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ABSTRACT

Recent incidents of avian flu (H5N1) in Asia and the pan-
demic influenza cases in history (1918, 1957 and 1968)
suggest that a future pandemic influenza is inevitable and
likely imminent. Governments and non-governmental or-
ganizations prepare response plans on how to react to a
pandemic influenza. In this paper, we study the logistics
side of the problem, specifically, food distribution logistics
during the pandemic influenza. For this purpose, we de-
velop a disease spread model that assists in estimating the
food need geographically at a given time. Then, we develop
an integrated solution approach called the Dynamic Update
Approach to build the food distribution network. We run
our integrated disease spread and facility location model
for the state of Georgia and present the estimated number
of infections and meals needed in each census tract for a
one year period.

1 Introduction

Most of the experts think that a pandemic influenza will
hit the world in the near future because of the cases that
happened in the last few years (avian flu-H5N1) and the his-
tory of pandemic influenza (Morse, Garwin, and Olsiewski
2006). Epidemiologists warn that the next pandemic in-
fluenza could infect 33% of the population and kill millions
(Gibbs and Soares 2005). According to the Centers for
Disease Control and Prevention (CDC), there will be a
$71.3-165.5 billion economic impact on the United States
Economy. The World Health Organization (WHO) estimates
that 2-7.4 million people might die.

U.S. Department of Health & Human Services and U.S.
Department of Commerce estimates that 20% of working
adults may become ill, and there may be a 40% workforce
loss during peak because of illness, fear of infection and
the need to care infected family members or school-aged
children. “If the refineries lose 30 percent of their people,
they have to shut down. Transport and delivery would

be severely handicapped during a pandemic both because
of gas shortages and the loss of workforce.” says Dr.
Michael T. Osterholm, the director of Center for Infectious
Disease Research and Policy (Hoffbuhr 2006). Gas shortages
will also trigger interruptions in services. Food and water
supplies may be interrupted, and individuals may also be
unable to get to a grocery store. Logistics of delivering
these basic supplies to infected or quarantined households
is an operations research question (Wu et al. 2006).

In this paper, we consider the problem of providing
food to people who are not able to obtain it during a
pandemic influenza. First, we develop a disease spread
model to estimate the geographical spread of the disease
and then construct a food distribution network based on
these estimates. To the best of our knowledge, this is the
first paper in the literature integrating a disease spread model
and a food distribution model for planning purposes in the
literature.

The remainder of the paper is organized as follows. In
Section 2, we present the existing literature on the disease
spread models and facility location problems. Then, the
model follows that we construct to estimate the disease
spread in Section 3. In Section 4, we present the facility
location model and the solution approach proposed for the
food distribution problem. In Section 5, the computational
results for the state of Georgia are provided. Finally, we
conclude with some future research directions in planning
for a pandemic influenza.

2 Literature Review

There are two main streams of literature related to our prob-
lem: (i) disease spread models, and (ii) facility location and
distribution models. In the literature, disease spread models
have been thoroughly researched for different infectious dis-
eases such as influenza, smallpox and SARS (see Ferguson
et al. (2003) for a review of spread models for smallpox and
Lipsitch and et al. (2003) and Riley and et al. (2003) for
SARS). The disease spread models are developed to predict
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the outbreaks in populations with complex social and spa-
tial structures. There are two common ways to model the
spread of an infectious disease in a population: (i) using
differential equations (e.g. Cahill et al. (2005), Fraser et al.
(2004)), and (ii) simulation modelling (e.g. Ferguson et al.
(2006), Ferguson et al. (2005), Germann et al. (2006), Wu
et al. (2006)).

We develop a simulation based spread model with het-
erogeneous mixing. The comparison of the relevant models
in the literature and our model is provided in Section 3.

