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Abstract

This investigation develops an innovative algorithm for mul-
tiple autonomous unmanned aerial vehicle (UAV) mission
routing. The concept of a UAV Swarm Routing Problem
(SRP) as a new combinatorics problem, is developed as a
variant of the Vehicle Routing Problem with Time Windows
(VRPTW). Solutions of SRP problem model result in route
assignments per vehicle that successfully track to all targets,
on time, within distance constraints. A complexity analysis
and multi-objective formulation of the VRPTW indicates
the necessity of a stochastic solution approach leading to
a multi-objective evolutionary algorithm. A full problem
definition of the SRP as well as a multi-objective formu-
lation parallels that of the VRPTW method. Benchmark
problems for the VRPTW are modified in order to create
SRP benchmarks. The solutions show the SRP solutions
are comparable or better than the same VRPTW solutions,
while also representing a more realistic UAV swarm routing
solution.

1 INTRODUCTION

This paper proposes a new problem model for the develop-
ment of unmanned aerial vehicle (UAV) routing solutions
via a study of the routing of multiple UAVs and UAV swarms
to a set of locations while meeting constraints of time on
target, total mission time, enemy radar avoidance, and total
path cost optimization. Contemporary Research is focused,
and increasingly continues to focus, on the development
of autonomous self-organized UAVs. Developing a single
autonomous UAV is not the objective, rather the objective
is to develop a massive array of autonomous UAVs, capable
of working together toward a common goal. The term for
this array is a swarm or flock for which there are many
different design approaches as the problem itself exists in
many scientific and engineering domains. This research
focuses on the development of off-line UAV routing and
mission planning, combined with a simulation and visual-

ization system the purpose of which is to better understand
the computational complexity of autonomous UAV swarm
routing.

2 PROBLEM FORMULATION

The problem of mission planning consists of assigning
multiple vehicles sets of targets to visit. These targets exist
in a field of uneven terrain where different enemy radar
lines of sight exist. There exist two problem aspects to deal
with, the first is the development of flight paths between
targets. The path must be optimized for cost and risk. Cost
is how much energy or time it takes to traverse the path
and risk is a measure of how dangerous the flight area is.
The second is the development of path order. Once it is
determined how to best fly between targets the order of
these flight paths must be determined. Generating the cost
of the path is a separate and immaterial problem related to
the development of path order. In fact, the development of
single path optimization is already being studied in fields
such as robotics, land, and air based agents. Once these path
costs are known, or estimated, however what development
process should be used to structure a valid route plan from
them? This process of route development is the subject
matter of this investigation.

In order to model this routing situation, a combinatorics
problem known as the VRPTW is used. The VRPTW
encompass a situational problem composed of a number
of vehicles, known targets with time visitation constraints,
and constraint on the visitation capacity of each vehicle.
This model most efficiently possesses all the aspects of the
problem under consideration and is well documented and
understood. The VRPTW is limited in its ability to model
realistic UAV routing, necessitating in its extension into a
new problem model. This innovative VRPTW variation is
called the swarm routing problem, SRP, which presented
as a more efficient form to model the routing of multiple
UAVs to multiple targets concurrently (Pohl 2008).
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2.1 Vehicle Routing Problem with Time Windows

The VRP is a well established combinatorics problem with
many variations and solutions, one of these variations being
the VRPTW (Toth and Vigo 2001). The VRPTW consists
of a set of targets, some number of vehicles, and a depot.
The depot is the deployment and return point for all the
vehicles. Each target (and the depot) has a Euclidian location
(coordinate), some associated demand (except the depot),
an arrival time window, and a path to every other location.
The objective of the problem is to develop a set of routes
for each vehicle, so that all targets are visited within the
time window, the associated demand is met, and all vehicles
return to the depot on time. Each vehicle in the problem has
a set capacity that it can not exceed while visiting customers.
Visiting a customer subtracts its demand from the vehicles
capacity. The total demand on the vehicle is the sum of
the demands of all the customers visited. If the vehicles
being used do not have some type of capacity constraint
the problem then decomposes to a TSP since one vehicle
can now satisfy all customers.

The VRPTW, as formulated by (Toth and Vigo 2001)
based on the ordinal formulation by Solomon (Solomon
1987), is defined by a fully connected graph where each
edge has associated with it some travel cost. A mathematical
model formulation of the single-objective VRPTW based
upon the above nomenclature is found in (Toth and Vigo
2001). This model provides the mathematical foundation
for the SRP model.

2.2 Multi-objective Evolutionary Algorithms

Evolutionary algorithms are capable of providing polynomial
time ”acceptable” solutions for many NP and NP-Complete
problems that would otherwise require an exponential or
intractable ”optimal” solution time. One of the interesting
aspects of NP problems is that many of them can be ex-
tend as multi-objective problems. There are two conflicting
effects of a multi-objective problem. The first is that the
problem is often more useful because it more closely ap-
proximates reality, but this comes at a cost of the second
effect: increased complexity. The VRP is hardly realistic,
however the VRPTW described earlier in this section is
closer to reality, and if more constraints are applied, such
as heterogenous vehicles, back-hauls (pick up and delivery),
or multiple depots, the problem would become even more
realistic. While this makes the solution of the problem more
valuable it also makes an optimal solution that much more
difficult to obtain.

With knowledge of the effective use of evolutionary
algorithms and the need for multi-objective problem solu-
tions, recent work has focused on developingmulti-objective
evolutionary algorithms (Coello Coello 2007). MOEAs are
basically the same as a standard single objective GAwith the

difference of how multi-objective solutions are evaluated
and ranked. Note the concept of dominance in a multi-
objective solutions. Thus, a solution is said to dominate
if there is no other solution that can improve one of the
objectives without simultaneously reducing another.

