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ABSTRACT 

This paper discusses information fusion methodologies, 
selection of one of these methodologies, and application 
of these fusion methodologies to underwater sonar simu-
lation. Bayesian Inference and Dempster-Shafer are the 
two methods that have been studied in detail. In conclu-
sion, the Dempster-Shafer approach was selected as the 
preferred method. Dempster-Shafer’s main advantage is 
that it does not need conditional likelihoods. Also, Demp-
ster-Shafer does not have computational complexity prob-
lems when multiple hypotheses and multiple conditional 
dependent events are examined. This method was applied 
to the multisensor information fusion problem in a simu-
lation which includes a passive sonar, an active sonar, and 
a radar. The simulation is conducted on a geographical 
information system.  

1 INTRODUCTION 

In the past researchers’ main problem was to obtain the 
information itself. However, the amount of available in-
formation has increased so dramatically over the last few 
decades, now the new problem is joining information 
from different sources and obtaining a single vision of the 
facts. This is exactly the problem of multisensor data fu-
sion for underwater sonars. Since different sensors have 
different capabilities for detecting underwater entities, 
each sensor gives partial or deviated information of the 
whole object. Only after systematic information fusion, 
navy ships can identify the entities and decide their sub-
sequent actions.  

There are different information fusion methods but 
the benefits depend on the objective or the level in which 
the fusion will be applied. Hall and Llinas (1997) divide 
the information fusion to the following steps: 
a) Determining the target’s position and velocity from a 

noisy time-series of measurements. Kalman filter and 
its variants are proposed at this stage.  

b) Establishing target identity: A transformation must be 
made between observed target attributes and the labeled 
identity. Techniques such as clustering algorithms (fea-
ture-level fusion), neural networks (feature-level fu-
sion), template methods (feature-level fusion), Bayesian 
inference (decision-level fusion), Dempster – Shafer 
(decision-level fusion), and weighted decision (deci-
sion-level fusion) are used at this stage. 

c) Interpreting the target’s intent: Rule-based reasoning 
systems (knowledge-based methods), and fuzzy logic. 

d) Quantifying the effectiveness of data fusion system: 
Monte Carlo simulations, and covariance error analysis 
techniques. 

The focus of this paper is decision-level fusion using 
Bayesian and Dempster-Shafer inference. Section 2 summa-
rizes previous work from our research team on modeling the 
effectiveness of underwater sonar, a project funded by the 
Office of Naval Research. Bayesian Inference and Demp-
ster-Shafer methods are discussed in section 3. A brief lit-
erature review of the results obtained from other authors us-
ing similar methods for the information fusion problem is 
also shown. We also discuss the implementation of the me-
thods in the information fusion problem in a simulation 
model that represents the navy surveillance. The implemen-
tation of the enhanced simulation model is shown in section 
4. The conclusions and future extensions are discussed in 
section 5. 

2 PREVIOUS WORK 

A simulation environment has been created which uses a 
hybrid simulation modeling environment (agents, discrete-
event, and system dynamics) integrated to a Geographical 
Information System (GIS) engine, ArcGIS. This environ-
ment simulates a Navy ship which tows an array of sensors; 
some passive and some active. Sensors are used to detect 
and classify all objects within a given detection range. Sen-
sors include radar, sonar, infrared and optic sensors. Ships 
also carry integrated surface picture capabilities to reduce 
the false alert rate.  
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The hybrid simulation modeling system was built us-
ing AnyLogic™, a simulation software developed by XJ 
Technologies (XJ Technologies 2008). AnyLogic™ was 
selected, among other reasons, because it is based on Ja-
va, an object-oriented programming (OOP) language. 
OOP is desirable as it allows reusability, extensibility, and 
maintainability of the previously built model (Akin, Zhu, 
Bull, Rabelo and Sepúlveda 2008). On the other hand, 
ArcGIS Engine (ESRI 2008) was used to provide GIS 
services (maps and querying capabilities) to the simula-
tion model and to dynamically display the simulation out-
puts (Zhu, Sala-Diakanda, Rabelo, Sepúlveda, and Bull 
2007). As the simulation runs, its objects (the different 
ships and animals) routinely request geographic informa-
tion with respect to their positions. Depending on the in-
formation provided, such as proximity to land, other 
ships, or water depth, the simulation model may modify 
the attributes (such as their course) of some objects.  
ArcGIS Engine then uses this information to dynamically 
update the display of the simulation (Figure 1). 