The second part of our problem, namely the facility
location part, is determining the location of the food dis-
tribution facilities based on the geographical estimates on
the food need obtained from the disease spread model. The
problem we are dealing with is a hierarchical multi-period
capacitated facility location problem where there are supply
and demand nodes and two levels of facilities between supply
and demand nodes. Multi-period facility location models
have been extensively studied in the literature for the capac-
itated and uncapacitated version (Wesolowsky 1973; Roy
and Erlenkotter 1982; Shulman 1991; Hinojosa, Puerto, and
Fernández 2000). A popular solution approach for multi-
period capacitated facility location problems is to generate
the alternative solutions for the single period problem and
look for the best combination of these alternative solutions
by dynamic programming (Ballou 1968; Canel et al. 2001).
However, all of these solution methods require solving a
mixed integer problem which is not easy for a large-size
problem like ours.

3 Disease Spread Model and Simulations

In this section, we explain the disease spread model devel-
oped for the pandemic influenza. We construct an individual-
based continuous time stochastic model for influenza trans-
mission. In the base model, we do not apply any intervention
strategy. In addition to the base model, we investigate the
effect of quarantine on the spread of the virus. In addi-
tion to food distribution, this model may also be useful for
other purposes such as estimating the region-based hospital
capacity needs for local governments for hospital capacity
planning purposes.

Population heterogeneities such as age, density and
geography are important in predicting the disease spread
(Grais, Ellis, and Glass 2003); thus, we constructed a dis-
ease spread model that takes into account such population
heterogeneities. First, the whole population is divided into
communities that correspond to neighborhoods. Then, the
population of each community is identified by five age
groups, namely, 0-5, 6-11, 12-18, 19-64, 65+, since the
previous research in this area claim that the progress of the
disease depends on the age of the individual (Wallinga, Te-
unis, and Kretzschmar 2006), and the age of an individual
determines his/her contact group. For example, children

are considered to play a major role in the transmission of
influenza (Viboud et al. 2004) because they are assumed
to be more susceptible due to lower immunity (although it
depends on virus types) and to have more daily contacts in
schools and play groups.

The disease spread model can be analyzed in two parts.
The first one is the progress of the disease within an infected
individual, and the second part is the spread of the virus
among the members of the population.

In our model, an infected individual goes through the
stages of the disease according to the natural history for
pandemic influenza in Wu et al. (2006) (see Figure 1).
According to Figure 1, each individual is assumed to be
in one of the following stages at a given time; susceptible
(S), exposed (E), presymptomatic (IP), asymptomatic (IA),
symptomatic (IS), hospitalized (IH ), recovered (R) or dead
(D). When a susceptible individual is exposed, s/he passes
to the exposed stage and then becomes presymptomatic.
After the presymptomatic stage, the individual can develop
symptoms with a certain probability based on his/her age.
The probability of developing symptoms is 0.60 for working
adults (19-64) and 0.75 for other individuals, which is
consistent with other papers (Wu et al. 2006; Longini
et al. 2005; Germann et al. 2006) on average but has
an age-based structure. Asymptomatic individuals recover
after the asymptomatic stage. A symptomatic individual
will either recover or be hospitalized. The probability of
hospitalization after developing symptoms is assumed to be
0.18 for children between 0 and 5, 0.12 for elderly and 0.06
for others (see Wu et al. (2006) for the base value of 0.06
and Longini et al. (2005) for the age-based adjustments).
After hospitalization, the probability of death is 0.344 for
children between 0 and 5 and elderly and 0.172 for others.
(See Wu et al. (2006) for base values and Carrat et al.
(2006) for age-based modifications.) The duration of the
disease stages (E, IP, IA, IS, IH ) are taken from Wu et al.
(2006).

S
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IS

IA

IPE

D

Figure 1: Natural disease history for influenza.