By examining the dominance of different solutions
and ranking them accordingly, a more accurate selection of
effective solutions can be made for future generations. Also,
by ranking across multiple objectives the resulting solution
achieves optimal performance across all objectives without
being biased toward any one objective. When discussing
optimality in a multidimensional space the concept of the
pareto front becomes beneficial. The Pareto front is the set of
non-dominated, feasible solutions. More recent MOEAs use
this understanding of the Pareto front in order to track which
genotypes are developing better solutions. The resultant set
of solutions in the front provides solutions with different
tradeoff values. Which solution is actually used is a decision
made by a user or by some pre-determined rule.

An examination of the current literature reveals a grow-
ing appreciation for the use of MOEAs in complex prob-
lems, such as the VRP (Lou and Shi 2006). It is shown
that MOEAs are better able to navigate the highly irregular
solution space that exists within the VRPTW. What has
also been shown is that multi-objective approaches not only
develop good solutions but are also better than biased single
objective solutions for the optimization of any of a problems
multiple objectives (Ombuki, Ross, and Hanshar 2006) for
certain problems.

2.3 The Swarm Routing Problem

In almost all variations of the VRP, or VRPTW, it is assumed
that all vehicles depart from the depot location to different
targets and only one vehicle visits each target (Toth and
Vigo 2001). This problemmodel is appropriate because each
vehicle is generally assumed to be ground based. However,
the use of a UAV swarm introduces an interesting aspect
which, up to this point, has not been dealt with. When
dealing with a swarm of UAVs and multiple targets to visit,
it is desirable to have the ability to route the swarm between
targets in the most efficient manner possible. The reason for
this is that often many targets exist on a battlefield which
need to be visited in a timely manner, while also utilizing
resources in the most economical fashion possible. It would
be much more efficient to be able to consider UAVs as a
dynamic group rather than indivisible units that can only
visit one location at a time. This implies an imperative to
take advantage of the divisibility of the swarm and route
subgroups of UAVs to different targets, as it is deemed
efficient to do so, and then regroup at other targets.

By viewing the problem in this manner the value of
importance changes from edge costs between targets to the
distance traveled by each UAV. Within the VRPTW (and
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VRPs in general) each vehicle is seen to have some capacity
associated with it that is used to satisfy each customer. While
this works for ground based delivery routing, it would be
more appropriate to view target satisfaction as the number
of UAVs on target in some time window. The path cost
associated with a single vehicle is then more reflective of
the distance that needs to be traveled, and the use of many
vehicles capable of being routed through multiple targets
(causing splits and joins in the group in the process) presents
a more realistic and useful problem model.

The SRP problem domain consists of a network G =
(V,A) where V = {v0v1, ...vn} and v0 is the depot. The set
of edges is defined as, A= {(vi,v j) ∈V, i �= j}, where each
edge has associated with it some cost c(vi,v j). The cost of
the edge is the cost of travel from target i to target j. For
now we assume path cost as some constant travel speed
for each UAV making the travel cost simply the Euclidean
distance between points.

A time window exists for all customers where, E,
represents the earliest start time and, L, the latest arrival
time. The latest arrival time is the point at which the UAV
can arrive and still complete the service time defined by S.
If the vehicle arrives earlier than E, it incurs a waiting time,
W , which is the difference between the arrival time and E.
The total time a vehicle takes to complete it’s route is the
summation of all route path travel costs, waiting times, and
service times (∑ci j+∑wi+∑si). The total path time must
not exceed the latest arrival time (i.e. closing time) of the
depot.

Each customer also has associated with it some demand,
D. The demand is an indication of the number of UAVs that
need to be present at the target within its time window for
the required service time. This is one of the key differences
between the SRP and VRPTW. Instead of demand being
satisfied by a UAVs capacity, it is satisfied by the number
of UAVs at the target. The service time indicates the amount
of time the UAVs are required to be on target.

There exists K homogenous UAVs each of which has
some travel capacity, F , and unit deliverable capacity.
Groups of UAVs are classified as a swarm. A swarm
can split into one or more sub-swarms, join with other sub-
swarms into a larger swarm, and travel along path edges
together as a swarm. It is assumed that join and split op-
erations only occur at targets in order to simplify problem
complexity. The travel capacity is not a deliverable value
as it has been in previous versions of this problem, it is
only an indication of how far the individual UAV can fly.
This constraint can be viewed as the UAVs power supply
limitation. The deliverable value that satisfies the target
is equal to the total number of UAVs present in a given
location at a given time. This value fulfills the demand
requirement of the target during its service time.

The solution to the problem is basically the same as the
VRPTW, a list of ordered targets for each vehicle, such that

the visitation to each target fulfills all target needs without
violating any time or demand constraints. Note, that the cost
of a route is not the total time the route takes to complete,
it is only the sum cost of the edges the vehicle traverses.
The objective remains the same: determine the set of paths
for the UAVs such that the total distance is minimized.

The following is a mathematical model formulation of
the SRP, based on the VRPTW model found in (Toth and
Vigo 2001). Vehicles are defined within the problem by
their inclusion in a flow variable, xi jk, which is a binary
value indicating if UAV, k, exists on the path that connects
(i, j) ∈V at any point in the solution. A time variable, ωik,
indicates the start time of UAV k at location i. The subscript
j ∈ Δ±(i) indicates the set of edges from i to j where j is
not equal to i, the plus or minus indicates either a forward
or backward move along the path.

