distributed System Modeling

In contemporary factory design, multiple disciplines in dif-
ferent geographical locations are involved, and multiple

designers have to collaborate. To support and enable this, a
fab modeling tool should incorporate formal semantics and
application domain specification to improve communica-
tion among designers, and between designers and the com-
putational tools they use.

3.4 Support Problem Solving Process

Fab modeling is only useful to the extent it supports prob-
lem solving. Key to any problem solving process is the
ability to describe the artifact or system under considera-
tion, to analyze its performance, and then to modify or fur-
ther elaborate the description based on the analysis results.
Thus any new tool for fab modeling should support effi-
cient authoring of the fab description, easy access to useful
analyses, and presentation of analysis results in easy to un-
derstand formats.

4 PROPOSED APPROACH

4.1 Overall Picture

In approaching the development of fab modeling tools, we
distinguish two distinct types of modeling requirements.
There is the user modeling of the fab, i.e., the complete and
unambiguous specification of the fab. User modeling is
done by domain experts, i.e., those charged with responsi-
bility for the quality of the fab design or operations. For
example, an expert in AMHS would be involved in speci-
fying—creating the user model of —the AMHS in the fab.
In addition, there is analysis modeling, which is the crea-
tion of the analysis models whose solutions will provide
important information for guiding fab decision making.
Analysis modeling requires expertise in the specific meth-
odology used in analysis, and also expertise in the specific
solver to be employed. For example, expertise in Auto-
Mod would be required in creating an AutoMod model
which would be used to simulate the performance of the
AMHS.

Figure 1 summarizes our application framework, in
which we separate modeling into an “off-line” activity
which creates libraries and a model translator, and “on-
line” activities which create instances of descriptive and
analytic models, and engage solvers to compute results
useful in the decision making process.

2343

Huang, Kwon, and McGinnis

Figure 1: Application Framework

There are a number of important implications con-

tained in figure 1.
• The role of the analytic modeler (the methodology and

solver expert) is an off-line role; this person is not di-
rectly involved in the decision making process for a
specific analysis.

• The methodology/solver expert creates two kinds of
libraries and a translator tool; the descriptive library is
used in COTS authoring tools to create the specifica-
tion of the design, i.e., an instance of a descriptive
model; the analysis library is used by the translator
tool to create instances of an analysis model ready for
a specific solver; the translator converts the instance
of a descriptive model into an instance of an analysis
model.

• Descriptive model libraries provide basic units of be-
havior and structure that have been identified by the
user; the modeler has defined these units using a for-
mal language, and converted them into a form usable
by the corresponding COTS authoring tools.

• The descriptive instance model is constructed by fac-
tory experts using COTS authoring tools, augmented
by the descriptive libraries.

• Analysis model libraries contain reusable units of
structure and behavior in a form usable for specific
analysis model (e.g., math formulations for queuing or
factory physics analysis, blocks with operations for
simulation analysis). These units correspond to those
in the descriptive libraries and there are formal under-
lying relationships with descriptive libraries used by
the model translator.

• The analysis model instance is created automatically
by transforming the descriptive model instance
through the model translator based on the relationship
between the descriptive libraries and the analysis li-
braries.

In the framework, system modelers and analysis experts
build the descriptive and analysis libraries and the mapping

between them that enables the automated translation. This
off-line activity, of course, will engage domain experts as
well, but the domain experts are not expected to be experts
in the formal system modeling language. Most importantly,
this off-line activity captures the essential modeling knowl-
edge in a re-usable form, and makes it usable by factory
domain experts who are not experts in a specific analysis
modeling methodology.

4.2 Modeling Framework

There are two essential elements of our modeling frame-
work: how we conceptualize the wafer fab domain; and
how we represent the wafer fab domain in order to create
the descriptive and analysis libraries. For this modeling
framework to be effective, it must address both the struc-
ture and the behavior of the wafer fab. Both the conceptual
model and its realization are based on a formal language
(in our case, on OMG SysML) and the use of the language
to define specific semantics for the wafer fab domain.

We conceptualize the wafer fab as an event driven sys-
tem which can be described as a collection of state ma-
chines, and these state machines interact in well-defined
ways. The individual state machines are conceptualized as
objects, having attributes and behaviors (or “methods”
which can be invoked either internally or externally), and a
set of well defined states, and clearly identified events that
trigger state changes.

Our reference model of the wafer fab is the baseline
from which both the descriptive and analysis libraries are
derived. We create the reference model using a specific set
of SysML diagrams with naming conventions and an or-
ganization that makes the diagrams relatively easy for do-
main experts to follow.