 

 
 
Figure 1: Simulation scenario using the different geo-
graphical databases for the coast and inland ports of 
Northeast United States, Zhu et al. (2007) p 1384. 
 

The goal of this simulation environment is to assess 
the decision-making effectiveness of the sensor system as 
a whole. Therefore, the implementation of information fu-
sion methods to obtain a higher performance classification 
system as a result of the different sources of sensor data is 
an evolutionary step for this simulation environment. 

2.1 Advantages of GIS based simulation 

The main advantage of a GIS based simulation is that it 
better mimics the real simulation environment. For in-
stance on a 2D environment if you map a 300 nautical 

mile by 500 nautical mile rectangle area, it would be an ex-
act rectangle. However, it is not possible to come up with a 
perfect rectangle on the earth since the shape of the earth is 
not flat. Figure 2 shows an example area to the north-east of 
Hawaii. Even though the sides of the area are exactly 
500nm and 300nm the shape is not a 2D rectangle. If you 
would check the diagonals you will see that one of them is 
593.4nm the other is 573.4nm. If this was a 2D rectangle 
both diagonals would have been 583 nm. Therefore using 
GIS based simulations will result in more accurate results.  
 

 
 

Figure 2: Distances on real GIS 
 
Another advantage of using GIS based simulations is 

the possibility to create realistic logs of the action which 
takes place in the simulation. Therefore once the simulation 
is complete we could feed the log into SIMDIS  
(Simdis 2008) and get a 3D representation of the simulation.  

3 INFORMATION FUSION METHODS  

The literature offers several methods for information fusion, 
for determining the target’s position and velocity, and also 
for establishing the target’s identity. To determine the posi-
tion and velocity, sequential estimation techniques and 
Kalman filter are used. These methods seek an equation that 
estimates an a-posteriori state as a linear combination of a-
priori states. 

Once the position and velocity is determined, we need 
to solve the association problem for which we have Cluster-
ing Algorithms, Heuristic Methods, Artificial Neural Net-
works, Bayesian Inference, and Dempster-Shafer methods.  
Clustering Algorithms is a set of algorithms that require the 
definition of an association measure to define closeness be-
tween two observed feature vectors (Hall 1992). These are 
feature-level fusion techniques that allow separation of the 
data into identifiable groups. Although these techniques are 
used by several authors in our case clustering the informa-
tion obtained from different sonars does not give a relevant 
result in the process to identify entities.  

Heuristic method for identity detection considers Vot-
ing, Scoring model (weighted), Ordinal ranking, Q-sort, and 
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Pairwise ranking. However, to build these heuristics one 
needs to gather a large amount of historical data to create 
the suitable weight for each sensor and most of the time 
these heuristics need specific parameters which do not al-
low the standardization of the procedures for different 
scenarios in the simulation (Hall 1992; Hall and Nauda 
1990; Ku and Choi 2000; Steinmetz et al. 1996,). 

According to Hall and McMullen (2004), an artificial 
neural network is an interconnected group of artificial 
neurons that uses a mathematical or computational model 
for processing information. In general, data vectors are 
input of the network and the neural network performs a 
nonlinear transformation, given an output vector. Neural 
networks need examples and historical data to be trained. 
In our case, we do not have historical and benchmark da-
ta. 

Bayesian inference is a theory for the mathematical 
representation of uncertainty which focus on aleatory un-
certainty (which results from random behavior). The me-
thod is based on the establishment of a hypothesis of 
which the likelihoods are updated according to incoming 
new additional evidence. This method allows us to iden-
tify the entity when we have new information through 
time. Bayesian inference is further explained in section 
3.1. 