The natural history shows us how the disease progresses
within an infected individual. The progress of the virus
among the members of the population can be explained by
the contact network. We start with a brief explanation of
our contact network. In our model, all of the individuals
mix in the community during the whole day. Other than
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community mixing, individuals mix in households during
the night and in peer groups during the day. The children
in the first three age groups (0-5, 6-11, 12-18) mix with
other children in kindergarten, elementary and secondary
schools. The people in the age group 19-64 are considered
as working adults, and they mix in work places with other
adults. Elderly are not assumed to mix in peer groups. To
sum up, a susceptible individual in the community can get
infection from the other individuals in his/her household,
peer group or in the community. In addition to three types of
infections explained above, we challenge each community
with a constant import rate (1.5 infected individuals per day
per 100,000 people), which represents the infected people
coming from outside the contact network.

The communities are linked to each other via peer
groups which account for the inter-community spread of
the disease. We incorporate a spatial component to our
model by allowing individuals from different communities
to mix in peer groups. An illustration of the contact network
described above can be seen in Figure 2.

Household 1 Household 2

Household 3 Household 4

School
Work place

Community 1

Community 2

Figure 2: Example of interacting groups in a contact net-
work.

Our disease spread model is generic and can be applied
to any area. We take the state of Georgia as the test
case and construct our model accordingly. We consider
each census tract as a single community. We use 2000 U.S.
Census data (www.census.gov/main/www/cen2000.html) to
form the households and peer groups. There are 1615 census
tracts in the state of Georgia, and the total population is
9,071,756.

Table 1 compares the most relevant models in the
pandemic influenza literature and our disease spread model.
In short, we develop a detailed SEIR disease spread model
with a spatial component, age-based structure and night/day
differentiation.

The details of the disease spread model and the ex-
planation of relevant parameters are explained in Appendix
A. To understand the results of the simulation better, here
we provide basic concepts used in disease spread models.

The basic reproductive number R0 is the average number
of secondary cases caused by an infectious individual. This
number determines the infectivity of the virus. For example,
the basic reproductive number for Spanish flu in 1918 is es-
timated around 1.8. The parameters explained in Appendix
A are determined mainly by this number.

We have done the simulations for a range of R0 values
to account for low (R0 = 1.5), medium (R0 = 1.8) and high
(R0 = 2.1) infectivity. The graph in Figure 3 shows the
spread of the disease among the population of Georgia for
different R0 values.
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Figure 3: Simulation results under no intervention policy.

Table 2 summarizes the simulation results with no
intervention policies. “Peak Infectivity” is the percentage
of the individuals who are symptomatic or hospitalized when
the spread peaks. “Peak Day” is the time when the spread
peaks. “CAR” (Clinical Attack Rate) is the cumulative
percentage of the people who have been symptomatic within
the current year. “IAR” (Infection Attack Rate) is the
cumulative percentage of the people who have been infected
(can be symptomatic or asymptomatic) within the current
year. Finally, “Death Ratio” is the percentage of the people
who died because of influenza within the current year.
“Peak Infectivity” is important for planning purposes since
it determines “capacity” required (number of meals required
in our case) in a response planning activity. On the other
hand, “IAR” is used as a performance measure for evaluating
the effectiveness of the intervention policies.

In addition to the base case with no intervention pol-
icy, we have investigated the effect of a limited quarantine.
“Quarantine” is defined as keeping the individual(s) in their
homes, which limits their peer group and community inter-
actions. It is a voluntary quarantine, and the household is
quarantined if an individual from that household develops
symptoms and participates with a certain probability (0.5 in
our case) or the individual is hospitalized. Other individuals
in the quarantined household comply with the quarantine
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Table 1: Comparison of the proposed model with the ones in the literature.

Reference Natural History Spatial Component Age Based Night/Day Differentiation
Wu et al. (2006) Detailed SEIR No No No
Ferguson et al. (2006),
Ferguson et al. (2005),
Patel, Longini, and Halloran (2005), SEIR Yes Yes No
Longini et al. (2005)
Germann et al. (2006) SEIR Yes Yes Yes
Our Model Detailed SEIR Yes Yes Yes

Table 2: Results of the disease spread model with no intervention policy.