Finally, the reference model captures the basic ele-
ments of structure and behavior observed in the wafer fab
domain. Furthermore, it provides the mechanisms for ar-
ticulating new structures or behaviors in a way that allows
them to be incorporated into the descriptive and analysis
libraries..

4.3 State Machine Paradigm in Modeling
Framework

While we view the wafer fab as a collection of interacting
state machines, we are not necessarily interested in captur-
ing every possible state of every device in the fab. Rather,
we are interested in the modeling the fab at the level of ma-
terial flow related events, i.e., lot dispatch/route/movement,
process assign/start/end, or vehicle dispatch-
ing/routing/loading/unloading. Thus the fab system struc-
tural elements that interest us are the lots, the process and
metrology tools, the vehicles, the stockers, the data reposi-
tories, and the controllers which directly impact the other
structural elements.

On-Line Off-Line

User Modeler
COTS

Authoring
Tools

Descriptive
Model

Libraries

Formal
Descriptive

Model
Instance

COTS
Solver

Analytic
Model

Libraries

Model
Translator

Formal
Analytic
Model

Instance

Res
ults

User

2344

Huang, Kwon, and McGinnis

Each of these system structural elements has an asso-

ciated SysML state diagram. Figure 2 provides a simpli-
fied illustration for a lot and an AMHS controller. In this
simplified illustration, the lot has four states: it is in proc-
ess, in transit, being loaded into a tool input port, or wait-
ing in a tool output port. Similarly, the AMHS controller
is either idle or it is dispatching a vehicle to service a lot
movement request.

Events are associated with state changes. For example,
the job completed event occurs when a lot is finished proc-
essing on a tool. An empty vehicle event occurs when a
vehicle completes a route and transfers a lot into a tool or
stocker port.

When an event occurs, it may trigger a behavior, either
for the structural element whose state has changed, or for
some other structural element. For example, when a vehi-
cle is dispatched by the AMHS controller, it could change
its status from empty-unassigned state to the empty-
assigned state. The empty-assigned event will trigger the
behavior in which the vehicle travels to the assigned desti-
nation, i.e., the vehicle state change triggers a vehicle be-
havior. Some events will have effects beyond the structural
element whose state has changed. For instance, when a ve-
hicle unloads and becomes empty, not only will its state
change, but also the AMHS controller will change from
idle to dispatching the now empty-unassigned vehicle.

This type of interaction is illustrated in Figure 2,
where the job-complete event changes the state of the lot,
but also triggers an interaction with the AMHS controller,
which goes from idle to dispatching. The interaction is
represented in a SysML sequence diagram as the “Notify”
message from the Lot lifeline to the AMHS lifeline. “No-
tify” can be thought of as a method of the AMHS structural
element, and this method can be given a standard imple-
mentation, perhaps with a highly parameterized API.

Figure 2: Behavior modeling in State machine Paradigm

To summarize, at the level of material flow, each

structural element of the fab has a generic block represen-
tation in SysML, and an associated state diagram. The

events which induce state changes are identified in the
state diagram, and the guard conditions of the events can
be associated with interactions between blocks in a se-
quence diagram. These interactions can be given standard
implementations corresponding to particular kinds of
analysis, e.g., simulation or queuing. Because both struc-
ture and behavior have been captured in a formal language,
it is inherently computational, i.e., the representations can
be processed for the purposes of model translation, using
standard parsing and processing methods.

4.4 The Descriptive and Analysis Model Libraries

4.4.1 Descriptive Model Libraries

The fab reference model created in SysML is used to create
a descriptive model library for each of the COTS authoring
tools used by the domain experts, i.e., the fab decision
making team. Conceptually, these libraries contain tem-
plates that the fab expert uses to describe the fab; the tem-
plate components correspond to structure, behavior, or
perhaps to some attribute of a structural element.

Clearly, both the reference model and the descriptive
libraries are domain specific. Because these libraries are
simply documents, they can be version controlled, and up-
dated as needed if new structures or behaviors are identi-
fied and implemented. Note also that the libraries define
the semantics of the wafer fab, i.e., they define a unifying
terminology that can be used across all fab decision makers
(and off-line modelers) when referring to specific struc-
tural and behavioral elements of the fab.