The other method we studied was Dempster-Shafer 
(D-S), another theory for the mathematical representation 
of uncertainty, which focus on epistemic uncertainty (re-
sults from lack of knowledge), also called subjective un-
certainty or ignorance. The focus of D-S theory is to de-
termine a set of intervals (lower bound, called “belief” or 
“support,” to upper bound, called “plausibility”) and as-
sign a probability mass to each interval in the set. Thus, 
D-S allows building interval probabilities and uncertainty 
intervals to determine the likelihood of hypotheses based 
on multiple evidences. This method is explained in sec-
tion 3.2. 

3.1 Bayesian inference  

Bayesian Inference method updates the likelihood of a 
hypothesis given a previous likelihood estimate and addi-
tional evidence such as new observations.  

In order to apply this method we need to identify: 

• Mutually exclusive and exhaustive hypotheses that 
can explain an event E that has just occurred. These 
hypothesis are represented by H1, H2, H3,…,Hj  

• A-priori probability of hypothesis Hi being true, P(Hi)  
• The conditional probability of observing evidence E, 

given that Hi is true, P(E/Hi) 
• The sum of all the a-priori probability must be one, 

∑ = 1)H( ii P  

Then, the a posteriori probability of hypothesis Hi being 
true given the evidence E has been observed is given by 

∑
=

)()/(
)/()/(

ii

i
i HPHEP

HEPEHP  

Hall and McMullen (2004) indicate that the ability to 
use subjective probabilities for a priori probabilities for hy-
potheses, and for the probability of evidence given a hy-
pothesis, allow implementation of Bayesian inference proc-
ess for multisensor fusion since probability density 
functions are not required.   

3.2 Dempster-Shafer method  

The Dempster–Shafer method uses probability intervals and 
uncertainty intervals to determine the likelihood of hypothe-
ses based on multiple evidences.  This method can be used 
on propositions that may contain overlapping or conflicting 
hypotheses.  

In order to apply D-S method it is necessary to define:  

• An elemental set of propositions called the frame of 
discernment. This set is composed by n mutually exclu-
sive and exhaustive set of propositions in regard to a 
subject area, such as  θ = {A1, A2, A3,.. An} 

• A set that includes 2 n-1 general propositions by boolean 
combinations of the θ set. This set is called 2θ and it is 
defined as 

2θ = { X1={A1∨ A2}, X2={ A1 ∨ A3}, …, Xm={ A1 ∨ A2 
∨ A3∨…∨An} 

• One important general proposition inside of 2θ  is the 
boolean disjunction of all of the elementary proposi-
tions (

−

X = A1 ∨ A2 ∨ A3∨…∨An ) which is equivalent 
to a general level of uncertainty or to saying that “we 
don’t know.” In particular, if m )(

−

X = 1, the sensor is 
unable to distinguish among any elementary proposi-
tion. 

• The probability mass, m(X), is a concept developed in 
D-S to represent assigned evidence. A sensor may as-
sign probability masses to an elementary proposition or 
to a general proposition in the set 2θ, such as m(A1), 
m(A2), or  m(X).  m(X) represents the proportion of all 
relevant and available evidence that supports the claim 
that the actual state belong to X but not to a particular 
subset of X 

• Each probability mass must be less than or equal to one 
and their sum over all of the elements must be one.  

 Each m(X) ≤ 1 and ∑ =
= 

n

i
Xi

1
1)m(  

• The probability of a proposition Ai is given by the sum 
of m(Ai) for the element of  θ that contains Ai exactly, 
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and m(X) for those general propositions in 2θ that 
contain Ai as an element.  