R0 Value Peak Infectivity Peak Day CAR IAR Death Ratio
1.5 2.48% 70 32.50% 49.65% 0.57%
1.8 5.27% 50 44.20% 67.49% 0.80%
2.1 8.01% 40 51.27% 78.27% 0.93%

independently with the same probability. Once a household
is quarantined, if no other individual in the quarantined
household develops symptoms or gets hospitalized for a
week, the quarantine is released. Otherwise, the quaran-
tine is extended for another week for that household. The
quarantine is active for a given period of time (2-12 weeks)
different from other papers in the literature (Wu et al. 2006;
Longini et al. 2005) which assume that the quarantine is
active for the entire time horizon.

We have investigated the effect of timing and length
of quarantine on the peak infectivity and IAR for each R0
value. Figure 4 shows the effect of the quarantine length and
timing on the peak infectivity for R0 = 1.8. As expected,
the peak infectivity decreases as the length of the quarantine
increases, but there is a diminishing rate of return. The peak
infectivity in an 8-week quarantine is almost equal to that of
a 12-week quarantine. Furthermore, we see that an 8-week
quarantine is most effective in terms of peak infectivity if
it is implemented starting from the beginning of the fourth
week. However, the optimal timing is a little different if
the performance measure is IAR. For example, for an 8-
week quarantine, IAR is minimal if it is implemented at
the beginning of the week 6. Similar analysis can be done
for different R0 values. Table 3 summarizes the results for
an 8-week quarantine with an objective of minimizing the
peak infectivity.

The next step in our problem is estimating the food
requirement using the spread model. There can be several
alternatives for calculating the food requirement depending
on who to feed. One alternative is serving the households
with all adults infected (symptomatic or hospitalized) since
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Figure 4: Effect of timing and length of quarantine on the
peak infectivity.

the children in this household will not be able to feed
themselves. In case of quarantine, serving the quarantined
households is another alternative. In Figure 5, we present
the daily number of meals needed for the state of Georgia
and Metropolitan Atlanta Area for R0 = 1.8 assuming an
individual needs 3-meals a day, and the households with
all adults infected are served (see Ekici et al. (2008) for
the estimates using other alternatives to calculate the food
requirement). We consider no intervention and an 8-week
quarantine with the optimal timing (the beginning of fourth
week). We consider the Metropolitan Atlanta Area because
in the second part of the problem, we will construct a food
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Table 3: Summary of the quarantine runs for an 8-week quarantine.

R0 Value Quarantine Start Week Peak Infectivity Peak Day CAR IAR Death Ratio
1.5 7 0.80% 52 26.52% 40.46% 0.47%
1.8 4 1.86% 63 36.82% 56.14% 0.66%
2.1 3 3.97% 49 41.26% 62.87% 0.75%

distribution network for this area. In Figure 5, we observe
two peaks for the 8-week quarantine, which is mainly due
to the release of quarantine after 8 weeks.
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Figure 5: Food requirement assuming that households with
all adults infected are served under no intervention or an
8-week quarantine policy.

4 Facility Location Model

In this section, we explain food distribution network that
will be constructed and provide a mixed integer formulation
for the facility location decisions.

First, we describe the problem setting and then explain
the mathematical formulation. In our food distribution net-
work, each census tract is considered as a demand node,
and the amount of the demand is determined by the the
number of individuals/households in need. There is a set
of supply nodes that supply the food to major facility lo-
cations. After the food is processed and/or packed in these
major facilities, it is sent to distribution centers. Then, the
individuals/households who are in need get their food from
these distribution centers. The major facilities and distribu-
tion centers can be opened and closed over time based on
the demand. In our formulation, we consider closing and
opening decisions on a weekly basis over one year.