4.4.2 Analysis Model Libraries

The analytic model libraries will be used to construct
specific instances of analysis models, intended for specific
solvers. Constructing such models requires expert knowl-
edge of both the analytical methodology and the specific
solver to be used. Since the instance analysis model will be
constructed from the instance descriptive model, the proc-
ess also requires full and clear understanding of the domain
reference model. In other words, the analysis modeler
must understand what kinds of analysis are relevant, useful,
and feasible, given the instance descriptive model.

The analysis model library provides, in effect, tem-
plates that will be selected, parameterized and used to con-
struct the instance analysis model, and will be different for
different kinds of analysis. For example, simulation blocks
with attributes and operations are necessary for simulation
analysis model, and one can imagine a modeling environ-
ment in which the analyst selects simulation blocks, places
them in a workspace, assigns parameter values, and con-
nects them as appropriate. In our framework, the analysis
library provides the set of allowed templates.

2345

Huang, Kwon, and McGinnis

Other types of analysis can be supported in a similar

fashion. For example, one might be interested in the
from/to flow times or flow volumes on the automated
transport system. The analysis library would have repre-
sentations of a flow network, and from-to flows, so that,
conceptually, an analyst could construct the input to a net-
work flow solver.

4.4.3 Mapping between Descriptive Libraries and
Analytic Libraries

In our application framework, the construction of instance
analysis models is done algorithmically, in the model
translator (see figure 1). In other words, the descriptive
model built by the fab decision maker using the descriptive
libraries is automatically transformed to an instance of a
particular kind of analysis model, e.g., a full fab simulation.
The underlying translation mapping between the descrip-
tive library and the analysis library is required for this
translation to be feasible. In our framework, the mapping
is accomplished in the reference model by using the formal
modeling language. As an example, for simulation, ele-
ments of the descriptive libraries are linked to correspond-
ing elements of the analysis model using generalization re-
lationship. Through this relationship, some sharable parts
of descriptive units become available to the inheriting
analysis units, which may also have their own attributes
and relationships. In summary, a descriptive element is
linked to analytic elements corresponding to one or more
types of analysis using generalization. The relationships
provide a bridge between the descriptive model instance
and corresponding analytic model instance.

4.5 Descriptive Model Instance

There may be a number of authoring tools involved in de-
scribing a wafer fab. For example, factory designers may
use FactoryCADTM for capturing wafer fab layout, while
process and machine instance data is stored in a database.
For the behavior descriptive model, sequence diagrams in
SysML can be used. Descriptive libraries are needed for
each COTS authoring tool. Some examples of how to cre-
ate these libraries are:
• Resources relevant to layout design are exported from

the SysML reference model to create a template li-
brary in FactoryCADTM. (e.g., Machines, Vehicle,
Stockers and Segment)

• Data schema for describing fab objects and processes
is exported from the SysML reference model to data-
base tools for authoring or collecting instance data.
(e.g., Machine capacity data, Process route and Opera-
tion data)

• Using SysML, operation units in behavior libraries are
used to create sequence diagrams describing behavior
in the instance descriptive model.

Note that since several authoring tools may be used to de-
scribe the same system design, integrity and consistency of
the descriptive libraries is essential. This is accomplished
by generating each descriptive library from the underlying
reference model.

4.6 Model Transformation

To summarize: off-line modeling creates a “domain refer-
ence model” which is implemented as libraries for COTS
authoring tools, and libraries for specific analysis tools;
fab experts author instance data, using standard COTS
tools augmented by the domain specific libraries. The next
step is the transformation of the resulting instance data to a
specific analysis model instance. During the transformation,
a translator specific to the analysis model parses necessary
information in the descriptive model instance in accor-
dance with domain specific semantics. The translator gen-
erates the corresponding analysis model instance in the
format required by the analysis solver. If we have multiple
transformation mechanisms and translators for various
analysis models, one descriptive model instance can be
translated to several analysis models, which results in
much saving in modeling effort by factory designers. The
following steps explain how to transform the model in-
stance given in section 4.4 to simulation analysis model as
an example.
• FactoryCAD layout drawing is exported as an SDX

(Simulation Data eXchange) file.
• The simulation translator integrates all instance data

from databases or spreadsheets, and layout data from
the SDX file into a composite database.

• The simulation translator extracts the sequence of dis-
patching logic from SysML as txt file.

• Finally, the translator creates the script generating
complete simulation model.

5 IMPLEMENTATION EXAMPLES

In order to demonstrate the proposed frameworks, we have
developed proof of concept implementations of structure
libraries, behavior libraries, authoring tools and model
transformation. These are described briefly below, and in
the cited papers which provide additional details.