)2,(}{Pr
2,

θ

θ

θ
θ

∑
∈

=
iA

i mAobability  

Then the Dempster-Shafer approach gives evidential 
intervals for each Ai or Xi, denoted by [Spt (Ai), Pls (Ai)] 
or [Spt (Xi), Pls (Xi)] respectively. Where supportability 
(Spt) assigns probability masses to an elementary proposi-
tion or to a general proposition in the set 2θ (the sum of 
the masses of all subsets of Ai) 

 
)2,(][

2,

θ

θ

θ
θ

∑
∈

=
iA

i mASpt  

The plausibility of a proposition Ai, is defined as the 
lack of evidence supporting its negation (~A). It is the 
sum of all the masses of all sets that intersect Ai. 
 Pls (Ai) = 1- Spt (~Ai) 

Then, Spt (Ai) ≤Pr(Ai) ≤ Pls (Ai) 

Liu, Tan, and Yang (2003) show the Dempster com-
bination rule to fuse information from two resources as 

)()()( 2121 j
ACB

i CmBmKmmAm
ji

∑
≠∩

=⊕=  

   where 

)()( 21
1

j
CB

i CmBmK
ji

∑
Φ≠∩

− =  

In this rule, 21 mm ⊕  is the orthogonal sum opera-
tor; K is a measure of the amount of conflict between the 
two mass sets; and (1-K) is a normalization factor used to 
ignore conflict. 

Bayesian Inference and the Dempster-Shafer method 
produce identical results when all of the hypotheses con-
sidered are mutually exclusive and the set of hypothesis is 
exhaustive. 

4 IMPLEMENTATION 

In our previous work (Sepúlveda et al. 2006; Zhu et al. 
2007; Akin et al. 2008) we developed a framework to eva-
luate the effectiveness of an underwater sonar system to 
detect and differentiate entities. However, the sensor fu-
sion part was not fully implemented previously. Thus, this 
paper focuses on the multisensor data fusion analyzing 
and comparing different sensor fusion algorithms. In the 
next subsections we will discuss the implementation of 
multisensor data fusion algorithms in our scenario. 

4.1 Description of the scenario   

In the modern era of ocean combat, one of the main tasks is 
to identify possible torpedo attacks. There are many differ-
ent entities in the sea, such as animals and ships. A navy 
ship patrols around the ocean with a set of sensors monitor-
ing its environment. These sensors need to detect all differ-
ent objects and differentiate these entities from torpedoes.  

A typical scenario in this paper is that a navy ship gath-
ers information from different sensors. Based on their data 
inputs, we need to fuse them together to identify potential 
suspects. The simulation models the sensor fusion process 
and then calculates the efficiencies of different fusion algo-
rithms.  

4.2 Incorporation to the simulation model 

A navy ship has a set of sensors including passive sonars, an 
active sonar, and a radar. Different sensors have different 
detection capabilities. A data fusion structure needs to be 
implemented to fuse data together to identify and classify 
suspects. There are two important aspects in this process: 
target tracking and sensor fusion. 

4.2.1 Tracking structure   

The tracking process deals with the association of the cur-
rent detection with previous historical data. There are three 
steps in this process: alignment, association, and updating. 

  

 
Figure 3: Tracking structure 

Alignment deals with the spatial registration or tempo-
ral prediction of the target tracks based on the inputs of dif-
ferent sensors. The first step in this process is to convert the 
data from different sensors to a common coordinate system.  

In association, we organize the data from different sen-
sors into different sets by predicting whether they were ori-
ginated from the same targets. Based on different tracking 
models (whale, navy ship, enemy ship), we can compute the 
extrapolated tracks. By comparing extrapolated tracks, the 
current positions and possible errors, we can associate the 

Sensor 1 Sensor k

Association 

Alignment Alignment 

Fusion 

… 
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data input. In this paper we implement the Joint Probabil-
istic Data Association (JPDA) algorithm (Bar-Shalom, 
Fortmann, Scheffe 1980). JPDA applies a Bayesian esti-
mate of the correspondence between features detected by 
sensors and targets to be tracked. It computes the prob-
abilities of association of the set of measurements to vari-
ous targets at time t.  

After association, we update the states for each 
tracked entity. We will discuss the updating process in the 
next subsection.  