Ai j - Edge cost between i and j
Vn - Network vertices for n target (v0 is the depot)
En - Earliest arrival time of target n
Ln - Latest arrival time of target n
Sn - Service time of target n
Dn - Demand of target n
K - Set of UAVs
Fk - Travel capacity of UAV k

xi jk ∈ {0,1} ∀k ∈ K,(i, j) ∈ A, (1)

ωik ≥ 0 i ∈ N,k ∈ K, (2)

Equations (1) and (2) define the flow and time variables
used. The flow variable is a binary value that indicates
vehicle, k, travels from location, i to j, if equal to one, and
zero otherwise. The time variable specifies the start time
at location, i, by vehicle k.

∑
j∈Δ+(i)

xi jk = 1 ∀i ∈ N,∀k ∈ K, (3)

∑
j∈Δ+(0)

x0 jk = 1 ∀k ∈ K, (4)

∑
i∈Δ−(n+1)

xi,n+1,k = 1 ∀k ∈ K, (5)

∑
i∈Δ+( j)

xi jk− ∑
i∈Δ−( j)

xi jk = 0 ∀k ∈ K,∀i ∈ N, (6)
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Equations (3)-(6) define the edge constraints of the
graph in a solution. They indicate that the each vehicle
visits a customer only once (3), that all vehicles must start
from the depot (4), that all edge costs are symmetrical (5),
and that all vehicles must return to the depot (6). Note,
in Equation (3) the lack of the summation over K which
removes the constraint that each customer be visited by only
a single vehicle.

xi jk(ωik+ si+ ti j−ω jk) ≤ 0 ∀k ∈ K,(i, j) ∈ A, (7)

ei ∑
j∈Δ+(i)

xi jk ≤ ωik ≤ li ∑
j∈Δ+(i)

xi jk ∀k ∈ K,∀i ∈ N, (8)

ei ≤ ωik ≤ li ∀k ∈ K, i ∈ (0,n+1), (9)

Equations (7)-(9) define the time constraints of the
problem. Equation (7) indicates that the arrival time at
location i plus the service time and travel time to the next
location must equal the arrival time at the next customer.
Equation (8) defines the need for arrival times to bewithin the
customers time window. The depot also has a time window
associated with it (opening and closing time) which all
vehicles must adhere to (9).

∑
i∈N
di ∑
j∈Δ+i

xi jk ≥
K

∑
k=0
ki ∀k ∈ K, (10)

∑
j∈Δ+i

ci jxi jk ≤ Fk ∀k ∈ K, (11)

Up to this point the formulation is basically been the
same as the VRPTW with the exception of Equation (3).
Equations (10)-(11) are what separate the SRP from the
VRPTW. Equation (10) indicates that the demand of each
customer is satisfied by the number of vehicles on location
and that that number must be either equal to or greater than
the demand of the target. Equation (11) indicates that the
total cost of the path for a vehicle not exceed the vehicles
flight cost limit.

min∑
k∈K

∑
(i, j)∈A

ci jxi jk (12)

The single objective function is defined by Equation
(12) which illustrates the desire to minimize the total path
cost for all vehicles. The path cost does not include the
service or waiting times. Time is only a constraint that

causes some routes to be infeasible, the cost is the total
distance traveled.

This formulation has introduced the SRP as a mod-
ification of the VRPTW. By changing the constraints of
customer visitation and how a customers demand is satis-
fied the problem becomes a more realistic model for routing
UAVs to multiple targets within a time window. Up to this
point the VRPTW and SRP have only been single objective
formulations. In the next section the problem models are
expanded in terms of multiple objectives.

2.4 Multi-Objective Formulation for VRPTW and SRP

In Section 2.1 the VRPTW is defined and in the previous
section a variant, the SRP, is defined. The objective functions
for these two problems indicates that only path length is
of critical interest. Even though path length is a primary
objective it is not the only objective that can be optimized
for in the solution. Consider the following situations that
may occur within a problem:

• Vehicle exceeds its capacity to serve a route -
when this happens the route can be split into 2 or
more routes. The split is made when the customer
demand causes the capacity of the vehicle to be
exceeded.

• Vehicle arrives early to a customer - when this
happens the service time for the customer is in-
creased by the time spent waiting

• Vehicle violates a time window by arriving late
- a new vehicle and route are added, splitting the
route as described when capacity constraints are
encountered.

From these situations we see that the solution to allevi-
ating capacity and time violations is to increase the number
of vehicles (and routes). Increasing the number of vehi-
cles is, of course, regressive to the development of optimal
paths lengths. This is due to the introduction of depot travel
times for each new route. Every time a new route is added
the vehicle must first travel from the depot to a location,
making the addition of new vehicle routes generally cause
an increase in total path length (though not always). It is
therefore, advantageous to define 3 objectives to minimize
for: path length, vehicle count and total wait time. By
optimizing for these three objectives we seek solutions with
complementary aspects, and better solutions overall. The
objective functions now consist of the following equations:

min∑
k∈K

∑
(i, j)∈A

ci jxi jk (13)
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min
K

∑
k=0
k (14)

min∑
k∈K

∑
(i, j)∈A

tikxi jk (15)