Next, we present a mixed integer formulation for this
facility location problem. Table 4 summarizes the notation.
In this formulation, we assume that the demand is determin-

istic, that is, we know the number of meals needed ahead
of time for a given day for each census tract. By running
the disease spread model, we can obtain an estimate and
treat this estimate as the true values.

The objective is to minimize the total cost while sat-
isfying the demand. Variables used in the formulation are
as follows:

xi jt = amount of food sent from node i to node j in period t
i ∈ Nk, j ∈ Nk+1,k ∈ {1,2,3}, t ∈ {1, . . . ,T},

y jt =
{

1, if facility at node j is open during week t
0, otherwise

j ∈ N2 ∪N3, t ∈ {1, . . . ,T},

wjt =

⎧⎨
⎩

1, if facility at node j is opened
at the beginning of week t

0, otherwise
j ∈ N2 ∪N3, t ∈ {1, . . . ,T},

z jt =

⎧⎨
⎩

1, if facility at node j is closed
at the end of week t

0, otherwise
j ∈ N2 ∪N3, t ∈ {1, . . . ,T}.

Using these variables, the objective function can be
written as:

OF (x,y,w,z) =
T
∑
t=1

∑
i∈N1

∑
j∈N2

(di jc1
uxi jt + c1

oxi jt)

+
T
∑
t=1

∑
i∈N2

∑
j∈N3

(di jc2
uxi jt + c2

oxi jt)

+
T
∑
t=1

∑
j∈N3

∑
k∈N4

d jkcindividualx jkt

+
T
∑
t=1

∑
j∈N2

(Fjy jt + f jw jt +g jz jt).

The full mathematical formulation of the facility loca-
tion problem is presented in Figure 6. In the formulation,
expression (1) is the objective function, which is the sum-
mation of total transportation cost, handling cost, facility
operating cost and facility opening-closing cost. Constraints
(2) and (3) are the supply constraints and demand con-
straints, respectively. (4) represents the capacity constraints
for each facility location (either a major facility or a distri-
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Table 4: Notation used in the formulation.

T : number of weeks (time horizon)
N1 : set of supply nodes
N2 : set of major facility locations
N3 : set of distribution centers
N4 : set of demand nodes
Si : amount of meals that can be supplied by the supply node at node i for i ∈ N1
Fj : fixed cost incurred if the facility at node j is open during a week for j ∈ N2 ∪N3
f j : cost of opening the facility at node j for j ∈ N2 ∪N3
g j : cost of closing the facility at node j for j ∈ N2 ∪N3
c1
o : unit material handling cost at a major facility
c2
o : unit material handling cost at a distribution center
Cj : capacity of the facility that can be opened at node j for j ∈ N2 ∪N3
Dkt : demand of demand node k in period t for k ∈ N4, t ∈ T
di j : distance (in miles) between node i and node j for i ∈ Nk, j ∈ Nk+1, k ∈ {1,2,3}
c1
u : unit transportation cost from a supply point to a major facility per mile
c2
u : unit transportation cost from a major facility to a distribution center per mile
cindividual : unit transportation cost from a distribution center to a demand node per mile

bution center). Constraints (5) are flow balance constraints.
Constraints (6) and (7) restrict service to open facilities.
Constraints (8) and (9) set the initial and final values. Finally,
(10)-(13) are the integrality and sign restrictions.

Next, we discuss two solution approaches to the food
distribution logistics problem during pandemic influenza.
The first one is called the Deterministic Approach (DET-
A). In this approach, the current spread of the disease is
provided as an input to the disease spread model, and the food
requirements of each demand node is estimated by running
the disease spread model. We solve the facility location
model assuming that the estimated demand values are true
values and determine the opening and closing decisions of
facilities accordingly. Then, the facility location decisions
obtained for the estimated demand is implemented.