4.2.2 Data fusion structure   

Basically there are two different data fusion issues: spatial 
fusion and temporal fusion. Spatial fusion fuse data gath-
ered from different sensors at the same time. Temporal 
fusion deals with the fusion of historical data with current 
inputs from different sensors. Many different fusion archi-
tectures available have been discussed in the literature, 
such as centralized, hierarchical, and distributed. In our 
model we design a hierarchical fusion architecture which 
can fuse data from different sensors both spatially and 
temporally (Liggins et al.1997).  

 

 
Figure 4: Spatial-temporal sensor fusion structure 

Figure 4 shows the spatial-temporal sensor fusion ar-
chitecture at modular level. Input from Upper Component 
is the data input from upper modules. Sensor 1 and Sensor 
2 here are sensors which belong to this module. Result is 
the sensor fusion result from the data inputs mentioned 
above. Fusion Result at K-1 is the previous final sensor 
fusion at time K-1. Fusion Result at K is the final fusion 
result at this moment, which will be used to update the da-
ta stored in Fusion Result at K-1 and will be used as the 
Input from Upper Component of the next module.   

Figure 5 shows the procedural structure of the fusion 
system. There are three different modules in the system 
which procedurally fuse data from different types of sen-
sors. 

• Passive Sonar Data Fusion 

Passive sonar listens to the environment and receives 
information passively. Once it detects any signal, it will 
trigger the sensor fusion process. The module fuses data 
from different sensors (or different measurements). Once it 
reaches a threshold, if the object is classified as a threat, the 
module will trigger the active sonar data fusion and its re-
lated active sonar. 

• Active Sonar Data Fusion 
Active sonar scans the environment by pinging and 

then analyzing rebounding signals. Active sonar fusion fuses 
data from different active sonars. Once it reaches a thresh-
old, if the object is confirmed as a threat, radar sonar data 
fusion will be triggered. 

• Radar Sonar Data Fusion  
This module is more about confirming whether an ob-

ject is detectable as above or under water. Radar scans the 
environment and then analyzes the rebounding signals. Data 
inputs from different radars and previous module will be 
fused here. If a threshold is reached, the countermeasures 
system will be alerted. 

 

 
Figure 5: Procedural sensor fusion structure 

4.3 Algorithm comparison 

This section describes a simulation experiment devised to 
compare the behavior of the Bayesian and D-S algorithms 
for an underwater sonar system. 

Figure 6 describes the pattern (distributions) of the 
noise made by different simulated objects. For the experi-
ment, it was assumed that the noise patterns are uniform for 
almost all ships except by “old” enemy ships and that the 
noise caused by sea animals is uniformly distributed. Table 
1 and Table 2 show probability distributions over sound 
ranges. 

1. Passive  
Sonar Fusion 

2. Active  
Sonar Fusion  

3.Radar 
 Fusion  

4. Alert 
System

Sensor 1 Sensor k

Result Fusion Result at K-1  

Fusion Result at K 

Input from 
Upper Component  

… 
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Figure 6: Noise Patterns (distribution) 

 

Table 1: Probability Distributions over Sound Ranges for 
Passive Sonar 

 
• L.B.: Lower bound 
• U.B.: Upper bound 

 

Table 2: Probability Distributions over Sound Ranges for 
Active Sonar 

L.B. U. B. A B C D E F G 
[10 ,15] 1 0 0 0 0 0 0
(15 ,20] 0.5000 0.5000 0 0 0 0 0
(20 ,25] 0.3333 0.3333 0.3333 0 0 0 0
(25 ,30] 0.2694 0.2694 0.2694 0.1796 0 0.0123 0
(30 ,35] 0 0.2882 0.2882 0.1921 0.1921 0.0393 0
(35 ,40] 0 0 0.3099 0.2066 0.2066 0.0704 0.2066
(40 ,45] 0 0 0 0.2876 0.2876 0.1373 0.2876
(45 ,50] 0 0 0 0.2767 0.2767 0.1698 0.2767
(50 ,55] 0 0 0 0.2667 0.2667 0.2000 0.2667
(55 ,60] 0 0 0 0 0.3465 0.3071 0.3465
(60 ,65] 0 0 0 0 0 0.5056 0.4944
(65 ,80] 0 0 0 0 0 1 0