Equation (13) defines the minimization of the path
length. Equation (14) defines theminimization of the number
of vehicles used. Equation (15) defines the minimization
of the wait time where the variable t is defined in equation
(16) for the VRPTW and (17) for the SRP. The wait time
for the SRP is defined as the difference between a vehicles
arrival time and the arrival time of the latest vehicle, if the
latest arriving vehicles time is past the earliest arrival time
of the customer. The latest arriving time is used because
operation on a customer can not begin until all vehicles
are present. These objective functions apply to both the
VRPTW and SRP.

tik =
{
ei−wik, if E > wik
0, otherwise

}
(16)

tik =

⎧⎪⎪⎨
⎪⎪⎩

ei−wik, if E > wik ∩E > wiu
wiu−wik, if wiu > E
0, otherwise
where u is the latest arriving vehicle

⎫⎪⎪⎬
⎪⎪⎭

(17)

Optimizing across multiples objectives is done with
two purposes in mind. First, to support the idea that a
multi-objective formulation is capable of navigating the
solution space more effectively than optimizing for only
a single objective. Since the objectives complement each
other it would seem logical that optimizing over all of them
would achieve better results. What is also noteworthy is
that by optimizing for these different objectives, solutions
with decreased path lengths should be found as opposed
to optimizing solely for path length. This idea was first
proposed and tested in Ombuki (Ombuki, Ross, and Hanshar
2006) with beneficial results (i.e. benchmark values are not
made worse from the multi-objective approach compare to
the single objective approach).

The reason multi-objective formulation is more effec-
tive is because the problem under consideration has such an
irregular solution space. Time constraints introduce irregu-
larities to the Pareto front such that non-dominated solutions
become more isolated. This problem is exacerbated as more
constraints are applied to the problem such as heterogenous
vehicle fleets or pick-up and delivery problems. Only by
optimizing across multiple objectives can the solution space
be traversed accurately enough to allow the determination
of non-dominated solutions. We now proceed with the high

level solution design to this fully formed multi-objective
problem.

3 ALGORITHM DESIGN

The design objectives for this research are to develop a
solution procedure for the multi-objective routing problems
described in the previous section. This solution must return
information that can be integrated with previous work on
UAV path planning (Slear 2006) and simulation (Corner
2004). The end result of this design is a fully developed
form of an algorithm to be applied to the VRPTW and SRP
whose output is a set of feasible vehicle routes.

A discussion of the problem complexity is performed in
order to illustrate design requirements of the algorithm. For
a fixed number of vehicles the VRP and VRPTW problems
are NP-Complete (Toth and Vigo 2001). The SRP, as an
extension of the VRPTW, can likewise be classified as NP-
Complete for fixed fleet sizes. The solution space size of
the VRP, S, is approximated by Equation (18).

S�
exp(π

√
2n!/3)(n−1)!
8n
√
3

(18)

This equation is found by combining an integer partition
distribution generating function and the the complexity of a
single n customer routing problem (Pohl 2008). The result
of this approximation yields a solution space complexity
of O(expn n!). For the VRPTW the solution space is the
same as it contains the same number of total solutions as
the VRP minus some constant number of solutions made
invalid by time constraints.

3.1 Multi-Objective Genetic Algorithm Design

Multi-objective GAs differ from single objective GAs in
how solutions are stratified. In a single objective algorithm,
determining the quality of a solution is a simple matter. If the
objective is minimization it is a simple compare operation
to the lowest value. For multi-objective optimization this
process is not as simple. While it is possible to weight
objectives in order to obtain a single value associated with
the solution this is not an advisable pursuit. Weighted
objectives introduce bias because no weighting procedure
can accurately treat the different objectives in a manner such
that all objectives are optimized effectively (Coello Coello
and Lamont 2004). To accurately classify solutions over a
multi-objective domain ,a ranking procedure must be used
that takes into account not only the value of the solution
across the different objectives but also its proximity to
other solutions, which is an indication of the value of the
information the solution contains.
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There are three major components to the EA design:
the replacement method, the chromosome structure, and
the genetic operators. The replacement method determines
which solutions are kept after a new generation is created.
Within this step the solutions are ranked and discarded.
The selection methods chosen are shown in the context of
the complete EA. The sections following the replacement
method expand on the chromosome structure, population
initiation, and genetic operators. The chromosome structure
is a critical step which drives the effectiveness of the entire
algorithm and how the different genetic operations function.

Replacement Method: Two replacement methods are
shown in the context of the GA they form. Both of these
methods rely on non-dominated sorting and objective space
distance to rank and select solutions for the next gen-
eration. How Pareto ranking and dominance is utilized
multi-objective search is discussed in Section 2.2. As ar-
guments can be made for any given selection method for
any given problem two algorithms are selected so that their
results could be statistically compared. While many differ-
ent MOEA selection methods exist, NSGA2 and SPEA2
are chosen for their general acceptance within the research
community (Coello Coello 2007).

Non-dominating Sorting Genetic Algorithm II: NSGA2
uses an elitist sorting mechanism of the non-dominated
points to first organize the solution set. The result of this
sorting is a set of solution ranks. The first rank is the hard
non-dominated set. Hard non-dominated refers to a point
that is not dominated by any other solution, as apposed
to soft non-dominated solutions which are only dominated
by those points in the first rank. Each decreasing rank is
dominated by more points. These points are then compared
to each other in order to determine the distribution of points
in the current Pareto front and which points contribute best
to an exploration of the solution space. This process is
called crowding-distance-assignment. By using the crowd-
ing distance and ranking procedure the solutions are ordered
by how ”good” they are. The next generation is then filled
with the best solution until the population limit is reached.
The complexity of NSGA2 is O(MN2) due to the sorting
phase of the algorithm.