The second approach is called the Dynamic Update
Approach (DYN-A). By doing updates on the status of the
spread in discrete times, we can improve the DET-A. That
is, at the beginning of each week, we update our estimate on
the amount of food needed by looking at the current spread
of the disease. In this way, we decrease the deviation of the
estimates from the real-world situation. In this approach,
we apply only the decisions for the current week and then
rerun the simulation in the next week for the remaining time
horizon by providing the status of the real-world spread as an
input to the simulation. We implement both of these solution
approaches and present the results in the next section.

In the computational experiments, we assume that we
serve households with all adults infected, but the approach
is valid for any alternative used for calculating food require-
ment. In addition, we assume that we serve food to people
when more than 0.5% of the population is infected at a given

time. Although the exact percentage is hard to estimate,
the assumption is reasonable because the non-governmental
organizations and/or governments will not construct a large
food distribution network if the number of infections is
under some threshold value.

5 Computational Results

In this section, we provide the results of the computational
experiments. We compare the performances of the DET-A
and the DYN-A.

We test our solution approaches for the Metropolitan
Atlanta Area, which consists of 603 census tracts. Therefore,
in the test instances, we have 603 demand nodes. We
allow 10 potential major facility locations, 78 potential
distribution centers and 28 supply nodes. The total capacity
of major facilities is equal to that of distribution centers,
and the total capacity of major facilities is approximately
2.5 times the estimated peak demand. The total capacity
of the supply nodes is 2 times the estimated peak demand.
Finally, we assume the opening, operating and closing costs
are in proportion to the square root of the capacity of the
corresponding facility type. The opening, operating and
closing costs of a major facility is 100 (and 1000 for another
setting) times that of a distribution center of the same size.
This is reasonable because all the processing operations
will be performed in the major facilities and the distribution
centers, also called point of distribution, will be used only
as a transhipment point.

To test the solution approaches, we run our simulation
model to obtain spread patterns that will be taken as real-
world spreads. Then, in the DET-A, we provide the spread
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Figure 6: Mathematical formulation of the facility location problem.

status as an input to the simulation when more than 0.5% of
the population is infected at a given time. Similarly, in the
DYN-A, we provide the update of the demand as an input
to the simulation when more than 0.5% of the population
is infected at a given time, and we make weekly updates to
the values. We use CPLEX 9.0 with a 10 hour time limit to
solve the integer programs. In the test instances, the length
of the time horizon is 8 weeks (between weeks 5 and 12),
which corresponds to the interval in which more than 0.5%
of the population is infected.

Figure 7 shows the number of major facilities operated
over time for a single instance. In Figure 7, “Perfect
Solution” is the solution obtained assuming that we know
the real-world spread ahead of time. This is impossible to
know but it provides a comparison base for our solution
approaches.
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Figure 7: Number of major facilities open over time.

The optimality gap of the solutions obtained by the
DYN-A is approximately 8.87% (when compared to “Perfect
Solution”) and the DYN-A is 2.48% better when compared
to the DET-A in terms of total cost. Another performance
measure is the proportion of demand served within 10 miles.
The proportion of demand served from a distribution center
within 10 miles mainly depends on the transhipment costs
but here we make a comparison in order to see how the
proportion of demand served from a distribution center
within 10 miles changes in different solution approaches.
On average, 65% of the demand is served within 10 miles
in the “Perfect Solution” and 67% of the demand served
within 10 miles in the DET-A and DYN-A. We refer the
reader to Ekici et al. (2008) for the results for larger sized
problems.

6 Conclusion and Future Directions

In this paper, we construct a disease spread model with a spa-
tial and an age-based structure for pandemic influenza that
may be helpful for developing mitigation strategies and for
planning purposes such as vaccine production/distribution
planning and food distribution planning. In addition, using
this model as a forecasting tool for determining the number
of people who are in need of food, we construct a food
distribution network model called the Dynamic Update Ap-
proach. To the best of our knowledge, we are the first
to integrate a disease spread model and a facility location
model on a dynamic basis. We run our model for the
Metropolitan Atlanta Area. To utilize this spread model
and Dynamic Update Approach in practice for a pandemic
influenza, the real world data should be analyzed quickly
to estimate the value of R0 and other parameters.
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In our disease spread model, we did not assume any
seasonal effects or viral evolution, which may change the
spread pattern of the virus. Another future direction is
optimizing the intervention policies such as distribution of
vaccines and antivirals. This may decrease the number of
infected people as well as the amount of food requirement.