4.3.1 The Experiment 

In the simulation, an object (ship or animal) is created and 
generates noises in the appropriate range level. For exam-

ple an old neutral ship generates a noise of 52 units. The 
passive sonar detects the noise and tries to classify the ob-
ject, first using Bayesian and then using the D-S algorithm. 
 For Bayesian, the simulation starts with the same a-
priori probability (1/7) for each object. The a-posteriori 
probability for each object is then calculated based on the 
prediction by the sensor (table 1).  

For D-S, the simulation starts with probabilities of the 
first prediction of the sensor. In other words, there are no a-
priori probabilities. 

The simulated object then generates another noise in 
the appropriate noise level and the passive sonar fuses this 
new information with the previous assessment. In other 
words, Bayesian uses a-priori probabilities from the previ-
ous iteration and calculates a new set of values for the a-
posteriori probabilities. D-S, on the other hand, uses the 
Dempster combination rule to fuse the current observation 
with the previous one and determine new lower (support or 
belief) and upper limits (plausibility) for the probabilities. 
This is repeated over and over until a decision threshold is 
reached. We set, arbitrarily, a value of 75% as the cut-off 
value for a decision (for the a-posteriori probability or the 
support level, as appropriate). We record the number of it-
erations needed by each algorithm to reach a classification 
decision and more importantly, the active sonar will be trig-
gered.  

Active sonar differs from passive sonar in the way that 
the active sonar sends out signals to detect objects instead of 
listening to the noise passively (see table 2). When there is a 
bounced signal, the active sonar analyzes it. Active sonar is 
comparatively more precise. The sensor fusion rules are the 
same. A value of 90% is set as the cut-off value for a deci-
sion. The number of iterations to reach a classification deci-
sion will be recorded and the radar will be triggered.  

Radar differs from active sonar and passive sonar in the 
way that it can only detect objects above water. Thus, the 
radar can only classify the objects above the water. Cut-off 
value for a decision here is 95%. Related data will be saved 
and a signal will be sent to the ship. For objects under wa-
ter, radar can only judge whether it is detectable or unde-
tectable. In this simulation, we arbitrarily classify the ob-
jects to be underwater if the radar cannot detect it in two 
consecutive cycles. If it is an underwater object, the classifi-
cation is solely based on the prediction from the active so-
nar.  

Then, we determine for each decision reached if the 
outcome is TP (True Positive), TN, FP, or FN, as shown in 
Table 3.  

Table 3: Sensor Classification 

Object Sensor Classifies the object as 
 Friend/Neutral/Animal Enemy 
Friend/Neutral/Animal TN FP 
Enemy FN TP 

 

L.B. U. B. A B C D E F G 
[13 ,18] 1 0 0 0 0 0 0
(18 ,23] 0.5000 0.5000 0 0 0 0 0
(23 ,27] 0.3333 0.3333 0.3333 0 0 0 0
(27 ,30] 0 0.5000 0.5000 0 0 0 0
(30 ,32] 0 0.3704 0.3704 0.2593 0 0 0
(32 ,34] 0 0 0.5882 0.4118 0 0 0
(34 ,35] 0 0 0.5840 0.4088 0 0.0071 0
(37 ,40] 0 0 0 0.4538 0.4538 0.0923 0.0000
(40 ,50] 0 0 0 0.2955 0.2955 0.1134 0.2955
(50 ,55] 0 0 0 0 0.3780 0.2439 0.3780
(55 ,60] 0 0 0 0 0 0.4504 0.5496
(60 ,71] 0 0 0 0 0 1.0000 0
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We repeat the above procedure a number of times for 
different types of objects and then we calculate the sensi-
tivity and specificity of the sensor for each approach 
(Bayesian and D-S), as shown in Table 4. 