Strength Pareto Evolutionary Algorithm II: SPEA2 uses
a strength ranking procedure to stratify solutions. Each
solution is assigned a strength value based on the number
of solutions that dominate it. First, it is determined how
many points dominate each solution, this is referred to as
the fitness value. Then each dominated point is assigned
the sum of all the fitness values that dominate it, this value
is then called the strength value of the solution. It is this
strength value that is used to rank the solution. The strength
ranking procedure ensures that while good solutions are kept,
solutions that are more isolated (but still dominated) are
also kept in order to ensure better exploration of the solution
space. After all the solutions are ranked, an environmental

selection method reduces the population to a user specified
value. This value is referred to as the archive, which is a
misleading term. The archive does not actually save any
information from one generation to another. Its purpose is to
give the user the ability to control how many points should
be saved each generation. The run time of the algorithm is
dominated largely by the truncation operation. The fitness
assignment procedure requires O(N2) while the truncation
operation is O(N3) where N is the number of individuals.

3.2 VRPTW Chromosome Structure

Any chromosome solution used in a VRP must be able to
specify howmany vehicles are required andwhich citiesmust
be visited in what order. The solution chromosome defines
a genotype, which is a code corresponding to a phenotype
which is the actual solution. In terms of total information
the genotype does not need to contain redundant or implied
information. For example, in the VRP it is implied that
a route starts at the depot and ends there. Encoding this
information in a chromosome would therefore be a waste
of space. There are three ways to accomplish this, others
could be formulated but these have been deemed effective
through their repeated usage.

A possible solution structure is a bit string where every
bit corresponds to an edge in the solution (and every bit is
either one or zero indicating whether it is or is not in the
solution). This structure is very simple but grows large very
quickly and the organization requirement of the VRP lends
itselfmore toward real valued structures anyway. The second
structure is a single array of real values representing each
target, the order of which indicates the order of visitation.
Each route is separated by zeros as shown in Figure 1.
This structure is more efficient but still requires the use of
separators to indicate where a route begins and ends.

Figure 1: A possible chromosome structure for a VRP.

In (Tavares, Machado, Pereira, and Costa 2003) a struc-
ture for a VRP chromosome is defined that uses a similar
idea as the array structure but attaches each route to a
support structure, like that seen in Figure 2. The most
beneficial aspect of this structure is that changes made to
a given route do not require a shift to the entire array of
values. In (Tavares, Machado, Pereira, and Costa 2003),
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this structure is proposed, and shown to be, an affective
structure especially for the VRPTW.

Figure 2: GVR chromosome structure for the VRP.

The GVR structure offers many attributes that make
it desirable as a chromosome structure. Its information
content does not contain redundancies. Each route implies
the existence of a departure and return to the depot even
though it is not explicitly stated. This is made possible by
the support structure that contains and separates each route.
It is also desirable that infeasible solutions are not turned
into feasible solutions by adding customers but instead only
by rearranging and removing customers. The impact of
this is that whenever a solution is checked for feasibility
after the addition of a customer it can be safely discarded
if infeasible, knowing the solution is a dead end.

3.3 SRP Chromosome Structure

The chromosome structure used for the SRP is essentially the
same as for the VRPTW. It consists of single route definitions
arranged in a support structure. The only difference is
the arrangement of data within the structure. Since each
customer must be visited by more than one vehicle at a
time the SRP structure must also reflect this. A diagram of
this is shown in Figure 3.

Figure 3: Modified GVR chromosome structure for the SRP.

3.4 VRPTW Genetic Operator Development

The operators described in this section are taken from several
publications (Ombuki, Ross, and Hanshar 2006), (Russell
and Lamont 2005). The genetic operator alters a solution in
a random manner by either randomly changing the solution
or optimizing some sub-section of the solution. This opens
two avenues to pursue, simple operators applied many times
or the use complex heuristics used to intelligently optimize

part of a solution. Classic GAs made use of random opera-
tors, however more and more hybrid algorithms incorporate
heuristics and local search techniques to great effect. For
this investigation, a random crossover method, three random
mutations, and a heuristic based mutation operator are used.

Random Crossover: Crossover is the genetic operation
that occurs most frequently and ensures that children created
from the process are feasible. The operation takes two
parents, a donor and a receiver. A random selection of
customers is selected from the donor and placed into the
first available route in a copy of the receiver, after the
customers in the incoming sub-route have been removed.
The first available route is the route that when receiving
the sub-route does not violate any constraints. If no route
exists then the sub-route is added as a new route after the
copy customers are deleted in the receiver. The net result
of this is a child that is a copy of the receiver but contains
some sub route section from the donor.

Random Swap Mutation: In swap mutation two ran-
dom customers in a solution are swapped if doing so does
not violate constraints. If constraints become violated the
mutation does not proceed. This process is illustrated in
Figure 4.

Figure 4: Random swap operator for the VRPTW.

Random Inversion Mutation: Select a random sub-
route within a solution and reverse the order of visitation.
The mutation does not proceed if this results in an invalid
solution. The resultant route may or may not be longer than
the original route.

Random Insertion Mutation: Move a random customer
to a random location in the solutionwhile ensuring feasibility.
It is possible to create a new route with probability 1

2V where
V is the number of vehicles. (Tavares, Machado, Pereira,
and Costa 2003).