5.1 Structure Modeling

The domain reference model defines the structural ele-
ments of a wafer fab, e.g., the single-wafer processing tool.
In addition, the off-line modeler may create additional do-
main objects which extend the reference model. For exam-
ple, an inspection machine is a type of the single process-
ing tool. This generalization can be added back to the

2346

Huang, Kwon, and McGinnis

reference model, so that inspection machine becomes a
block in the domain.

Using the generalization relationship, the domain ref-
erence model also will contain structural elements of
analysis models. For instance, the inspection machine
could be generalized as an M/M/1 queue from the queue
analysis perspective. The mapping via the generalization
relationship will be in the SysML model and be used in the
model translation process.

An example of creating structure libraries for a factory
layout authoring tool, FactoryCAD™, is describe in
(Kwon and McGinnis 2007). The paper explains the inte-
gration between structure libraries created in SysML and
template libraries in FactoryCAD™.

5.2 Behavior Modeling

There are two aspects of behavior modeling: the off-line
behavior modeling which defines the basic behavioral ele-
ments in the behavior library; and the online behavior
modeling for a specific fab design using these basic behav-
ior elements. The basic behavioral elements are developed
in the process of creating the domain reference model. For
example, when the generic structural element “stocker” is
defined, it will have its own basic behavior elements such
as “check the number of the lots in the stocker” or “ find
the highest priority lot in the stocker”.

For online behavior modeling, the basic behavior ele-
ment is used to describe the behavior from user perspective.
Since the behavior of a fab could be different in different
companies, the modelers could compose the basic behavior
elements for customized and complicated behavior actions.

The behavior in the semiconductor industry is a type
of discrete and event-driven system. The online behavior
modeler could use state-machine diagrams to define the
events related to the states changed and sequence diagrams
for the complicated behavior when the event happened.

For example, when a vehicle completes a delivery, it
will be dispatched to the next waiting lot if there is a wait-
ing log. The state machine diagram in Figure 3 shows the
states for a vehicle. When the vehicle state changes fro-
m ”Load-Assigned”, the corresponding transition event is
triggered and the sequence diagram in Figure 4 is executed.

In the sequence diagram in Figure 4, the vehicle noti-
fies the AMHS controller, which then checks the waiting
list and dispatches the vehicle if there is a lot waiting.

When the users want to describe a new dispatch rule,
the state machine and sequence diagrams will be the user
interface to describe the behavior logic. The user will se-
lect the corresponding basic behavior component and com-
pose the new sequence diagram, and it will be transferred
into the simulation automatically.

Figure 3: State machine diagram of vehicles

Figure 4: Sequence diagram for dispatching a vehicle to
the next waiting lot

5.3 Authoring tools

Integration of libraries with authoring tools is described in
McGinnis et al. (2006). There, a particular interface was
created to integrate a variety of authoring tools, including
FactoryCAD, text files, spreadsheets, or database. The in-
terface enforced a step-wise collection and integration of
the instance data which enabled consistency checking be-
tween different data sources. As an example, if the process
plans referenced a tool that was not present in the tool da-
tabase, the inconsistency could be detected and noted for
correction.

2347

Huang, Kwon, and McGinnis

5.4 Model Transformation

Huang et al. (2007) demonstrate a method to translate the
formal instance descriptive model into different instance
analysis models. When the formal model is constructed,
the user can choose either simulation or queuing network
analysis. The model translator will generate the corre-
sponding instance analysis model automatically based on
the relationship of the domain libraries and analysis librar-
ies as captured in the domain reference model.

6 CONCLUSION AND FUTURE WORK

We have described two frameworks which, together, en-
able the creation of a new generation of on-demand fab
simulation tools. . The state machine paradigm plays a key
role in embodying important knowledge of both the appli-
cation domain and the analysis domain in a formal model.
This formal model, in turn, provides the elemental behav-
ioral and structural units needed to compose the descriptive
model. In the end, the descriptive model is translated into
specific analysis models for specific solvers. We have
provided several implementation examples to demonstrate
the concepts.

There are many opportunities for further work in this
area, not the least of which is to scale up the concepts pre-
sented to enable on-demand full scale wafer fab simulation.
Other domains could be explored as well, such as automo-
bile manufacturing, automated warehousing and transpor-
tation. When it comes to analysis, optimization is an analy-
sis model that hasn’t fully been explored, but is worthwhile
to consider. In addition, we think the transformation proc-
ess itself should be formalized. In spite of the formal lan-
guages, we haven’t made a full use of the formalism for the
transformation mechanism itself. We’re considering
whether the open source model transformation technology
such as VIATRA is applicable to our research. Finally,
there are many examples of analysis which requires some
input from the designer; for instance, when the analyst
wants to simulate only a portion of the overall design, or
wants summary statistics for only a portion of the design.
Effective mechanisms for interfacing this kind of input to
the instance analysis model generation process are needed.