Table 4: Measure of Performance for Sensor Fusion 

Measure of  
Performance 

Formula Comments 

Sensitivity 
The ability to 
detect a threat. 

TP / (TP + FN)  If sensitivity = 1, 
then FN = 0, this 
means we do not 
miss any enemy  

Specificity 
The ability to 
react to react to 
real threats only. 

TN/(TN + FP) If specificity = 
1, then FP=0, 
this means we 
do not react to 
harmless ob-
jects. 

Efficiency 
Fraction of sig-
nals (objects) 
correctly classi-
fied. 

(TP + TN)/ 
(TP+FP+TN+FN) 

A combined 
measure of per-
formance.  

 
The next section discusses the effect of the algorithm 

with respect to the number of iterations need to reach a 
classification of the object and the quality of the decision 
(sensitivity and specificity).  

Note that, if the object is classified as a threat by the 
passive sonar, the system activates the active sonar. The 
fusion of passive and active sonar decisions is also done 
using Bayesian or D-S. The starting a-priori probabilities 
for the active sonar may be the same as used by the pas-
sive sonar (e.g., assumes independence of the sensors) or 
the a-posteriori probabilities determined by the passive 
sonar at the iteration when the active sonar was activated. 

4.3.2 Results and discussion 

Results of the simulation are listed in the table 5 and table 
6 for passive sonar and active sonar respectively. These 
tables are summarized from 6 runs for each method with 
each run to classify 2000 objects. 
 

 

Table 5: Statistics of Passive Sensor 

 D-S Bayesian 
TN 1,409 1,402 
TP 523 525 
FN 46 48 
FP 22 25 
Sensitivity 0.9199 0.9159 
Specificity 0.9846 0.9823 
Efficiency 0.9663 0.9633 
Mean (Iterations) 5.6961 5.6711 
St.dev. (Iterations)  4.6351 4.6098 

 

Table 6: Statistics for Active Sonar 

 D-S Bayesian 
TN 1,430 1,426 
TP 551 555 
FN 18 19 
FP 2 1 
Sensitivity 0.9692 0.9676 
Specificity 0.9990 0.9991 
Efficiency 0.9905 0.9900 
Mean (Iterations) 2.0967 2.1016 
St.dev. (Iterations)  0.3962 0.4186 
 

Based on the results, the performances of D-S and 
Bayesian are not significantly different. Both of them have 
good performance in classifying different objects. However, 
D-S performed slightly better.  

One important observation is that the probability distri-
bution is very important. Different probability distributions 
result in different performances.  Thus, it is hard to pick one 
method over the other. However, one of the fundamental 
differences between the D-S and Bayesian is that Bayesian 
requires that the sensors should have clearly set possibilities 
for all the entities; however D-S allows less defined prob-
abilities. Since Bayesian requirement of “clearly set possi-
bilities” is not realistic, D-S would have been our choice if 
we had to pick one of these methods. 

 

5 CONCLUSIONS 

In this paper we evaluated the application of sensor fusion 
method in the navy detection system. Two different sensor 
fusion methods, Bayesian Inference and the Dempster-
Shafer methods, have been evaluated and compared. Based 
on the simulation results, both Bayesian Inference and 
Dempster-Shafer produced good results when all of the hy-
potheses considered are mutually exclusive and the set of 
hypothesis are exhaustive. 

Even though Dempster-Shafer and Bayesian Inference 
showed close results and performances based on the ex-
periment, in real life situations it is unlikely to have mutu-
ally exclusive probabilities and a set of exhaustive hypothe-
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ses. So, Bayesian Inference does not appear to be suitable 
for multisensor fusion in Navy environment, as it does not 
allow us to incorporate uncertainties such as “we do not 
know.” As a result we believe Dempster-Shafer method 
better suits the needs of multisensor fusion problem of the 
Navy ship. 

For future research, further analyses of different sen-
sor fusion methods with different possibility distributions 
are necessary. The sensor fusion infrastructure needs to be 
integrated into our Navy defense system simulation model 
and tested against different test scenarios.    
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