Best Route Cost Mutation: This operator randomly se-
lects a route within a solution and optimizes its construction
by rearranging customers within that route. This is accom-
plished by first searching the route and determining which
of the customers is closest to the depot. This customer then
becomes the first customer. The closest customer to this
customer that is in the route is then moved next to the the
first customer and so forth, creating a route based on cus-
tomer proximity. Customers that can not be feasibly added
are moved to a new route. It is always assumed that a single
customer within a route is valid, without this assumption
the problem would not be solvable. The construction of a
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new route proceeds in the same way, placing customers by
order of proximity.

3.5 SRP Evolutionary Operator Development

The SRP genetic operators are variants of the VRPTW oper-
ators altered to take into account the different structure of the
SRP solutions. The difficultly in developing these operators
is ensuring the validity of the child genotype. Since the
chromosome contains location sensitive information across
two dimensions, as opposed to the VRPTW chromosome
which is only sensitive across a single route, making even
slight changes can cause invalid solutions to be created.

Split Mutation: Split mutation randomly selects a route
within the SRP solution and attempts to reduce the total
length of that route be eliminating unnecessary target vis-
itations. Each customer is satisfied with a certain number
of UAVs at its location, however more can be present than
are actually needed. This may cause a route to be longer
than it needs to be since its divergence to an unnecessary
target takes longer than a direct route. The split mutation
operation determines if this is occurring in a random route
and attempts to remove the target from the vehicles flight
plan. If this operation then results in an infeasible solution
it is considered to have failed, and is not implemented. This
process is illustrated in Figure 5.

Figure 5: Split mutation operator for the SRP.

Vertical Swap Mutation: The vertical swap operator
swaps two different locations vertically in a given solution.
This is in contrast to the VRPTW swap mutation in section
3.4 in which the swapped targets can be anywhere. Columns
within the SRP have a close approximation to time within
the solution. It is not exact because distance information
is not contained within the solution, and cities in the same
column may not actually be visited at the same time. The
swap operator randomly selects a column and two different
targets within that column. These targets are then swapped
and feasibility is checked. An infeasible solution is not
used.

Random Crossover with Tightening: The crossover op-
eration must be done with particular care as effective al-
terations to the solution are difficult to achieve. The basic
idea of the crossover operation is the same as the VRPTW
crossover operation, from two solutions a random route is
selected from each. This route is then added to the other
solution. The problem is, unlike the VRPTW crossover op-

eration, subsections of a route can not be easily transferred
between two solutions. In order to compensate for this, the
route to be crossed is added to the solution as an entirely
new route. The solution then undergoes an operation called
tightening. During this operation the solution is searched
to determine what customers are over satisfied or visited
at inappropriate times, the customers in the new route are
given preference for staying. The resultant solution con-
tains the additional information of the crossover operation
without the redundancy or operation errors.

For this investigation the OB library is selected. The
OB library contains very powerful and well constructed
tools for the creation of evolutionary algorithms. It is
written in C++ allowing for easier integration with existing
simulation uses, all of which are written in C++, and the
library allows the use of the vector data structure. The
library is written in very strict object oriented protocol,
meaning little work is required on the part of the user
to get program specific details integrated into the overall
programm structure, assuming they are written to the same
OO standard. The selection of this infrastructure drives the
code level requirement of all the program components as
well as the data structures available.

4 EXPERIMENTAL DESIGN OBJECTIVES

The goal of any experiment is to contribute evidence to the
hypothesis proposed. In this case, there are two hypotheses
to test stemming from the objectives defined in Section 2;
the proposed solution design for application to the VRPTW
is valid across a spectrum of benchmark problems, and the
solution design for application to the SRP produces valid
results comparable to those obtained in the corresponding
VRPTW benchmark. These objectives drive the experi-
ment design such that a set of benchmarks are applied to
the VRPTW and SRP solutions resulting in a set of valid
solutions. These solutions then contain measurable metrics
of total path length, total vehicle count, total wait time,
and average path length (these metrics apply to both the
VRPTW and SRP). In the case of the SRP the benchmarks
are modified such that customer demand is an indication of
vehicle count and not capacity demand, as in the VRPTW.
Comparison of these metrics of performance allows for an
intelligent comparison of the solution process to benchmark
problems. Also, EA settings or parameters are determined
based upon empirical experiments.

Three different algorithm designs, each with two op-
tions for selection strategies, are used in the experimental
procedures. These three designs are NSGA2, SPEA2, and
a biased elitism algorithm. The biased elitism algorithm
uses no strategy to rank solutions instead using an elitist
ordering procedure that is biased toward path length. The
top number of individuals, equal to the population size, are
selected from the population after genetic alteration. Each
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of these designs is then paired with either a random or
tournament selection process. Recall that selection refers
to how solutions are selected for genetic mutation. Tourna-
ment selection means some number of random individuals is
selected from the population, with replacement, and ranked
(biased by path length) with the top rank selected for al-
teration. The SRP experiments employ only the use of the
tournament selection method; random selection is deemed
more harmful to the SRP solution process from the fact that
the genetic operators employ no local search techniques.

5 VRPTW and SRP Experiments

The most commonly used benchmarks for the VRPTW are
the Solomon problems developed in 1987 (Solomon 1987).
They exist in three different varieties; a random distribution
of customers (R), clustered sets of customers (C), and hybrid
(RC). Each of these three problems comes in dimensions
of twenty five and fifty customers. In order to examine the
effectiveness of the software as well as the impact of the
multi-objective design, two problems from each type are
tested, listed in Table 1. The use of this variety of problems
illustrates the impact of problem type on the solution design
as well as solution performance in different instances. The
number designation of each problem constitutes the time
windows that exist for that problem. Problems that begin
with a one, such as R109, have small time windows, while
R206 has much larger time windows.