REFERENCES

Allam, M., and H. Alla. 1998. Modeling and Simulation of
an Electronic Component Manufacturing System Us-
ing Hybrid Petri Nets. IEEE Transactions on Semi-
conductor Manufacturing 11(3).

Arief, L. B., and N. A. Speirs. 1999. Automatic Generation
of Distributed System Simulations from UML. In Pro-
ceedings of the 13th European Simulation Multicon-
ference (ESM'99), Warsaw, Poland, 85–91.

Arjuna Team 1994. C++SIM User’s Guide. Department of
Computing Science, University of Newcastle upon
Tyne <http://cxxsim.ncl.ac.uk/>.

Huang, E., R. Ramamurthy, and L. F. McGinnis. 2007.
System and simulation modeling using SYSML. In
Proceedings of the 2007 Winter Simulation Confer-
ence, 796-803.

Hunter, R., and C. Humphreys. 2003. Trends in 300 mm
factory automation. Semiconductor International,
26(6):60-64.

Kumar, S., and P. R. Kumar. 2001. Queuing network mod-
els in the design and analysis of semiconductor wafer
Fabs. IEEE Transactions on Robotics and Automation
17(5).

Kwon, K., and L. F. McGinnis. 2007. SysML-based simu-
lation framework for semiconductor manufacturing. In
Automation Science and Engineering, 2007. CASE
2007. IEEE International Conference, 1075–1080.

McGinnis, L. F., E. Huang, and K. Wu. 2006. Systems en-
gineering and design of high-tech factories. In Pro-
ceedings of the 2006 Winter Simulation Conference,
1880-1886.

Mueller, R. 2007. Specification and Automatic Generation
of Simulation Models with Applications in Semicon-
ductor Manufacturing. Ph.D. thesis, Department of
Industrial and Systems Engineering in Georgia Tech,
Atlanta, Georgia.

Saldhana, J. A., S. M. Shatz, and Z. Hu, 2001. Formaliza-
tion of object behavior and interactions from UML
models. International Journal of Software Engineer-
ing and Knowledge Engineering 11(6):643.

Whittle, J. 2000. Formal approaches to systems analysis
using UML: an overview. Journal of Database Man-
agement 11(4).

Yang, T., M. Rajasekharan, and B. A. Peters. 1999. Semi-
conductor fabrication facility design using a hybrid
search methodology. Computers & Industrial Engi-
neering 36:565-583.

Zhou, M., and M. D. Jeng. 1998. Modeling, analysis, simu-
lation, scheduling, and control of semiconductor
manufacturing systems: a Petri Net approach. IEEE
Transactions on Semiconductor Manufacturing 11(3).

AUTHOR BIOGRAPHIES

LEON MCGINNIS is Gwaltney Professor of Manufactur-
ing Systems at Georgia Tech, where he also serves as Di-
rector of the Product and Systems Lifecycle Management
Center, Associate Director of the Manufacturing Research
Center, and Director of the Keck Virtual Factory Lab. His
research is focused on the representation of complex indus-
trial systems, such as warehouses and factories, to enable
analytic and simulation modeling to support performance
assessment, behavioral prediction, and system design. His
email address is <leon.mcginnis@gatech.edu>.

2348

Huang, Kwon, and McGinnis

EDWARD HUANG is a Ph.D. candidate in the School of
Industrial and Systems Engineering at the Georgia Institute
of Technology. His research interests include simulation
modeling and , as well as application of simulation in sem-
iconductor manufacturing. His email address is <edward-
huang@gatech.edu>.

KYSANG KWON is received the B.S. degree in mechani-
cal engineering from Seoul National University, Seoul,
Korea, in 2000, and and the M.S. degree from School of
Industrial & Systems engineering in Georgia Tech in
2008. He was a mechanical engineer in SunYang Tech,
Korea from 2000 to 2003, and a PLM (Product Lifecycle
Management) consultant in UGS, Korea from 2003 to
2006. Currently, he is a Ph.D. student at ISyE, Georgia
Tech. His research interests are object-oriented simulation,
SysML-based simulation modeling and discrete event si-
mulation in manufacturing industry in particular.
His e-mail address is <kkwon3@mail.gatech.edu>.

2349

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