Finally, developing efficient and effective heuristic al-
gorithms for the facility location decisions will enable us
to solve larger-sized problems.
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A DETAILS OF THE DISEASE SPREAD MODEL

In this section, we explain the disease spread model details,
and how we obtain the parameters used in the disease
spread model. The details of the parameter calculations are
explained in Wu et al. (2006). Here, we only present the
age-based and night/day adjustments.

At the beginning of the simulation, every individual
is assumed to be susceptible, and we introduce an initial
number of infected individuals to the community, which
represents the entrance of the virus to the population.

In the disease spread model, we simulate the time
of next infection and choose the individual that will be
infected. Next infection time is generated by calculating
the “instantaneous force of infection” for each individual
(Wu et al. 2006). We have adjusted the calculation of force
of infection for our age-based model using the age-based
parameters (see below for the calculation of the force of
infection).

The coefficient of transmission (β ), relative hazards of
an infected individual at presmpytomatic and asymptomatic
stages (hPS and hAS) and relative hazards in peer groups and
community to households (hPG and hC) are used to define
different disease settings (Wu et al. 2006). We make age-
based adjustments to the calculation of these parameters.
As it is mentioned for the base case in Wu et al. (2006),
we assume that the proportion of transmission that occurs
at either presymptomatic or asymptomatic stage is 0.3, the
proportion of infections generated by individuals who are
never symptomatic is 0.15. Finally, we assume that 70%
of the infections occur outside the household and half of
these infections occur within the peer groups.

In our model, we assume that the relative infectivity of
the children compared to adults is 1.5 and the relative sus-
ceptibility of the children compared to adults is 1.15 (Carrat
et al. 2006). The susceptibility and infectivity parameters
are normalized so that the expected susceptibility of an in-

dividual is 1.0, and the expected infectivity of an individual
is 1.0, hPS and hAS for symptomatic, presymptomatic and
asymptomatic cases, respectively.

Using these parameters, the force of infection experi-
enced by the ith individual during the day (λDi ) and during
the night (λNi ) are calculated as follows:

λDi = Si
j=N
∑
j=1

δPGi j m jε jhPGβ +δCi j
m jhCβ
Ni ,

λNi = Si
j=N
∑
j=1

δHi j
m jβ
nHAi

+δCi j
m jhCβ
Ni ,

where SC and SA are the relative susceptibility values for
a child and adult, respectively. Let qA be the proportion of
adults in our population, then SC and SA can be calculated
using the following equations, which are explained above.

(1−qA)SC+qASA = 1.0
SC = 1.15SA

Ni is the number of individuals in the ith individuals commu-
nity and N in the total number of people in the considered
area. nHAi is the active household size of this individual
where dead and hospitalized individuals are not counted.
δHi j ,δPGi j and δCi j are the indicator functions defined for
households, peer groups and community, respectively. ε j is
the indicator variable showing whether jth individual with-
draws from work or school. Finally, mj’s are defined as
follows:

mj =

⎧⎨
⎩
ICX , if j is a child at stage X
IAX , if j is an adult at stage X
0, otherwise,

where ICX and IAX are the infectivity of an infected child
and an adult at stage X (for X ∈ {IP, IA, IS}), respectively.
The values of these infectivity parameters are calculated
as follows by using the expected relative hazard of an
individual.

(1−qA)ICX +qAIAX =

⎧⎨
⎩
hPS, if X = IP
hAS, if X = IA
1.0, if X = IS

ICX = 1.5IAX
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