Table 1: Solomon test problem selections

Random Cluster Hybrid

25 Tar R206 R109 C103 C205 RC107 RC202
50 Tar R206 R109 C103 C205 RC107 RC202

Each SRP test problem contains a set of target coor-
dinates, target time windows, and vehicle capacity. The
Euclidean distance between targets is considered to be the
edge cost. The same problem selections are applied to the
SRP solution modified in the demand column to ensure that
each problem contains a realistic UAV requirement.

Algorithm effectiveness varies greatly as different pa-
rameters within the program are tuned. The settings for
each algorithm type are determined from empirical analysis
and literature review (Ombuki, Ross, and Hanshar 2006).
The operator percentage indicates the chance that operator is
used on an individual during the alteration phase. The more
effective operators are used more often while the random
operators are used less. The options for the algorithm used
to solve the VRPTW problems are quit similar to those the
option for the SRP algorithm which are listed in Table 2.

The SRP software experiments use the NSGA2 and
biased elitism algorithms. The reason for this is that re-
sults from the VRPTW reveal a consistent dominance of

these two methods over SPEA2. Each algorithm/problem
experiment is run thirty times in order to ensure reliable
statistical analysis. Each replacement strategy uses a tour-
nament selection method. The population size and operator
application percentages are different from the VRPTW set-
tings in order to counter the SRPs fragile structure. More
simple operations are performed to take the place of a few
intelligent operations. Experiments are run against a small
subset of the problems applied to the VRPTW (those entries
bolded in Table 2).

Table 2: SRP GA Settings.

Operator
Setting

Random Crossover 50%
Split Mutation 25%
Vertical Swap Mutation 5%
Generation Limit 5000
Population Size 100
μ
λ ratio 2

6 VRPTW RESULTS AND ANALYSIS

VRPTWoptimization occurs across three dimensions of total
path length, total wait time, and number of vehicles used.
Previous analysis, and the classical view, of this problem
attempts to optimize path length and the number of vehicles
used (Ombuki, Ross, and Hanshar 2006) or path length
alone (Toth and Vigo 2001). Experiments performed in this
investigation do not yield a single solution optimized in any
one direction but rather a Pareto front of non-dominated
values. In order to compare the results found here to those
in the literature they are first shown in terms of the best
path length found overall. The following box plots show
the best path lengths available at the time of this writing
compared to a distribution of values found from experimental
trials (30 trials). Each box plot shows results for a single
problem across six algorithm settings: SPEA2, NSGA2,
Biased Single Objective; each of which uses either random
or tournament selection. The wording used to express each
of these settings is shown in Table 3. Each plot also shows
the best answer for path length optimization found in Toth
(Toth and Vigo 2001) and Diaz (Diaz 2007).

Where appropriate, a Kruskal-Wallis test using an alpha of
0.05 is used to further analyze performance for the different
algorithms on specific problems. Following these box plots,
solution space plots are shown across dimensions of path length
and wait time in order to better examine algorithmic performance.
The drive for this is that observing only path length can be
misleading when examining MOEA performance. Each type of
problem is defined in the experimental design discussion: random,
cluster, and hybrid.
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Table 3: Box plot label explanations for VRPTW experi-
ments.

Plot

Definition

Meaning

SPEA2 Tourn
SPEA2 replacement strategy using
tournament selection for genetic op-
erator application

NSGA2 Tourn
NSGA2 replacement strategy using
tournament selection for genetic op-
erator application

Bias SingleT
Biased Single Objective replacement
strategy using tournament selection for
genetic operator application

SPEA2 Rand
SPEA2 replacement strategy using ran-
dom selection for genetic operator ap-
plication

NSGA2 Rand
NSGA2 replacement strategy using ran-
dom selection for genetic operator ap-
plication

Bias SingleR
Biased Single Objective replacement
strategy using random selection for ge-
netic operator application

Random Distribution Problem: The difference in perfor-
mance between high and low dimension problems is considerably
different. Figure 6 indicates the results for 50 customers where
NSGA2 is observed to return results closer to the best answer,
followed by the biased single objective algorithm, with SPEA2
doing worst. A Kruskal-Wallis statistical analysis performed in
Matlab confirmed these visual observations.

The performance observation per algorithm is repeated in
the R206 problem. NSGA2 again manages to pull ahead in terms
of the path length objective and along with the biased algorithm
approaches the best solution in the higher dimension 50 customer
problem. The consistent convergence of solutions for NSGA2
using tournament selection is observed.

Cluster Distribution Problem: Within the cluster benchmarks
the path length objective becomes less consistent in returns. All
methods are converging close to the best answer with NSGA2
actually achieving it in a few trials. Increasing the dimension of
the problem, in Figure 7, causes a return to the performance seen
so far, with no algorithm approaching the best solution.

For the lower dimensional problem, convergence is achieved
using the biased algorithm with a wide dispersion of points using
SPEA2 or NSGA2. over higher dimensional problems the results
are quite similar to that of Figure 7 which reflects almost the
same performance. NSGA2 returns better statistical results. It is
interesting to note the results of NSGA2 with random selection
returning with such consistent results. This can be most likely
attributed to the nature of the cluster problems working well with
the genetic operators used.

Hybrid Distribution Problem: The hybrid problem would
seem to represent the most difficult landscape to work in. However
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Figure 6: Trial results for random distribution problem R109
with 50 customers
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Figure 7: Trial results for cluster distribution problem C103
with 50 customers

for the lower dimensional problem, no algorithm had particular
trouble arriving at the optimal solution. This is less true for the
fifty dimension problem in Figure 8 as seen from the results
being further from the optimal value line. NSGA2 and the biased
algorithm returning consistent values with tournament selection
being the deciding factor in superior performance. Further gener-
ational development would most likely force the solution closer
to the optimal. NSGA2 achieves statistically better results by a
small margin, further leading to the conclusion of its usefulness
in developing solutions. However, previous results also show
consistent returns using the biased algorithm, meaning no one
strategy dominates overall.

The hybrid problem solution for 25 customers again indicates
the convergence of the biased algorithm occurs while NSGA2
and SPEA2 maintain a larger coverage. This is seen in the
disconnected Pareto fronts of Figure 9. Statistical comparison
plots indicate consistent results across NSGA2 and the biased
algorithm. SPEA2 is again beaten in this particular performance
measure due to is dominance selection criteria.

Results from only observing the path length objective can
be informative but also slightly misleading. It might be assumed
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Figure 8: Trial results for hybrid distribution problemRC107
with 50 customers
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Figure 9: Trial results for hybrid distribution problemRC202
with 50 customers

that SPEA2 is being outperformed in all problem instances, and
in terms of path length it is. Analysis of the non dominated
approximated Pareto front generated by the NSGA2 and SPEA2
trials show a return of results consistent with what one would
expect from a VRPTW multi-objective problem.

The conclusion to be made is that the multi-objective solution
is effective in returning a broad range of results and that these
results are pushing the front of the problem. It is therefore not
odd that the multi-objective approach did not return a near optimal
value for path length. The returned value represents the solution
space for the objectives selected. The fact that the returned values
are close (i.e within 10 percent in most cases) to the highest
benchmark value, shows the validity of the MOEA approach as
being able to find the optimal value for a single objective, while
also optimizing across the range of objectives. In short, it appears
that multi-objective optimization is appropriate for this particular
routing problem.
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Figure 10: Non-dominated front comparing NSGA2 and
SPEA2 for RC205 with 25 customers

7 SRP RESULTS AND ANALYSIS

SRP optimization occurs across dimensions of total path length,
wait time, the number of vehicles used, and average path length.
As this problem formulation is unique to this investigation there
are no readily comparable results. Though the problems differ in
formulation the objectives remain the same between the SRP and
VRPTW. As such, the results obtained from the VRPTW solution
are compared in order to illuminate the hypothesis that the SRP
represents a superior problem model in terms of individual vehicle
operation and mission optimization. As in the previous section
results are organized in box plots representing trial results for the
selected problem. Definitions for the labels used in the plots are
the same as for the VRPTW. A comparison of the best results
from the VRPTW solution are also shown both in terms of total
path length and average path length (even though average path
length is not an optimized objective in the VRPTW).

Random Distribution Problem: The total and average path
length returned by NSGA2 and biased algorithm indicates that The
biased algorithm converges while NSGA2 retains a larger spread
of the solution space. Neither NSGA2 or the biased algorithm
perform significantly better than one another.

For the cluster distribution problem, The return of total and
average path length between NSGA2 and the biased algorithm
with further comparison between the same VRPTW indicates a
decreasing ability to handle this particular type of problem. This
behavior should be expected as the VRPTW solution contains
heuristic operators that deal specifically with clustered targets,
while the SRP does not. The equal performance of the biased
algorithm and NSGA2 for the VRPTW is obtained. Even with
the high constraints of the SRP problem model it is still possible
to return per vehicle path lengths of the same distance.
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8 CONCLUSIONS

Results from the VRPTW experimentation showed a consistent
return of results across a broad spectrum of problems. Optimiza-
tion along the path length objective showed less than optimal
results, however when combined with a view of the achieved non-
dominated front, it is clear that the MOEA strategy is working
correctly. Further comparison between results shows the NSGA2
algorithm performing better or as well as the biased algorithm.
However, in some cases the biased solution converged early while
the MOEA approaches maintained a breadth of search in the so-
lution space. These results lead to the conclusion that the MOEA
solution method developed and implemented here is effective at
optimization over a range of different problems.

Even with a multi-objective design, optimization of the path
length objective still approaches optimal value. NSGA2 is able
to achieve a path length value within ten percent of the optimal
value, and is even closer in some cases. It can be concluded that
even while the algorithm is optimizing across multiple objectives
the returns for a single objective are no being compromised, as
evidenced by NSGA2s performance on the various benchmark
problems (Pohl 2008).

With the validation of the MOEA design in place, obtained
through analysis of results over VRPTW benchmark problems,
attention can then be turned to to the SRP problem model. Results
for the SRP again show consistent returns of total and average
path length. Average path length is then compared to the average
path length returns for the VRPTW solution in order to show that
the SRP achieves comparable results, which it does. That the
average path length returns for the SRP are comparable indicates
the merit of the model as a per vehicle optimization strategy.
The purpose of the SRP as model is to develop time constrained
routes between many different targets each of which requires
some number of vehicle visitations. It is no sunrise that total
path length is greater for the SRP returns, it would have to be,
what is important is that the returned solution does not require
any one vehicle to visit a large number of points, as would be
the case in the VRPTW.

The benchmarks used in these experiments should also be
considered reflective of real world problems and not merely
contrived problems. A real world mission for a compliment of
UAVs can conceivably contain 20 or more targets, to which these
benchmarks affectively match. The SRP model shows capability
not only as a combinatorics formulation but also as an applicable
model for real world problem formulation, as the solutions shown
here validate a capability to return consistent solutions.
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